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Abstract—A compact microstrip resonator based on the interdigital structure is proposed. The
resonator has several times higher unloaded quality factor compared to similar resonators presented
previously and can even reach the Q-factor of a regular λ/4 resonator. The size of the resonator can
be significantly reduced with a substantial increase in quality factor by incrementing the number of
fingers in the interdigital structure. In addition, for each gap between the fingers, there exist an optimal
number of fingers that correspond to the maximum Q-factor. An extension of the upper stopband for
a bandpass filter designed using the resonator can be achieved by the interconnection of the fingers in
each of the comb structures. The simulation results are proven by fabricated resonators and a fourpole
bandpass filter. For the central frequency of 2000 MHz and 16.2% fractional bandwidth, the lateral
size of the filter is only 11.5mm × 3.8 mm for alumina substrate (eps = 9.8). The filter has an upper
stopband up to 5.8f0 at the level −40 dB.

1. INTRODUCTION

Because bandpass filters still occupy a significant place in modern radio systems, it is impossible to
carry out a comprehensive downsizing of all types of microwave systems without miniaturizing their
main component. Therefore, noticeable effort is still dedicated to the ways of filter miniaturization, and
several main approaches can be identified. In planar structures, great attention is attracted to stepped-
impedance resonators (SIRs) [1–5] and spiral resonators [6, 7]; also, during the last years, more attention
has been directed to complex hairpin, net-type, and interdigital structures [8–15]. These resonators
demand accurate technology of fabrication, but the advantages in size and electrical characteristics
allow one to create bandpass filters with unique characteristics.

In [9, 10], two ideas of compact hybrid resonators are presented, which allow not only a decrease in
the resonator size but also an increase in the width of the upper stopband. In [10], a λ/4 interdigital
structure is presented, whose length is at least half of the length of λ/4 SIR. At the same time, the
proposed resonator has an unloaded quality factor higher than typical interdigital structures.

An idea of tolerant λ/4 SIR presented in [15] demonstrates an ability to fabricate a four-pole
microstrip filter with 5f0 width of the stopband at the level of −60 dB. In addition, folding the resonator
reduces its size, allowing to achieve a rather compact size of the planar bandpass filter with a central
frequency of ∼ 1 GHz.

The usage of multimode resonators [16–18] for the fabrication of compact filters is usually limited
in the case of multipole filters, as it is hard to obtain a proper matching of a device with feed lines.

The most compact resonators could be created using multilayered structures [19–21]. The
appearance of LTCC and analogous technologies allows one to create structures with 10 or even more
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layers and to reduce the size of a resonator several times. The best results are achieved when ideas
developed for planar structures [9] are applied to the multilayered structure [22]. In this case, filters
become compact, and the Q-factor of their resonators becomes higher than analogs [23]. However,
multilayered structures, especially LTCC-based ones, have strong limitations in postfabrication tuning
and possess usually higher in-band loss.

Previously, we have presented an idea of multiconductor resonator and its realizations in
multilayer [24] and interdigital microstrip configurations [25, 26]. For the 3-layered structure, a filter
is compact and has a wide stopband (10.5f0) at the −100 dB level. For a microstrip interdigital
structure [26], it has at least four times higher unloaded Q-factor than other types of compact microstrip
resonators.

In this paper, we develop an idea of microstrip interdigital multiconductor resonator. Particularly,
in Section 2, we present a theory of multiconductor resonators and its application to the microstrip one.
In Section 3, we show how the structural parameters of the resonator influence its characteristics and
that an optimal number of fingers exists for each gap between the fingers when a maximum value of
unloaded Q-factor is observed. In Section 4, an investigation of the frequency response for a bandpass
filter versus a type of tapping is presented, and by finger interconnection, one can make the stopband
wider. The results of the fabricated bandpass filters are summarized in Section 5.

