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The paper considers the new approach to the reconstruction of the probability density function similarly
the averaged shifted histogram method. An algorithm is used Richardson’s extrapolation for increasing

accuracy. We prove the estimates of the accuracy of the probability density function and its second deriva-
tive to choose the optimal settings for smoothing the histogram and kernel estimators and to consider the
optimal choice problem of the bandwidth parameter. Presented the results of numerical experiments.
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Introduction

Assessment of the probability density function and its derivatives on the empirical data is
one of the most important issues in applied research [1-3]. Important to know the estimate
for mathematical expectation of norm error of the constructed empirical probability density
function [4].

The estimation of density derivatives has full potential for applications. This has been noted
even in the first seminal papers on density estimation. This paper considers the Runge’s rule
application to the calculation the second derivative estimates of the probability density function.
In contrast to the known methods, this approach does not require the differentiation of kernel
estimates or calculations of finite differences from empirical probability density function. A de-
tailed review of the existing methods of evaluation of derivatives and bibliography are presented
in [5].

Use of estimates of the second derivatives allows to obtain realistic estimates of the mathemat-
ical expectations of 5 error norm for the probability density function reconstruction. Knowledge
of these assessments allows us to calculate the optimal bandwidth parameter i [5].

One of the first rules for practical evaluation of the error, was proposed by K.Runge in the
beginning of the XX century. This rule was widely used first in the area of quadratures, then in
difference methods and the finite element method. This rule is based on decomposition of the
approximate solution u” as a sum [6]

ul = u + hFv + O(hF™), (1)

where u is the desired exact solution, v is the unknown function and A is a small discretization
parameter, generally, a mesh size of the difference grid. The integer k characterizes the order
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of accuracy of the approximate solution, and m > 0 gives smallness of the remainder term as
compared to the major error term h*v. Since u and v are independent of h, for the parameter
h/2 the following decomposition is valid:

uh’? =+ ()k v+ O(hF™). (2)

Subtract it from (1) rejecting wu:

k
uh —uh? = <Z> (28 — 1) + O(RF+™).

Hence, the major error term can be determined:

uh _ uh/2
h/2—u% W (3)

Since in formula (3), the remainder term of order O(h¥*™) is rejected, it does not result in the
guaranteed estimation, but with sufficiently small h it gives, in fact, an idea about the value of
the numerical solution error.

Richardson’s Extrapolation is a general method for generating high-accuracy results using
low-order formulas. The approximation technique has an error term of predictable form [7].

Combine the two approximations in such a way that the error terms of order h* cancel.
Multiplying (2) on 2* and subtracting from (1) we get

2k
U= 7uh/2

h k+m
T Y +O(h ).

The article discusses a new approach for the reconstruction of the probability density function
based on the empirical date. The approach is based on an approximation of the probability
density function at some point with the use of windows with variable width h. Note that it has
a certain similarity to the histograms in particular with a method of averaging the histograms.
On the other hand, the structure and accuracy of constructed estimations are similar to kernel
methods.

It is important, that using the error estimates and Richardson’s extrapolation succeeded to
build a refinement of solutions. Numerical example confirmed theoretical positions and showed
good quality of the presented approach.

1. New approach of density estimate and mean integrated
squared errors analysis

To estimate the probability density function, researchers use a variety of approaches includ-
ing kernel assessment, histogram, polygrams, polygons [8]. The presented approach makes an
assessment for the probability density function resembling the Histogram approach. To estimate
the probability density function at some point z is used a rectangular kernel with a center at the
point z with some parameter h.

Let us assume that we know the samples = = {£1,&s,...,&n} of a random variable £ with
probability density function f(x) and support [a,b]. Let v denote the number of sample points
falling in [z — h, 2z 4+ h]. Then
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Random variable v/ is recognized that v/ are Binomial random variables:

z+h

v, ~ B(N,2f"h), where f! = / f(x)dx/2h.
z—h
Expected value E[v"] = N f2h or
v ~
2 1= E[fh —_ frh
and variability Var[v,| = 2N f*h(1 — 2f0h).

