Федеральное государственное автономное образовательное учреждение высшего образования «СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ

Кафедра «Электротехнические комплексы и системы»

УТВЕРЖДАЮ

Заведующий кафедрой

БАКАЛАВРСКАЯ РАБОТА

13.03.02.07 – Электроэнергетика и электротехника

Оценка влияния высших гармоник на элементы электроснабжения сталепромышленного предприятия

Руководитель

Выпускник

подпись, дата

ст. преподаватель Р.А.Петухов

Е.А.Гунин

Федеральное государственное автономное образовательное учреждение высшего профессионального образования «СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Политехнический

институт

Электротехнические комплексы и системы

кафедра

УТВЕРЖДАЮ

Заведующий кафедрой

В. И. Пантелеев подпись инициалы, фамилия « 24 » 2017 г

ЗАДАНИЕ НА ВЫПУСКНУЮ КВАЛИФИКАЦИОННУЮ РАБОТУ

Студенту	Гунину Егору Алексеевичу	
	фамилия, имя, отчество Направление (специальность)	13.03.02.07
номер	Электроэнергетика и электро	
Оценка влия	наименование Тема выпускной квалификационг ния высших гармоник на элеме сталепромышленного предп	нты электроснаожения
Утверждена прика	зом по университету № 17242/с	от16.12.2016
Руководитель ВКР	Р.А.Петухов, ст.пред пининалы, фамилия, лоджность, ученос для БР Т.Однолипейная схема ПС	нодователь ПИ СФУ
кал прмерений ЦК	Э с прибора «РЕСУРС-UF2M»	
Перечень разлело	в БР 1. Анализ электромагнитне	й совместимости предприятия
э Расчёт потерь о	г высших гармоник в элементах (ЭС предприятия 3. Разработка
ихпитанионной мо	дели электроспабжения ЭИН в про	ограммном комплексе Манар.
4. Расчёт фильтро	окомпенсирующего устройства (Ф	КУ) 5. Реализация ФКУ в про-
граммном компле	кее Matlab и гармонический анали	в сети после его установки.
Перечень графич	еского материала	
Руководитель ВЕ Задание принял	к исполнению <u>Мефиля</u> подилсь, пнициа.	Р.А.Петухов ————————————————————————————————————
	· 18	» декабрие 2017

РЕФЕРАТ

Бакалаврская работа по теме: Оценка влияния высших гармоник на элементы электроснабжения сталепромышленного предприятия, содержит 53 страницы текстового документа, 39 иллюстраций, 15 таблиц, 56 формул, 12 использованных источника.

ЭЛЕКТРОСНАБЖЕНИЕ, ВЫСШИЕ ГАРМОНИКИ, НЕСИНУСОИ-ДАЛЬНОСТЬ, ЭЛЕКТРОУСТАНОВКИ ИНДУКЦИОННОГО НАГРЕВА, ВЫПРЯМИТЕЛЬ, ИНВЕРТОР, ЭЛЕКТРОМАГНИТНАЯ СОВМЕСТИМОСТЬ, ТРАНСФОРМАТОР, ПОКАЗАТЕЛИ КАЧЕСТВА ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ, ЭЛЕКТРОМАГНИТНАЯ ОБСТАНОВКА, ПАССИВНЫЙ ФИЛЬТР, ФИЛЬТРОКОМПЕНСИРУЮЩЕЕ УСТРОЙСТВО.

В ходе выполнение работы проведен анализ электромагнитной совместимости предприятия с ЭИН, расчитаны дополнительные потери мощности в элементах элементах СЭС предприятия, разработана модель электроснабжения индукционной печи в программном комплексе Matlab которая позволила оценить уровень искажения синусоидальности при работе индукционной печи, в исследуемой модели было обеспечено нормативное значение суммарного коэффициента несинусоидальности питающего напряжения путём применения фильтрокомпенсирующих устройств(ФКУ).