2. MULTICONDUCTOR RESONATOR THEORY

The topology of the resonator is presented in Fig. 1(a). It consists of two comb microstrip structures
directed opposite to each other, forming thereby the so-called interdigital structure. The common
conductor of each comb structure is connected to the ground over its entire length. Each of the fingers
in the structure can be considered itself as a quarter-wave resonator. When width of the fingers w and
the gaps between them sg are small compared to the substrate thickness, the electromagnetic coupling
between them is strong.

Any microwave resonator at its first oscillation mode can be accurately described as oscillation
circuit with inductance L, capacitance C, and resistance R. Its resonant frequency and unloaded Q-
factor can be calculated as

ω0 =
1√
LC

; Q0 =
1
R

√
L

C
. (1)

For two coupled resonators with mutual inductance L12 and capacitance C12, whose equivalent
circuit is presented in Fig. 1(b), the lower and upper resonant frequencies can be calculated as

ωe =
1√

(L + L12) (C + 2C12)
, ωo =

1√
(L − L12)C

. (2)

At frequency ωe, the currents in the inductors flow in the same direction, but the potentials on the
capacitor plates of C12 have opposite signs. At the same time, at the upper frequency ωo, the situation
is reversed.

The calculations performed for the cases with number of fingers 3, 4, and higher give an analytical
equation for the unloaded Q-factor of the lowest resonance and its frequency [26]:

QN =

√
N

2
Q2, fN =

1√
N/2

f2 (N ≥ 2), (3)

where Q2 and f2 are the unloaded quality factor and the resonant frequency of the interdigital structure
having two fingers, respectively, and fN is the frequency of the lowest mode of the resonator with N
fingers in the structure.

One can see from Equation (3) that the growth in the number N results in the unloaded Q-factor
increases with simultaneous decrease in its resonant frequency. It should be recalled that the equations
presented above are suitable only in the case when the width of the fingers and the gaps between them
are much smaller than the substrate thickness.

The conclusion drawn based on the interdigital structure’s equivalent circuit was proven by
electromagnetic simulation in the AWR Design Environment and Sonnet Studio Suite. A dielectric
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(a) (b)

Figure 1. Topology of (a) the resonator and (b)
equivalent circuit for the case when the structure
has only two fingers.

Figure 2. Dependences of the resonant frequency
and the unloaded Q-factor versus number of
fingers N in the structure.

substrate with ε = 9.8, tan δ = 0.0002, and thickness h = 1mm was chosen as a base for the
copper resonator (σ = 5.88 × 107 Sm/m) having length and width of the fingers of 4.4 mm and
100 µm, respectively, and gaps of 20 µm between them. These correspond to L = 8.12 × 10−10 H/mm,
L12 = 5.6× 10−10 H/mm, C = 3.02× 10−13 F/mm, and C12 = 7.06× 10−13 F/mm. The box was chosen
without a top cover. The results of the simulation, particularly the dependences of both the unloaded
Q-factor and the resonant frequency on N are presented in Fig. 2 by solid line. It can be seen that
frequency fN is significantly reduced, and quality factor QN increases with the number of fingers N in
the interdigital structure.

The result can be explained as follows: the high-frequency currents in the fingers of interdigital
structure flow at the first resonant frequency in the same direction; this is why the summary inductance
of all conductors has nearly the same magnitude as the inductance of a single conductor. At the
same time, the current distributes uniformly onto all fingers, thereby reducing the resistive loss in the
resonator.

For comparison, the dependence of resonant frequency and unloaded Q-factor versus the width of
the regular λ/4 resonator is presented in the same figure by dashed line. The minimal width of the λ/4
resonator that corresponds to N = 2 is 0.42 mm, and the maximum width (11 fingers) is 1.42 mm.

3. RESONATOR CHARACTERISTICS

In Equation (3), the unlimited rise of N leads to an analogous growth in the unloaded Q-factor. Indeed,
as shown below, an optimal number of fingers N depending on the overall resonator’s width and gap
Sg exists.

