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The paper presents the results of systematic measurements of the thermal conductivity 

coefficient of nanofluids at room temperature. In total, more than fifty various nanofluids based on 

water, ethylene glycol, and engine oil containing particles of SiO2, Al2O3, TiO2, ZrO2, CuO, and 

diamond were studied. The nanoparticles volume concentration ranged from 0.25 to 8% and the 

particles size ranged from 10 to 150 nm. It is shown that the thermal conductivity of nanofluids is not 

described by the classical theories (Maxwell's and so forth). The nanofluid thermal conductivity 

coefficient is a complicated function not only of the particle concentration, but also the particles size, 

their material, and type of base fluid. Measured thermal conductivity coefficients almost always 

exceed the values calculated by the Maxwell's formula, though nanofluids with sufficiently small 

particles may have thermal conductivity coefficients even lower than those predicted by the Maxwell 

theory. However, in all cases, the nanofluid thermal conductivity coefficient enhances with increasing 

particle size. It is convincingly shown that there is no direct correlation between the thermal 

conductivity of the nanoparticle material and the thermal conductivity of nanofluid containing these 

particles. The base liquid also significantly influences the effective thermal conductivity of the 

nanofluid. It has been confirmed that the lower the thermal conductivity of the base fluid, the higher 

the relative thermal conductivity coefficient of the nanofluid. 
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1. Introduction 

Nanofluids represent a two-phase system consisting of base liquid and nanoparticles. The 

interest in nanofluids is associated with two main factors. Nanoparticles, because of their small size, 

have a number of unusual properties that are lacking in the dispersed macroscopic particles. The 

unusual properties of nanoparticles determine non-standard properties of nanofluids, which include 

these particles. Most expectations have long been associated with various thermal applications of 

nanofluids. As late as the first experiments on measurement of their thermal conductivity [1, 2] 

showed excellent results: the incorporation of even small, of the order of a percent fraction, 

concentrations of solid metal nanoparticles enhanced the thermal conductivity of the base fluid by 
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several percent or even tens of percent. This initiated a number of thermal conductivity measurements 

of the nanofluids, though the obtained data proved to be surprisingly controversial. It was found that 

the thermal conductivity of nanofluids, as well as their viscosity not described by the classical theories 

(see the reviews [3–5]). In particular, it was found that the thermal conductivity of nanofluids depends 

not only on particle concentration but also on particle size. An unambiguous answer to the question of 

what is this relationship still fails.  

Thus in [6], when studying water-based nanofluids with Al2O3 particles, it was argued that the 

thermal conductivity coefficient enhances with decreasing particle diameter. Similar data for the same 

nanofluids are given in [7, 8]. The decrease in thermal conductivity with increasing nanoparticle size 

was also noted when studying other nanofluids [9–12]. In [13] it was asserted that the thermal 

conductivity coefficient increases linearly with decreasing particle size (the measurements were 

carried out in water-based nanofluid with nanoparticles of TiO2 and ZnO). 

On the other hand, Chen et al. [14], based on measurements of thermal conductivity of water-

based nanofluids with SiO2 particles came to just the opposite conclusion: thermal conductivity 

enhances with the increasing of particle size. Similar data for nanofluids with particles of Al2O3, SiC 

and Au were reported in [15–19]. 

The dependence of the thermal conductivity of nanofluids on material particles is discussed in 

[20]. It is alleged that there is no direct connection between the thermal conductivity of material 

nanoparticle and the thermal conductivity of the nanofluids. 

The available data on the degree of thermal conductivity enhancement in nanofluids are quite 

controversial. Along with the previously mentioned works, which noted a much higher enhancement 

of the thermal conductivity coefficient than predicted by classical theory, there are also assertions that 

these measurements can be adequately described by Maxwell's theory [21] (see the papers [2–5, 22]). 

These conflicting data do not allow formulating neither possible mechanisms nor nanofluid thermal 

conductivity models, though about a dozen of such models are available in literature (see for example 

[23–26] and the literature quoted there). 

Even a brief review shows that the systematic measurement of the nanofluid thermal 

conductivity and definition of influencing parameters is a crucial problem. The present work is 

concerned exactly with this topic. In total, more than fifty various nanofluids based on distilled water, 

ethylene glycol, and engine oil containing particles of SiO2, Al2O3, TiO2, ZrO2, CuO, and diamond were 

studied. The nanoparticles volume concentration ranged from 0.25 to 8%. The particle size ranged from 

5 to 150 nm.  