Содержание

Введение	2
1 Анализ электромагнитной совместимости предприятия	3
1.1 Общие сведения	
1.2 Принцип действия установок индукционного нагрева	4
1.3 Типы индукционных печей	
1.4 Преобразователи для питания индукционных печей как источник	
искажение синусоидальности питающего напряжения	8
1.5 Нормирование показателей, характеризующих несинусоидальные	
режимы	11
1.5 Метрологическое обеспечение параметров качества электрической	
энергии	14
2 Потери от высших гармоник в элементах системы электроснабжения	
предприятия	
3 Разработка имитационной модели электроснабжения ЭИН в программи	НОМ
комплексе Matlab	24
3.1 Параллельный автономный инвертор тока (АИТ)	24
3.1.2 Расчёт параметров параллельного АИТ	26
3.2 Модель электроснабжения электроустановки индукционного нагрева	27
3.2.1 Настройки блоков исследуемой модели	31
3.3 Гармонический анализ исследуемой модели	43
4 Расчёт фильтрокомпенсирующего устройства (ФКУ) и его применение	B
исследуемой модели	45
4.1 Реализация ФКУ в программном комплексе Matlab и гармонический	
анализ сети после его установки	47
Заключение	51
Список использованных источников	52

Введение

В настоящее время в современных промышленных предприятиях широко используются электроустановки индукционного нагрева (ЭИН) для поверхностной закалки, гибки и термообработки деталей машин, закалки деталей сложной формы и т.д.

Принцип индукционного нагрева заключается в преобразовании энергии электромагнитного поля, поглощаемой электропроводным нагреваемым объектом, в тепловую энергию. В установках индукционного нагрева электромагнитное поле создают индуктором, представляющим собой многовитковую цилиндрическую катушку (соленоид). Через индуктор пропускают переменный электрический ток, в результате чего вокруг индуктора возникает изменяющееся во времени переменное магнитное поле.

Для создания индуцированных токов используются высокочастотные генераторы на базе тиристорных преобразователей. Тиристорные преобразователи являются генераторами высших гармоник тока и напряжения в электрическую сеть, входящую в состав системы электроснабжения промышленного предприятия.

Несинусоидальные режимы неблагоприятно сказываются на работе силового электрооборудования, систем релейной защиты, автоматики, телемеханики и связи. При работе синхронных, асинхронных двигателей и других электроустановок в условиях несинусоидального напряжения возникают добавочные потери мощности, обусловленные высшими временными гармониками тока [1].

Целью данной работы является обеспечение электромагнитной совместимости в системе электроснабжения (СЭС) промышленного предприятия с ЭИН путём применения фильтрокомпенсирующий устройств (ФКУ).

Для решения данной задачи был проведён анализ показателей качества электроэнергии (ПКЭ) в СЭС предприятия, рассчитаны дополнительные потери мощности в элементах СЭС при несинусоидальных режимах, смоделирована СЭС предприятия и рассчитано ФКУ для ограничения высших гармонических составляющих тока и напряжения.

1 Анализ электромагнитной совместимости предприятия.

1.1 Общие сведения.

Под электромагнитной совместимостью (ЭМС) понимается способность устройства или системы удовлетворительно функционировать в заданном окружении, не создавая электромагнитных помех другим устройствам, работающим в этом окружении.

Электромагнитные помехи (ЭМП) представляют собой электромагнитные, электрические и магнитные явления, создаваемые любым источником в пространстве или проводящей среде, которые влияют или могут влиять на полезный сигнал при его приеме или преобразовании к определенному виду.

По признаку среды распространения различают помехи излучения, т.е. распространяющиеся в пространстве, и помехи проводимости (кондуктивные помехи), распространяющиеся в проводящих средах. Помехи излучения появляются в результате воздействия электрического, магнитного или электромагнитного поля на объект. Кондуктивные помехи наиболее характерны для СЭПП, где они распространяются по проводам, кабелям, шинопроводам и т.д. [2]

Классификация помех наглядно иллюстрируется на рис.1.