It is well known that the microstrip resonator unloaded Q-factor decreases with the decrease in the
resonator width due to increased current density in the resonator resulting in increased ohmic losses.
Radiation loss increases in this case, too, amplifying the effect. However, an unexpected behavior of the
Q-factor is observed in this case. In Fig. 3, a dependence of the Q-factor on the number of fingers N
obtained by the simulation is shown. The simulation was carried out with the help of AWR Microwave
Office for the width of the resonator fixed at 2mm. It is obvious that the increase of N when the
width of the resonator and gaps sg are constant is possible only at the expense of decreasing the total
cross-section of fingers. In other words, the Q-factor in this case should decrease. However, in Fig. 3(a)
there is 34% growth of the Q-factor with an increase of the number of fingers from 2 to 23. At the same
time, a further increase of the number N leads to a decrease in the Q, and already at 75 fingers (7 µm
width of a finger), the Q-factor is 89 (30% less for 2 fingers). Therefore, an optimal number of fingers
exists, which corresponds to a maximum value of the unloaded Q-factor.
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Figure 3. Dependence of the unloaded Q-factor
versus number of fingers N in the structure for a
fixed width of the resonator.

Figure 4. Comparison of Q-factor dependences
obtained by analytical equations (solid line) and
electromagnetic simulation (dash line).

Therefore, an analytical calculation of the unloaded Q-factor versus resonator parameters was made
to explain the existence of its optimal value. An equivalent circuit similar to the one used above (Fig. 1)
was employed with the same approximation of strong inductive coupling between the fingers.

The unloaded Q-factor of a resonator can be calculated as

QN =
ZeqvN

RN
=

1
RN

√
LN

CN
, (4)

where RN is an equivalent resistance of the resonator that can be calculated as

RN = kRs
ls

Weff
, (5)

k is an unknown coefficient that depends on the current profile in the finger, RS the surface resistance,
ls the finger’s length, and Weff the effective width of resonator calculated as

Weff = Nw = W − (N − 1)sg. (6)

From Kirchhoff equations, one can find that, for N -coupled inductors, the total inductance is:

LN =
L + (N − 1)Lij

N
(7)

At the same time, for the case of strong inductive coupling Lij ≈ L, it means that the total
(equivalent) inductance appears to be LN ≈ L.

An inductance per unit length of a microstrip line with low dielectric permittivity of substrate can
be approximately found as [27]

L ≈ μ0 ln
(

8h
w

)
, (8)

where h is the thickness of the line substrate and w the width of the microstrip line. Then, LN may be
determined as follows:

LN ≈ μ0 ln
(

8h
w

)
= μ0 ln

(
8Nh

W − (N − 1)sg

)
. (9)

For a transmission line filled with air (ε = 1), per unit length inductance and capacitance can be
calculated as

C =
1
c2

1
L

. (10)
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It means that the equivalent capacitance of the multiconductor resonator is

CN = NC =
N

c2L
=

N

μ0c2 ln
(

8Nh

W − (N − 1)sg

) . (11)

The more the number of fingers N is, the more the value of the equivalent resonator’s capacitance is.
Therefore, on increasing N , one has to maintain the resonant frequency as constant for the comparison
of the Q-factor values to be correct. In the first instance, the resonant frequency is determined by
finger’s length, whose dependence on N may be written as

ls(N) ≈ lr
1

c
√

LNCN
= lr

1

c

√
LN

N

c2LN

= lr
1√
N

, (12)

lr is the finger’s length.
Then, the equivalent resistance of the structure is

RN = kRs
ls

Weff
= kRs

lr√
N (W − (N − 1)sg)

(13)

Finally, the unloaded quality factor for the resonator with N fingers can be calculated as follows:

QN =
1
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√
LN

CN
=

√
N [W − (N − 1)sg]

kRslr

√√√√√√√√√

μ0 ln
(

8Nh
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)

N

μ0c2 ln
(

8Nh

W − (N − 1)sg

)

=
[W − (N − 1)sg]

kRslr
μ0c ln

(
8Nh
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)
(14)

QN =
1
k

Z

RN

[W − (N − 1)sg]
lr

ln
(

8Nh

W − (N − 1)sg

)
, (15)

where Z = μ0c =
√

μ0/ε0 is the vacuum wave impedance.
Let us compare the Q-factor of a two-finger structure and a structure with N fingers.