 

2. Measurement technique 



 3 

Thermal conductivity measurements were performed by non-stationary hot-wire method. 

Detailed description of the test bench and testing technique is given in [27]. Wheatstone bridge was 

used as the basis of the test bench instrumentation to measure an unknown electrical resistance of hot 

wire. A copper wire with a length of 150 mm and a diameter of 75 microns was used in the 

experiments. The basic electric circuit of the setup is presented in Fig. 1. The wire serves one of the 

measuring bridge resistors Rw. The bridge includes also two other resistors: R1 = 2 kOhm and R3 = 1 

Ohm as well as the resistance box R2, needed to balance the bridge. Initially the bridge is balanced and 

the output voltage does not exceed 10 µV. Balancing of the measuring circuit is carried out by a 

voltage of 0.1V from a lab power source GWInstek GPC-3060D applied within a short period of time. 

Further, the circuit is energized by measuring voltage to record the out-of-balance voltage change of 

the bridge circuit over time. Voltage measurement is carried out using a precision voltmeter GWInstek 

GDM-78261 with increments of 10 ms. In addition, the test fluid temperature was measured by means 

of chromel-copel thermocouples connected to the TRM-138 meter. 

 

Fig. 1. The electric circuit of the experimental setup. 

 

Data processing was made in a following way. The initial resistance of the wire is found from 

the condition of the bridge circuit balance: 2310w RRRR  . The change in wire resistance is 

determined by the ratio 
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where iV  is the input voltage of the bridge, оV  is out-of-balance bridge voltage. Given the dependence 

of electrical resistance of copper on temperature, we can determine the temperature change of the wire 

)R(R)R()RR(T 0wwt0w1wt2wt   , 

where α = 0.000383 1/K is the temperature coefficient, predetermined from measurement series of 

used copper wire resistance at different temperatures. The voltage drop on the wire is given by 

formula: .)RR(RVV 3wtwtiRw  Then, the linear density of heat flux on the wire is defined as 

wtw
2

Rw RL)V(q   where Lw is the length of the wire. In the experiments, a typical value of q was 

around 10 W/m.  

Eventually, the heat conductivity coefficient of a fluid is defined as follows: 

   G4qR 0w   , where G is the angular coefficient of the linear section taken from the 

dependence of the wire resistance on the logarithm of time. The coefficient G was calculated by the 

least squares method. The value of thermal conductivity coefficient was obtained by averaging over 

ten measurements. During the measurements, the nanofluid temperature was maintained constant. In 

the presented measurements it was equal to 25°C. The resultant relative measurement error of fluid 

thermal conductivity coefficient does not exceed 3%. 

Preparation of nanofluids was carried out based on standard two step process. After adding to 

the base fluid the required amount of nanopowder, the nanofluid was first thoroughly mixed 

mechanically, and then was placed for the half-hour into an ultrasonic disperser Sapphire to destruct 

conglomerates of particles. The nanoparticles were purchased from "Plasmoterm" company (Moscow). 

 

3. Dependence of thermal conductivity on particle concentration 

The first question that arises in the study of thermal conductivity of any dispersed fluid is 

formulated quite simply: how thermal conductivity depends on the particle concentration φ. The 

answer to this question for coarse dispersed liquids with spherical particles was given by Maxwell [21], 

who obtained the following relation between the thermal conductivity coefficient of the suspension 

 and base fluid f  
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where pf /   , p  is the thermal conductivity coefficient of particle material. Formula (1) was 

obtained for spherical particles non interacting with each other. Later Bruggemann [28] proposed a 

model, which took into account the interaction of the randomly distributed particles. This model, 

unlike (1), has no restrictions on particle concentration, though within the low concentration range it 

leads to the same results as the Maxwell model. Hamilton and Crosser [29] generalized the model (1) 
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for the case of non-spherical particles. There are still quite a lot of models, a short list of which can be 

found, for example in [22], however, the model (1) satisfactorily describes numerous experimental 

data obtained in coarse dispersed fluids at not too high concentrations. 