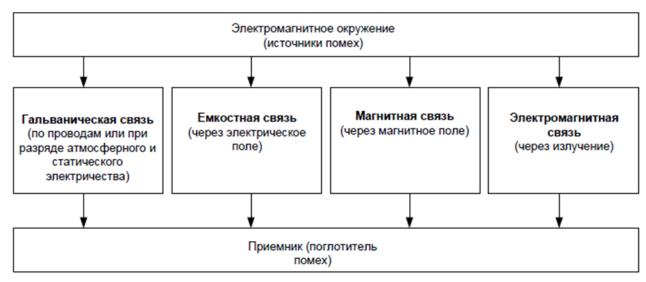


Рисунок 1 – Механизмы связи источников и приемников помех.

На предприятие к одной секции шин 6 кВ подсоединяются 2 индукционной печи мощностью 120 кВт, через печные трансформаторы, 2 асинхронных двигателя мощность 200 кВт каждый через кабельные линии. Схема расположения оборудования показано на Рис.2. Для питания печей индукционного нагрева как правило используются тиристорные преобразователи частоты (ТПЧ), которую в свою очередь искажают синусоидальность питающего напряжения, тем самым нарушая нормальную работу электрооборудования, ненормальную рабо-

ту аппаратуры релейной защиты и автоматики, дополнительные потери в оборудование.

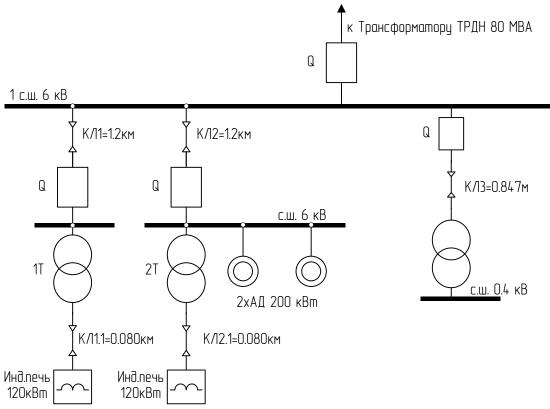


Рисунок 2 – Принципиальная схема оборудования.

1.2 Принцип действия установок индукционного нагрева.

Принцип индукционного нагрева заключается в преобразовании энергии электромагнитного поля, поглощаемой электропроводным нагреваемым объектом, в тепловую энергию.

В установках индукционного нагрева электромагнитное поле создают индуктором, представляющим собой многовитковую цилиндрическую катушку (соленоид). Через индуктор пропускают переменный электрический ток, в результате чего вокруг индуктора возникает изменяющееся во времени переменное магнитное поле. Это - первое превращение энергии электромагнитного поля, описываемое первым уравнением Максвелла (всякое изменение магнитного поля возникает появление вихревого электрического поля):

$$\oint (\vec{E}d\vec{l}) = -\oint (\frac{\partial \vec{B}}{\partial t} \cdot d\vec{S}) .$$

Нагреваемый объект помещают внутрь индуктора или рядом с ним. Изменяющийся (во времени) поток вектора магнитной индукции, созданной индуктором, пронизывает нагреваемый объект и индуктирует электрическое поле. Электрические линии этого поля расположены в плоскости, перпендикулярной

направлению магнитного потока, и замкнуты, т. е. электрическое поле в нагреваемом объекте носит вихревой характер. Под действием электрического поля, согласно закону Ома, возникают токи проводимости (вихревые токи). Это – второе превращение энергии электромагнитного поля, описываемое вторым уравнением Максвелла (если замкнутый контур пронизывается переменным магнитным потоком, то в контуре возникает ЭДС е, равная скорости, изменения этого потока):

$$\oint_{\Gamma} Edl = -\frac{d}{dt} \oint_{S} BdS .$$

В нагреваемом объекте энергия индуктированного переменного электрического поля необратимо переходит в тепловую. Такое тепловое рассеивание энергии, следствием чего является нагрев объекта, определяется существованием токов проводимости (вихревых токов). Это - третье превращение энергии электромагнитного поля, причем энергетическое соотношение этого превращения описывается законом Ленца—Джоуля.[3]

1.3 Типы индукционных печей

Установки индукционного нагрева с сердечником.