QN

Q2
=

[
W − (N − 1)sg

W − sg

] ln
(

8Nh

W − (N − 1)sg

)

ln
(

16h
W − sg

) . (16)

Two trends in Eq. (16) can be observed: the first is a linear decrease of the Q-factor associated
with a decrease in the conducting cross-section, which in turn leads to an increase in ohmic losses in the
resonator, and the second is a nonlinear (logarithmic) growth of the Q-factor associated with a change
of equivalent inductance of the structure. For a small number of fingers, a change in their number
causes a higher change of the inductance than the change of the resistance, so a growth of the Q-factor
is observed. When the two trends become equivalent, an optimum number of fingers is achieved.

To verify this conclusion, we have carried out a simulation and analytical calculation for a 2mm
width resonator on substrate with ε = 2 and thickness of 1mm. The chosen gap was 20 µm. During
simulation, the resonant frequency was tuned to 1 GHz for each number of fingers. The comparison
is presented in Fig. 4. The results obtained by both methods have a similar behavior: more than
34% increase in the Q-factor was observed when N changed from 2 to 22. Further increasing N is
accompanied by lowering the Q-factor. Thus, in this case, 22 is the optimal number of fingers. A
small difference between the dependencies in the region of small N comes from the fact that a current
distribution in the fingers is nonuniform, which was not taken into account in the analytical calculations.

It is obvious that when the resonator’s width is constant, the optimum number of fingers will depend
on the gap value between them. A computer simulation was performed for 1-mm-wide resonator created
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Figure 5. Q-factor versus number of fingers in
the structure obtained by analytical equations for
different gaps between the fingers.

 

Figure 6. Dependences of the optimal number of
fingers and the maximum Q-factor versus a gap
between the fingers in the resonator.

on a 1-mm-thick alumina substrate with different gaps between the fingers. The results for sg = (40; 25;
20; 15; 10; 5) µm are presented in Fig. 5, and it shows that the decrease of the gap brings a significant
increase in both an optimal number of fingers and a maximum value of Q. In Fig. 6, the dependences of
the optimal number of fingers and the maximum value of the Q-factor on the gap between the fingers
are presented. One can see that an optimal number of fingers has an inverse proportionality to the gap
value. At the same time, a 20% growth of the maximum unloaded Q-factor was found for such change
in the gap.

The results obtained here and in [26] were used in investigating the behavior of the maximum
unloaded Q-factor on the width of the resonator. It is a common knowledge that the unloaded Q-factor
of a regular microstrip resonator increases with increasing width. The dependences of the Q-factor
versus resonator’s width obtained by simulation are shown in Fig. 7 for the three cases. The first one
concerns an ordinary microstrip λ/4 resonator, and the other two are the results with regard to the
proposed resonator. Note that in the two last cases, which differ by a value of the gaps (1 and 5µm),
the Q-factors correspond to the optimal number of fingers N . In Fig. 7, the behavior of the resonator
under investigation appears similar to the microstrip λ/4 one. Besides, the less the gaps are, the closer
the Q-factor is to the Q-factor of the ordinary resonator.

In this investigation, a 1-mm-thick alumina substrate was used for the resonators with width from
0.2 to 4 mm. At each width, the resonators were tuned to 1GHz resonant frequency by changing the
resonators’ length.