Measured data on the relative thermal conductivity coefficient fr /   for a number of 

water based nanofluids are presented in Table 1. In all cases, increasing the particle concentration 

leads to significant enhancement of nanofluid thermal conductivity. The enhancement of nanofluid 

thermal conductivity over that of pure water at 6% concentration of nanoparticles reaches 5–28% that 

is greater than the values defined by formula (1). For illustration, Fig. 2 shows nanofluids thermal 

conductivity coefficients, presented in the Table, along with the values calculated by formula (1). 

 

Table 1. Relative thermal conductivity coefficient of water based nanofluids  

depending on the particle concentration. 

Al2O3 (150 nm) TiO2 (150 nm) ZrO2 (44 nm) ZrO2 (105 nm) 

φ λ/λf φ λ/λf φ λ/λf φ λ/λf 

0.01 1.059 0.01 1.048 0.02 1.077 0.02 1.087 

0.02 1.131 0.02 1.100 0.04 1.143 0.04 1.169 

0.04 1.178 0.04 1.146 0.06 1.172 0.06 1.216 

0.06 1.240 0.06 1.206 0.08 1.185 0.08 1.283 

 

 

Fig. 2. Relative thermal conductivity of water based nanofluids with 150 nm particles of TiO2, Al2O3 

(left), and ZrO2 (right) depending on particle concentration. 

 

A characteristic feature of the nanofluid thermal conductivity is slowdown of its enhancement 

with increasing of particle concentration. This is well illustrated by Fig. 2 (right) for nanofluid with 44 

nm particles of ZrO2. Similar behavior of the nanofluid thermal conductivity was noted earlier in 
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experiments [30, 31], as well as in molecular dynamic simulations [32, 33]. At low concentrations of 

particles this dependence can be approximated by a simple formula 

2
21r bb1   .                                                              (2)  

However, the coefficients in formula (2) are not universal. Thus, for the nanofluid containing 150 nm 

particles of Al2O3  

2
r 5.3942.61   ,                                                          (3a) 

for 150 nm particles of TiO2  

2
r 1.2382.41   ,                                                          (3b) 

 

for 44 nm particles of ZrO2  

2
r 6.2968.41   ,                                                        (3c) 

 

while for 105 nm particles of ZrO2  

2
r 7.1255.41   .                                                        (3d) 

 

4. Dependence of thermal conductivity on particle size 

Analysis of the data in Table 1 and Fig. 2 (right) shows that the non-universality of the 

coefficients ib in formulas (2) and (3). In particular, from the fact that they are functions of the 

nanoparticle size pd . In order to clearly answer the question about the character of this dependence, it 

was necessary to perform thermal conductivity measurements in nanofluids with particles of different 

size, though at the same volumetric concentration. We have performed these measurements using 

nanofluids with silicon, aluminum, zirconium, and titanium oxides particles. The particle sizes ranged 

from 10 to 150 nm. Distilled water was used as the base fluid in all cases, while volume concentration 

of the nanoparticles was equal to 2%. The measurements were carried out at a temperature of 25oC. 

The data obtained are presented in Table 2 and allow us to unambiguously assert that the nanofluid 

thermal conductivity coefficient depends on the particle size; at that, the more particle size the higher 

thermal conductivity. 

 

Table 2. Relative thermal conductivity coefficient of water based nanofluids 

depending on particle size. 

SiO2 Al2O3 TiO2 ZrO2 

dp λ/λf dp λ/λf  dp λ/λf dp λ/λf 

10 1.015 50 1.061 71 1.066 44 1.077 
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16 1.027 75 1.082 100 1.084 105 1.087 

25 1.040 100 1.100 150 1.100 - - 

100 1.072 150 1.133 - - - - 

 

However, the degree of enhancement of thermal conductivity coefficient is very different. It is 

characteristic that for different nanofluids we obtained relative thermal conductivity coefficients lower 

(see Fig. 3–4) than those defined by formula (1), which is shown as a dashed line. This fact was noted 

in the literature before, though was not associated with the relationship between the thermal 

conductivity and particle size [20]. Data for the water based nanofluids with SiO2, TiO2  and Al2O3 

particles are compared in Fig. 3, 4 with experimental data [15, 34–40], while the dashed line 

corresponds to formula (1). Our data are generally in good agreement with data of other authors. 