Hence
_ Varfv]  fr2n(L-2fh)  fr (1)
"~ (4Nh)?2 4h2 ~2Nh N

E[(f! — f(2)2] = B[(f2 — 12 + (fF = f(2))? = Var[fI] + (f2 — f(2))%

Var[f”]

F@) = f) + () = 2) + f1(2) @ = 2) )2+ [P (2) (& = 2)/6 + [ (n)(x — 2)*/24.

E[f2] - f(2) = "(2)h*/6 + O(h*). (4)
Estimation at a value of 2h is:
. z+2h
E[f*"(2)] = f2' = /_% f(x)da/2h = f(z) + f"(2)4h° /6 + O(h*). (5)

Estimate error is

~ z z 2
Bl — s = LT (e ey + oqnt)
and
B~ f13 = g — A2+ I o) ©

2. Richardson’s extrapolation and the second derivatives
estimate

To improve the reconstruction accuracy of probability density at the point z we use the
combination of kernel assessments with the parameters h and 2h.

Let we apply Richardson’s extrapolation to f" and f2*. Next, we multiply (5) on 1/4 to
subtract the result from (4) Excluding (f”(2)h?/6 from (4) and (5), we get

4 1 o
fz) =L = S f2 + O(h).

3 3

Let us remark that we have constructed the approximation to the function f(z)
4 . 1.
vor(2) = gfzh - gffh, (7)
with the accuracy O(h%).

On the other hand applying the Runge’s rule we can obtain the estimate

f'(2) = 2(f2 = £2)/h* + O(h?)

177 = ol = P2 Q
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3. Optimal choice problem of the bandwidth parameter h
Consider the optimal choice problem of the bandwidth parameter h from (6)

3 1 A L7 ]1PR .
h 2 _ _ 6
E||f fll5 SN, N + 36 + O(h°) — min.

1/5
= (2 )
2N

Note that in order to find the optimum value of the parameter h* is not necessary to know the
value of the norm of the probability density function ||f]|.
In the case of kernel estimates the optimal bandwidth parameter h is determined by the

Get

formula [5]
v K >/
ok NI P
where
IKIP = [ K (@)ds
and

o2 = /xQK(x)dx.

4. Numerical examples

As an example represent of improving accuracy estimates probability density function ap-
proximation errors of the sum of four uniformly distributed on [0,1] random variables.
Note that the probability density of the sum of n uniformly distributed variables is

pn(x) = =) ("' = Clx—1)" P+ CPx 2" - ) 9)

where CF are binomial coefficients, and for each fixed value of the argument z sum in brackets
are only for those terms for which the value of (z — k), k = 1,2,... nonnegative [9].
Thus, when n = 4 we have:

L 3

6:6, ifo0<z <1,
1 3 2 2 .

——x° 4+ 2x° —2x + =, if1 <z <2

_ 2 3

p(x) = 1 29
53:3—4:(:2—1—1035—?, if2<x<3;

1 2
—6w3+2x2—8x+%, if 3<z <4

On Fig. 1 we represent numerical example with h = 0.1, N = 10*. The solid line is exact
probability density function f(x), part (a): “o” is empirical probability density function fh, part
(b):“0” is f correction of empirical probability density function by Richardson’s extrapolation,
part (c): “o” is smoothing of f? by the nearest neighbor smoother.

Table 1. Shows a approximation of || f”|| by the formula (8), exact value of ||f”|| = 1.6431.

Table 2. shows a comparison of the expected value of error before and after correction.
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(@)

Fig. 1. (a): ois f* (b): ois 2, (c): o is smoothing of f"

cor? cor

Table 1. Approximation of || f”'||

N =106 N =104
e I e 1
0.05 1.6432 0.2 1.625162
0.1 1.6368 0.3 1.429925
0.2 1.52975 0.4 1.284578

Table 2. Correction of f by the formula (7) N = 10°

h Hfh_fH || chor_fH
0.3 0.01039296 0.00198244
0.35 0.01302775 0.00172713
0.4 0.01654605 0.00215959

Conclusion

The paper discusses the approaches to improving the accuracy the approximation of the prob-
ability density function on the empirical data. The approaches are based on the Runge’s rules
and Richardson’s extrapolation and used to estimates of the second derivatives of the proba-
bility density function. Second derivatives estimation allowed to choose the optimal bandwidth
selection for histogram and kernel estimators.