Also an ability to apply the proposed analytical model to obtain the shift of resonant frequency on
number of fingers was analyzed. According to the model:

f1(N)
f1(2)

=

√
2
N

, (17)

and the shift does not depend on dielectric constant of the substrate. A simulation was performed for
the resonator with sg = 0.01 mm designed on a 1mm substrate with different ε = (1, 9.8, 40, 80). The
results of the simulation are presented in Fig. 8. One can see that the relation f1(N)

f1(2) from Equation
(17) of the resonant frequency is ε independent. At the same time, the comparison of the result of the
simulation with the equation, presented in Fig. 9 shows that for 30 fingers there already exists 10%
difference in the shift obtained by analytical model and simulation (in analytical model the shift is
bigger). The effect comes from the fact that for such a number of fingers, the fingers situated on the
opposite sides of the resonator are already not in the strong inductive coupling (Lij �= L), which mainly
has influence on the resonance position, but not on unloaded Q-factor.

Two main conclusions can be drawn. First, the Q-factor of the proposed resonator having an
optimal number of fingers is practically the same as in the case of a regular microstrip λ/4 resonator.
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Figure 7. Dependences of the unloaded Q-
factor versus width of the resonator. Regular λ/4
resonator (solid line), proposed resonator with the
gap 1 µm (dashed line), and proposed resonator
with the gap 5 µm (dashed-dot line).

Figure 8. Frequency shift of position of the
first oscillation mode on changing N for different
dielectric constant of the substrate.

Figure 9. Comparison of frequency shift of the
first oscillation mode dependences obtained by an-
alytical equations (solid line) and electromagnetic
simulation (dash line).

Figure 10. Q-factor behavior on changing N .
Dashed line for the measured values and solid
line for the simulation results. The fabricated
resonators in comparison to regular λ/4 resonator
(extreme left resonator).

Second, the proposed resonator is more compact than the ordinary microstrip one with the same width
and eigenfrequency. For example, an ordinary λ/4 resonator of 2 mm width has 28.1 mm length. At the
same time, the proposed resonator of the same width is more than 10 times shorter (2.6 mm). Thus, a
10 times smaller resonator has nearly the same Q-factor as a regular resonator.

In the resonator with a 1 µm gap between fingers, with the width changing from 0.2 to 4mm, the
optimal N is magnified from 19 to 512.

To prove the results obtained during the simulations, a set of resonators on 1 mm alumina substrate
was fabricated. The set had five resonators containing 3, 5, 11, 23, and 29 fingers with 20 µm gaps
between them. Their photo is presented in Fig. 10. The expected maximum Q-factor for this gap
corresponds (accordingly with (15) to 11 fingers, and this is proven by the simulation and measurements
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results carried out on the fabricated resonators (Fig. 10).
The measured Q-factors of the resonators appear higher (5–10%) that the simulated ones. In our

opinion, this discrepancy originates from the fact that the used simulator does not take into account
the distribution of MW current density correctly, particularly, the software does not take into account
currents flowing in the sidewalls of the resonator.

4. EXPERIMENTAL RESULTS

Previously [26], for a designed and fabricated structure, inside the stopband between the first and second
(spurious) passbands, there exist a number of spurious resonances that decrease the suppression level
and width of the stopband. The resonances are excited in the fingers, and their number corresponds to
the number of fingers in the resonator. Therefore, an investigation was carried out to get an opportunity
of expanding a stopband and increasing its suppression level.

A galvanic interconnection of free ends of individual fingers in the structure suppresses the spurious
resonances. The way of connection is presented in Fig. 11 for a 5-finger resonator. For example,
connecting the first and last fingers in the resonator, we achieve a suppression of the first parasitic
resonance. An interconnection of the first, last, and central fingers leads to the suppression of the
first and second parasitic resonances. It should be noted that a connection should be made between
the free ends of each of the two comb structures forming an interdigital resonator. It is obvious that
such connection changes the eigenfrequency of the resonator; however, this influence does not disturb
the passband of the filter significantly, so only a slight trimming after the connection is required. An
interconnection of all fingers in the structure leads to the suppression of all spurious resonances inside
the stopband. However, in this case, an average suppression level in the stopband becomes worse.