 

 
a)     b) 

Fig. 3. Relative thermal conductivity coefficients of SiO2  (a) and TiO2 (b) nanofluids  

versus nanoparticle diameter at volumetric concentration of 2%. 

 
 

Fig. 4. Relative thermal conductivity coefficients of water based nanofluid with Al2O3 particles  

versus nanoparticle diameter at volumetric concentration of 2%. 
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What the dependence of thermal conductivity on particle size looks like? In [41], based on the 

analysis of numerous experimental data, it was shown that the relative thermal conductivity coefficient 

of water based nanofluid with particles of Al2O3 can be satisfactorily approximated by the formula 

D
~

A1kr  ,                                                                  (4) 

where /dD
~

p ,   is the effective size of the base fluid molecule, 038.0А  for nanofluids with 

Al2O3 particles. The comparison of the experimental data with the formula (4) is shown in Fig. 4 by the 

solid line. Formula (4) give the accuracy about 3%. 

The constant A depends on nanoparticle material. It is clear, however, that this dependence is 

applicable only to certain sizes of particles. To the extent of large particle sizes such dependence must 

disappear, while the thermal conductivity coefficient should be described by the formula (1), since it 

well describes the existing experimental data for coarse fluids. Thus, the enhancement of thermal 

conductivity coefficient caused by the increase in particle size cannot be unlimited, and accordingly 

the dependence of the thermal conductivity coefficient on particle size should have maximum. 

 

5. Dependence of thermal conductivity on nanoparticle material  

All of the classical thermal conductivity theories of disperse fluids suggest dependence of 

thermal conductivity on particle material. In equation (1), this dependence is taken into account by 

introduction of thermal conductivity coefficient of the particle material. Figure 5 presents consolidated 

data from Table 2, obtained by the authors. Since these data include nanofluids with particles of the 

same size but different materials, it is clear that the nanofluid thermal conductivity depends on the 

particle material. Let us consider, what determines this dependence. 

 

Fig. 5. Relative thermal conductivity coefficient of water based nanofluids  

depending on particle size at room temperature and volumetric concentration of 2%. 
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The first thing we need to understand is whether there is any systematic dependence of the 

nanofluid thermal conductivity coefficient on the nanoparticle thermal conductivity. The answer to this 

question is given by data presented in Fig. 6, which shows the dependence of the relative thermal 

conductivity of the five water based nanofluids with particles of ZrO2, TiO2, SiO2, CuO, and Al2O3. In 

all cases, the average particle size was 100 nm. Nanoparticles volume concentration is equal to 2%. 

Here dashed line shows calculation by Maxwell formula (1). Thermal conductivity coefficients of 

particle material are ranged in a following ascending order: ZrO2, TiO2, SiO2, CuO, and Al2O3. On the 

other hand, the data in Fig. 5 on nanofluid thermal conductivity coefficients are also ranged in 

ascending order as follows: SiO2, TiO2, ZrO2, Al2O3, and CuO. It is obvious that there is no direct 

correlation between nanofluid thermal conductivity and that of particle material. 

 

Fig. 6. Relative thermal conductivity coefficient of water based nanofluid  

depending on thermal conductivity of the particle material.  

 

The nanofluid thermal conductivity coefficient is not correlated with the other important 

thermal characteristics of the nanoparticle material. This is illustrated by Fig. 7a and 7b, which present, 

respectively, the dependence of the relative thermal conductivity coefficients of nanofluids on thermal 

diffusivity and heat capacity of the particle material. All data are given for the same nanofluids as data 

in Fig. 5. 
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                                           a)                             b) 

Fig.7. Relative thermal conductivity coefficient of nanofluids  

versus thermal diffusivity (a) and heat capacity (b) of the particle material. 

 

On the other hand, it was revealed by the molecular dynamics method [32, 33] that nanofluid 

thermal conductivity enhances with the increase in the nanoparticle material density. Our experimental 

data confirm this. Figure 8 shows the dependence of thermal conductivity on density particle material. 

This dependence was obtained for particle concentration of 2% and a particle size about 100 nm. For 

comparison also shows data from other papers [42–45] for a close conditions. Indeed, the thermal 

conductivity of nanofluids is increased if the density of the nanoparticle material grows. 