В плавильной печи (рис.3) цилиндрический многовитковый индуктор, изготовленный из медной профилированной трубки, насаживают на замкнутый сердечник, набранный из листовой электротехнической стали (толщина листов 0,5 мм). Вокруг индуктора размещают огнеупорную керамическую футеровку с узким кольцевым каналом (горизонтальным или вертикальным), где находится жидкий металл. Необходимым условием работы является замкнутое электропроводное кольцо. Поэтому невозможно расплавить отдельные куски твердого металла в такой печи. Для пуска печи приходится в канал заливать порцию жидкого металла из другой печи или оставлять часть жидкого металла от предыдущей плавки (остаточная емкость печи).[3]

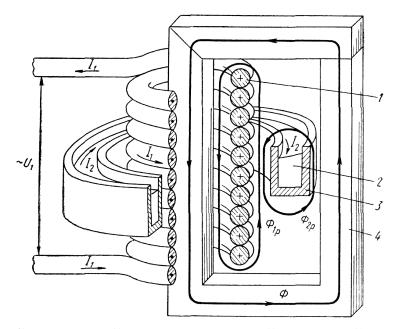


Рисунок 3 — Схема устройства индукционной канальной печи: 1 — индикатор; 2 — металл; 3 — канал; 4 — магнитопровод; Φ — основной магнитный поток; Φ_{1p} и Φ_{2p} — магнитные потоки рассеяния; U_1 и I_1 — напряжение и ток в цепи индуктора; I_2 — ток проводимости в металле

В стальном магнитопроводе индукционной канальной печи замыкается большой рабочий магнитный поток и лишь небольшая часть полного магнитного потока, создаваемого индуктором, замыкается через воздух в виде потока рассеяния. Поэтому такие печи успешно работают на промышленной частоте (50 Γ ц).

В настоящее время существует большое число типов и конструкций таких печей, разработанных во ВНИИЭТО (однофазные и многофазные с одним и несколькими каналами, с вертикальным и горизонтальным закрытым каналом разной формы). Эти печи применяют для плавки цветных металлов и сплавов со сравнительно низкой температурой плавления, а также для получения высококачественного чугуна. При плавке чугуна печь используют либо в качестве копильника (миксера), либо в качестве плавильного агрегата. Конструкции и технические характеристики современных индукционных канальных печей приведены в специальной литературе.

Установки индукционного нагрева без сердечника

В плавильной печи (рис. 4) расплавляемый металл находится в керамическом тигле, помещенном внутрь цилиндрического многовиткового индуктора. Индуктор изготовляют из медной профилированной трубки, через которую пропускают охлаждающую воду. Узнать подробнее о конструкции индуктора можно здесь.

Отсутствие стального сердечника приводит к резкому увеличению магнитного потока рассеяния; число магнитных силовых линий, сцепляемых с ме-

таллом в тигле, будет крайне мало. Это обстоятельство требует соответствующего увеличения частоты изменения (во времени) электромагнитного поля. Поэтому для эффективной работы индукционных тигельных печей приходится питать их токами повышенной, а в отдельных случаях и высокой частоты от соответствующих преобразователей тока. Подобные печи имеют очень низкий естественный коэффициент мощности ($\cos \varphi = 0.03 - 0.10$). Поэтому необходимо применять конденсаторы для компенсации реактивной (индуктивной) мощности.