The above-mentioned scenario is illustrated in Figs. 13 and 14, where the frequency characteristics
of a four-pole bandpass filter based on 21-pin resonator are shown. The filter was designed on a 1mm
alumina substrate for a central frequency of ∼ 1000 MHz with the help of electromagnetic simulation.
Each resonator has 1.04 mm width and 7.1 mm length and consists of 21 fingers of 40 µm width separated
by 10 µm gaps. The chosen number of fingers is close to the optimal one according to the analytical
equations. The spacing between the inner resonators was 2.09 mm, and the ones between the inner and
outer resonators were 1.63 mm. The tapping of the filter to feed lines was chosen at the 0.6 mm from
the open ends of the edge fingers in the outer resonators. The lateral sizes of the filter were found to be
11.1×7.1 mm, which corresponds to 0.0336λg ×0.0204λg for the chosen central frequency. The topology
of the filter is presented in Fig. 12. The designed filter has 10% of the fractional bandwidth and 1.7 dB
of the minimal in-band insertion loss. Its frequency responses in the narrow- and wide-frequency bands
are presented in Fig. 13.

One can see that the filter has the second (spurious) passband at a frequency higher than 7 GHz
(7f0); however, inside the stopband, one can see a significant number of spurious resonances, and

Figure 11. A galvanic interconnection of free
ends of individual fingers in 5 finger resonator.

Figure 12. Topology of 21 finger bandpass filter
with a central frequency of 1 GHz.
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Figure 13. Frequency response of a designed
filter in a wide-frequency range. A passband in
a narrow-frequency range is shown in the inset.

 

(a)

(b)

Figure 14. (a) Return loss and (b) insertion
loss of the filter for cases: (1) no interconnection
between the fingers (solid line), (2) the outer
fingers in each of the resonators are interconnected
(dashed line), (3) the outer and central fingers in
each of the resonators are interconnected (dotted
line), and (4) all fingers are interconnected in each
resonator (dashed-dotted-dotted line).

at least 16 can be calculated from the S11 characteristic. The two closest to the passband spurious
resonances have frequencies of 1.7 and 2.2 GHz and peak levels of −27 and −50 dB, respectively, making
the performance poor. The simulation with the help of AWR Microwave Office has shown that the
suppression of spurious resonances in the designed filter can be achieved by three ways: (1) two outer
fingers in both comb structures in all resonators are interconnected, (2) the outer and central fingers in
both comb structures in all resonators are interconnected, and (3) all fingers in both comb structures
in all resonators are interconnected.

These statements are proven by simulation whose results are presented in Fig. 14(a) (S11) and
Fig. 14(b) (S21). To simplify the perception, the results are presented only in the stopband of the filter.
For a comparison, the figures also contain the results according to the filter without any interconnections.
One can see that, in the first case, a significant suppression (> 70 dB) of the first spurious resonance
(1.7 GHz) is observed. Also, due to the interconnection, a suppression of all odd spurious resonances
occurs, as seen in the results of S11. However, in this case, a general level of suppression in the high-
frequency part of the stopband becomes less.

In the second case, along with 50 dB suppression of the first spurious resonance, a 40 dB suppression
of the second spurious resonance (2.2 GHz) is seen, and additional sparseness of the spurious spectrum
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is observed.
Finally, in the third case, only one spurious resonance exists in the high-frequency part of the

stopband that does not narrow the stopband band. However, at the same time, a 20 dB decrease in its
depth is observed.

(a) (b)

Figure 15. (a) Topology of the fabricated 4-pole bandpass filter with a central frequency of 2 GHz; (b)
photograph of the fabricated filter and magnification of the resonator.

(a)

(b)

Figure 16. Comparison of frequency responses
of the fabricated filter containing interconnections
of the fingers (dashed line) to the one without
interconnections (solid line).