Using Richardson’s extrapolation allows you to raise the calculation accuracy of the estimates
for mathematical expectation of the probability density function on two orders of magnitude h.

Further development of this approach is expected in the direction of building effective smooth-
ing procedures and bootstrap.

— 20 —



Boris S. Dobronets, Olga A. Popova Improving the Accuracy of the Probability Density Function. ..

References

[1] B.S.Dobronets, O.A.Popova, Numerical probabilistic analysis under aleatory and epistemic
uncertainty, Reliable Computing, 19(2014), 274-289.

[2] B.Dobronets, O.Popova, Numerical Probabilistic Approach for Optimization Problems, Sci-
entific Computing, Computer Arithmetic and Validated Numerics, Lecture Notes in Com-
puter Science 9553, Springer International Publishing, Cham, 2016, 43-53.

[3] B.Dobronets, O.Popova, Chislennyi veroyatnostnyi analiz s neopredelennymi dannymi (Nu-
merical probabilistic analysis of uncertain data), Siberian Federal University, Institute of
Space and Information Technologies, Krasnoyarsk, 2014 (in Russian).

[4] O.Popova, Information approach to a posteriori error estimates of numerical modeling,
Informatization and Communication, 2(2016), 29-32.

[5] R.W.Scott, Multivariate density estimation: theory, practice, and visualization, John Wiley
& Sons, New York, 2015.

[6] B.S.Dobronets, V.V.Shaidurov, Dvustoronnie chislennye metody (Two-sided Numerical
Methods), Nauka, Novosibirsk, 1990 (in Russian).

[7] G.I.Marchuk, V.V.Shaidurov, Difference methods and their extrapolations, Springer—Verlag,
New York, 1983.

[8] F.P.Tarasenko, Nonparametrics, Tomsk, TSU, 1976.

[9] S.P.Shary, Interval'nyy analiz ili metody Monte-Karlo? (Interval analysis or Monte-Carlo
methods? Vycislitel’nye tehnologii, 12( 2007), no. 1, 103-112 (in Russian).

IIoBbIIIIeHNEe TOYHOCT BOCCTAHOBJICHUS d)yHKI_II/II/I IIJIOTHOCTN
BEPOATHOCTH

Bopuc C. lobpoHeiy

Ouabra A. ITomoBa

NucruryT KOCMUYeCKUX U MH(MOPMAIMOHHBIX TEXHOJIOIUH
Cubupckuii deiepaibHbIl YHUBEPCUTET

Kupenckoro, 26, Kpacnospck, 660074

Poccust

B cmamve paccmomper 106wl no0dTod 80CCMAHOBAEHUA PYHKUUL NAOMHOCTU BEPOAMHOCTIU, GHAAO-
UMb MemOody ocpednenus c08UHYMbBLT 2ucmozpamm. I[Ipusedervl ai20pummvL NOBVIULEHUSA MOYHOCTU
U BVMUCACHUA 8MOPOTE MPOU3B0IHOT, 0CHOBAKKBIE Ha IKcmpanorayuy Puvapdcona u npasuse Pynee.
IIpedcmasaenv, cpednersadpamustoie OUEHKU MOYHOCTNU B0CCMAHOBAEHUA GYHKUUU NAOTHOCTY 6epPo-
AMHOCTNU U ee 68Mmopotl Npoudsodnot. Paccmampusaemes 6vi60p 0nMuUMaALHO20 WaA2A C2AAAHCUBAHUA.
IIpedcmasaervl pe3ysbMaMbL YUCAEHHDIT IKCNEPUMEHTOS.

Karoueswie caosa: ouyenrxu mounocmu, skempanosayus Puwapdcona, npasuno Pymnee, eoccmarnosaerue
PYHKUUU NAOMHOCTIU BEPOATMHOCTIU, NPOU3BOOHBIE PYHKUUU NAOMHOCTU BEPOATNHOCTIU, “HUCACHHVIL
8EPOATMHOCTVHBLY, AHAAUS.
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