 

 

Fig. 8. Relative thermal conductivity of water based nanofluids versus density of particle 

material for volumetric concentration of 2% and particle size of 100 nm. 
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The authors of the paper [41] noticed that the constant A in formula (4) should be function of 

the density of nanoparticles material but they could determine this constant only for nanofluids with 

Al2O3 particles. Analyzing the dependence in Fig. 8, we can conclude that this dependence is 

satisfactory described by linear function. Therefore we modified the formula (4) by the following one  

D
~

)~00383.00193.0(1kr  .  
    

         (5) 

Here fp /~   , p , f  are the density of the nanoparticle and carrier liquid material respectively. 

Figures 3 show (solid lines) a comparison of results obtained by this formula with the data of our and 

other experiments for different nanoparticles. In all cases, the agreement is good. The error of the 

formula (5) is less than 3%. 

 

6. Dependence of thermal conductivity on the properties of the base fluid 

To date, just a few works are known, where the effect of base fluid properties on nanofluid 

thermal conductivity was studied. This was first done in [2], which deals with nanofluids based on 

water, ethylene glycol, vacuum pump oil, and engine oil. It was noted that the highest thermal 

conductivity of the nanofluid was revealed in ethylene glycol based nanofluids. Later, the influence of 

the base fluid was studied by Xie et al. [46]. They developed a method to create a stable nanofluids, 

based on deionized water, ethylene glycol, and decene with multiwalled carbon nanotubes. It was 

found that the thermal conductivity coefficient enhancement decreases with increasing thermal 

conductivity of the base fluid. This conclusion is not consistent with the data presented in paper [2], 

though, certainly, the studied nanofluids were quite specific. Therefore, it was extremely important to 

test the applicability of this conclusion with regard to the conventional nanofluids.  

The complexity of studying the effects of the thermal conductivity of the base fluid on the 

thermal properties of nanofluids consists in the necessity to compare the data, at least of two 

nanofluids with the same concentration of nanoparticles and their size, though different base fluids. In 

the present work, the first measurement series was carried out with nanofluids based on water and 

ethylene glycol, containing TiO2 particles 150 nm in size. The data obtained differ systematically, 

though not much (see Fig. 9, left). In all cases, thermal conductivity enhancement of ethylene glycol 

based nanofluids is higher than that of water based nanofluids. At that, thermal conductivity coefficient 

of water is almost two and a half times higher than that of ethylene glycol. 
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Fig. 9. Relative thermal conductivity coefficient of water and ethylene glycol based nanofluids  

depending on TiO2 particle concentration (left); and similar dependence of the nanofluids based on 

water, ethylene glycol and engine oil depending on diamond particle concentration (right). 

 

In the second series of measurements we used the nanofluids based on water, ethylene glycol 

and engine oil with diamond particles with an average size of 5 nm. Here the differences are more 

significant (see Fig. 9, right). The relative thermal conductivity coefficient of nanofluid, based on 

machine oil, is significantly higher than that for nanofluid, based of ethylene glycol and water. At that, 

the thermal conductivity coefficient of engine oil is almost twice lower than that of ethylene glycol and 

almost five times lower than that of water.  

The stability of nanofluid can be improved by addition of various surfactants. Thermophysical 

properties of nanofluids containing surfactants differ in general from the properties of nanofluids with 

no surfactants. In order to determine the effect of surfactant on the thermal conductivity coefficient of 

water based nanofluid with 100 nm particles of Al2O3, we have carried out corresponding 

measurements. The volumetric concentration of the nanoparticles was 2%. An acrylic polymer with a 

molecular mass of 20 MDa, and anionic charge of 40% was used as a surfactant. The concentration of 

polymer ranged from 50 to 200 mg/l, i.e. mass concentration of the surfactant varied from 0.008 to 

0.02%. The thermal conductivity coefficient of water with additives of such surfactants practically did 

not differ from the corresponding values for water. The conducted measurements have shown that 

within the whole investigated range of surfactant concentrations, the nanofluid thermal conductivity 

coefficient did not change within the accuracy of measurements. 

 

7. Conclusion 

Let formulate the main conclusions obtained in this paper. First of all, it should be noted that 

the nanofluid thermal conductivity is not described by the classical theories, including the Maxwell 



 13 

theory (1) for coarse dispersed fluids. The main difference is that the nanofluid thermal conductivity 

coefficient is a complicated function not only of the particle concentration, but also the particle size, 

material, and type of base fluid. 