Figure 17. The measured group delay of the
fabricated filter.
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5. BANDPASS FILTER

In practice, the suppression of only the first and second spurious resonances is required because the
others are of small intensity. A four-pole bandpass filter was designed and fabricated using a 1-mm-thick
alumina substrate to prove the facts discovered during the investigation. The topology of the filter is
presented in Fig. 15. The first type of the finger’s interconnection (the outer fingers) was applied. The
central frequency of the filter was 2GHz, and its fractional bandwidth was 16% (320 MHz). The spacing
between the internal resonators was 2.08 mm, whereas that between the external and internal ones was
1.59 mm. The chosen gaps between the fingers were 10 µm, which corresponds to the optimal number
of fingers equal to 21. Therefore, for the 40 µm width of the fingers, the lateral sizes of the substrate
were 11.5mm × 3.8 mm or 0.077λg × 0.025λg . The filter tapping using two strips with a lateral size of
1.08mm × 3.8 mm connected to the open ends of the outer fingers of the external resonators was done
to match the filter with feed lines.

Photos of the fabricated filter and the magnification of its resonator are shown in Fig. 15. The
removal of the interconnections has resulted in an frequency shift of external resonators, so the measured
return loss of the filter was found to be less than 12 dB (Fig. 16, solid line). The first spurious resonance
(unsuppressed) had a frequency of 3.67 GHz (1.8f0) and a pick level of −29.3 dB.

Then, interconnections between the outer fingers in the external resonators were done using a
25 µm copper wire. The frequency responses for this case are demonstrated in Fig. 16 in narrow- and
wide-frequency bands in comparison to the previous results.

The interconnections shift the external resonators frequency and correspondingly improve the level
of in-band return loss, which is better than −15 dB. The measured minimal in-band insertion loss of
the filter is found to be 1.3 dB.

According to the results measured in a wide-frequency range, the usage of interconnections
suppresses the spurious resonances indeed. In Fig. 16(b), the first spurious resonance has lost 30 dB,
widening the stopband according to the level −40 dB up to 11.0 GHz (5.5f0). In addition, an expected
sparseness of the spurious spectrum is observed.

The group delay behavior of the fabricated filter is presented in Fig. 17.

6. CONCLUSION

A microstrip resonator based on interdigital structure is proposed. It consists of two interdigital
microstrip comb structures, and the common conductor of each “comb” is connected to the ground
along its length. The unloaded Q-factor of the resonator has a square-root dependence on the number
of fingers in the structure, and its eigenfrequency has a reversed square root dependence. The resonator
possesses 2.5 times higher Q-factor than other miniaturized constructions described previously; such a
behavior is explained based on the statement of high-frequency currents at the first resonant frequency
flow in the same direction of all fingers of the interdigital structure. Therefore, the summary inductance
of all fingers in the structure has nearly the same magnitude as the inductance of a single finger. In
addition, the currents in the resonator are shared uniformly by all fingers, thus reducing the resistive
loss in the resonator. However, an optimal number of fingers exists for each gap between them, which
corresponds to the maximum value of the Q-factor. The maximum is a result of the confrontation of
two trends: positive contribution of growing inductance with the negative one of growing resistance. In
addition, in the case of the optimal number of fingers, the Q-factor of the resonator is practically the
same as the Q-factor of a regular λ/4 resonator, whereas its length is more than an order of magnitude
less.

It should be noted that the obtained equations can be used only to calculate the optimal number
of fingers and the relative growth of Q-factor. At the same time, it is strongly limited in resonance
position definition.

In bandpass filters based on the resonator, an extension of a high-frequency stopband can be
achieved by interconnections of fingers in each of the two comb structures that bring suppression of
spurious resonance spectra.

Fabricated resonators having different numbers of fingers and four-pole passband filter proved the
simulation result. For the central frequency of 2000 MHz and 16.2% fractional bandwidth, the lateral
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size of the filter is only 11.5mm×3.8 mm (0.077λg ×0.025λg) on alumina substrate (ε = 9.8). The filter
has upper stopband up to 5.8f0 at the level −40 dB.
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