В настоящее время имеется несколько типов индукционных тигельных печей, разработанных во ВНИИЭТО в виде соответствующих размерных рядов (по емкости) высокой, повышенной и промышленной частоты, для плавки стали (тип ИСТ).

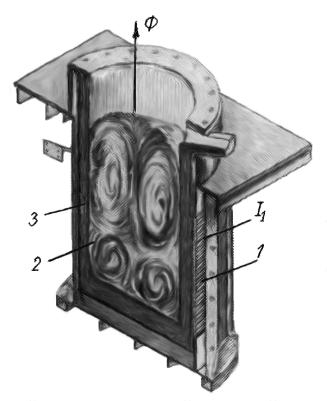


Рисунок 4 — Схема устройства индукционной тигельной печи: 1 — индуктор; 2 — металл; 3 — тигель (стрелками показана траектория циркуляции жидкого металла в результате электродинамических явлений)

Преимуществами тигельных печей являются следующие: выделяющееся непосредственно в металле тепло, высокая равномерность металла по химическому составу и температуре, отсутствие источников загрязнения металла (помимо футеровки тигля), удобство управления и регулирования процесса плавки, гигиеничность условий труда. Кроме этого, для индукционных тигельных печей характерны: более высокая производительность вследствие высоких удельных (на единицу емкости) мощностей нагрева; возможность плавить твердую шихту, не оставляя металл от предыдущей плавки (в отличие от канальных печей); малая масса футеровки по сравнению с массой металла, что уменьшает аккумуляцию тепловой энергии в футеровке тигля, снижает тепловую инерцию печи и

делает плавильные печи этого типа исключительно удобными для периодической работы с перерывами между плавками, в частности для фасонно-литейных цехов машиностроительных заводов; компактность печи, что позволяет достаточно просто изолировать рабочее пространство от окружающей среды и осуществлять плавку в вакууме или в газовой среде заданного состава. Поэтому в металлургии широко применяют вакуумные индукционные тигельные печи (тип ИСВ).

Наряду с преимуществами у индукционных тигельных печей имеются следующие недостатки: наличие относительно холодных шлаков (температура шлака меньше температуры металла), затрудняющих проведение рафинировочных процессов при выплавке качественных сталей; сложное и дорогое электрооборудование; низкая стойкость футеровки при резких колебаниях температуры вследствие небольшой тепловой инерции футеровки тигля и размывающего действия жидкого металла при электродинамических явлениях. Поэтому такие печи применяют для переплава легированных отходов с целью снижения угара элементов.

1.4 Преобразователи для питания индукционных печей как источник искажение синусоидальности питающего напряжения.

На рис. 5 представлена электрическая схема силовой части преобразователя частоты ТПЧ, который построен по схеме двухзвенного преобразователя частоты с явным звеном постоянного тока. Сетевое напряжение сначала преобразуется с помощью выпрямителя на тиристорах VS1...VS6 в постоянное напряжение, которое затем с помощью автономного инвертора тока (АИТ) на тиристорах VS7...VS10 преобразуется в однофазное напряжение заданной частоты.

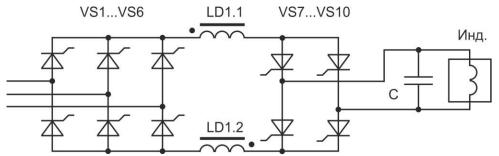


Рисунок 5 - Схема ТПЧ для питания индукционного нагревателя

Инвертор представляет собой автономный параллельный инвертор тока. Для таких инверторов характерно подключение большой индуктивности на входе, и в этом случае имеет место апериодический процесс зарядки емкости С, благодаря чему ток вентилей в межкоммутационном интервале остается практически постоянным. Для осуществления процесса инвертирования включение очередного тиристора должно осуществляться с опережением на угол β (угол

управления инвертором тока) относительно начала отрицательного полупериода напряжения на нагрузке. Нагрузкой преобразователя частоты является система «индуктор — нагреваемое тело».