The dependence of the thermal conductivity coefficient on the nanoparticle concentration, 

which typically is relatively small, is described by a correlation of the form (2). The coefficients ib  

involved in (2), are not universal, they depend on the nanoparticle size and material. The dependence 

of the nanofluid thermal conductivity coefficient on the nanoparticle size, as a rule, is well described 

by the power function (see also formulas (4) and (5)). Measured thermal conductivity coefficients 

almost always exceed the values calculated by formula (1), though nanofluids with sufficiently small 

particles may have thermal conductivity coefficients even lower than those predicted by the Maxwell 

theory. However, in all cases, the nanofluid thermal conductivity coefficient enhances with increasing 

particle size. Starting with a certain particle size, the measured nanofluid thermal conductivity 

coefficients exceed the values predicted by classical theories (in particular, by formula (1)). Within the 

studied range of concentrations this exceedance changes from a few percent to 10–15%. At that, the 

relative enhancement of the thermal conductivity coefficient may reach 25–30% (see Table 1). In 

general, thermal conductivity coefficient of the studied nanofluids containing metal oxides and silicon 

are significantly lower than those of nanofluids with metal particles (e.g., see the review [47]).  

By definition, nanoparticles are particles sized from 1 to 100 nm. In the present work we 

studied the thermal conductivity of both nanofluids and dispersed fluids with larger particles. At that, 

in all cases we observed a monotonic enhancement of thermal conductivity with increasing particle 

size. However, as already mentioned, noted enhancement of thermal conductivity coefficient with 

increase in particle size cannot be unlimited. Determining the nature of dependence of the thermal 

conductivity coefficient in dispersed fluids on size of the particles larger than 100 nm requires further 

systematic study. 

Effect of the nanoparticle material is an extremely important factor in terms of creating 

nanofluids with control properties. Today it is convincingly shown that there is no direct correlation 

between the thermal conductivity of the nanoparticle material and the thermal conductivity of 

nanofluid containing these particles. This is quite important fact, since up to date there are attempts to 

postulate the existence of such a relationship, in particular, when building different thermal 

conductivity models. At the same time, the experiments prove the fact that nanofluid thermal 

conductivity depends on particle material. The measurements, performed in this work, indicate that the 

greater the density of nanoparticle material the higher nanofluid thermal conductivity. This is 

consistent with the data of molecular-dynamic modeling [32, 33]. This point of view allows us to 

explain much higher thermal conductivity values of nanofluids with metal particles (see, for example 
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the paper [48] and references cited here). The density of all the metal nanoparticles (Fe, Cu, Ag, Au, 

etc.) is typically much higher than density oxides used in our work. 

In our experiments it was shown that small concentration of the surfactant does not change the 

thermal conductivity of the nanofluids. However we studied the nanofluids with large nanoparticles. 

The film thickness of the surfactant is of the order of 1–2 nanometers. Such film does not change 

practically neither the size of particles, nor their density. At the same time similar film may essentially 

change the size and especially density of small nanoparticles. In this case the thermal conductivity of 

nanofluids may be changed considerably.  

The base liquid also significantly influences the effective thermal conductivity of the nanofluid. 

In this work we have confirmed that the lower the thermal conductivity of the base fluid, the higher the 

relative thermal conductivity coefficient of the nanofluid. This is quite naturally explained by the fact 

that in the base fluid with the highest thermal conductivity the enhancement of thermal conductivity is 

weaker, at other conditions being equal. This, in particular, means that the supplement of the 

nanoparticles into the fluid will be most effective for the base fluid with low thermal conductivity. 

Nevertheless, the effect of base fluid properties on the effective thermal conductivity of nanofluid is 

still poorly studied. Here it is necessary to consider many different factors, for example, the formation 

of the electrical double layer around the nanoparticles (see [49]), the hydrophilicity or hydrophobicity 

of nanoparticles, etc. Finally, it is necessary to study further the effect of surfactants on the nanofluid 

thermal conductivity. 

The work is carried out at partial financial support of the Russian Scientific Foundation 

(Agreement No. 14-19-00312). 
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