Активное сопротивление индуктора характеризует активную мощность, выделяемую в индукторе и нагреваемом теле. Индуктивное сопротивление инуктора характеризует реактивную мощность, выделяемую в воздушном зазоре между индуктором и нагреваемым телом, материале индуктора и нагреваемого тела.

Конденсаторная батарея С предназначена для компенсации реактивной мощности, генерируемой системой «индуктор — нагреваемое тело» в питающую сеть и для обеспечения коммутации тиристоров инвертора.

Наиболее распространенным источником кондуктивных ЭМП в СЭПП являются потребители с нелинейными вольт-амперными характеристиками.

Рассмотрим процесс генерирования высших гармоник тока и напряжения статическим преобразователем электроэнергии (управляемым выпрямителем на входе преобразователя частоты). На рис. 6 представлены примерные диаграммы токов и напряжений трехфазного мостового управляемого выпрямителя с активно-индуктивной нагрузкой L_H и R_H . Сопротивление питающей сети представлено в виде индуктивностей L_A , L_B , L_C .[2]

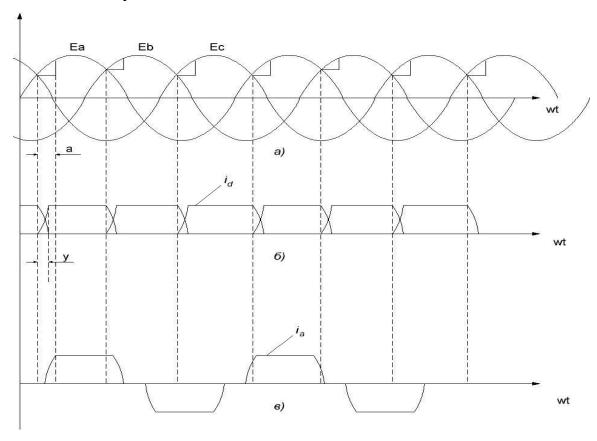


Рисунок 6 — Диаграммы токов и напряжений трехфазного мостового управляемого выпрямителя

а) напряжение сети; б) ток нагрузки; в) ток сети; α – угол управления выпрямителя; γ – угол коммутации

Потребляемый таким выпрямителем ток имеет трапециевидную форму вследствие наличия индуктивностей L_A , L_B , L_C , которые разряжаются в процессе коммутации тока между фазами. В идеальном случае, если индуктивность сети равна нулю, коммутация происходит мгновенно и потребляемый ток приобретает прямоугольную форму.[2]

Очевидно, что при несинусоидальном токе искажение кривой напряжения зависит от сопротивления сети. В частности, для трехфазного мостового неуправляемого выпрямителя форма кривой напряжения практически синусоидальна с резкими всплесками в моменты коммутации вентилей. В вышеописанном идеальном случае при нулевой индуктивности сети и треугольной форме потребляемого тока кривая напряжения будет иметь синусоидальную форму.[2]

Известно, что любая периодическая интегрируемая на отрезке функция может быть представлена в виде суммы гармонических составляющих путем разложения в ряд Фурье. Амплитуда υ-ой гармоники тока определяется следующим образом:

$$I_{um} = \sqrt{a_u^2 + b_u^2} ,$$

-um v^{ω_u} , где a_u, b_u - коэффициенты разложения кривой напряжения первичного тока.

Эти коэффициенты определяются следующим образом:

$$\begin{split} a_u &= \frac{2 \cdot \sqrt{3} \cdot E_m}{u \cdot \pi \cdot x_k} \cdot \sin \frac{u \cdot \pi}{3} \cdot \frac{1}{u+1} \cdot \sin(u+1) \cdot \frac{\gamma}{2} \cdot \sin(u+1) \cdot \psi - \frac{1}{u+1} \cdot \sin(u-1) \cdot \\ &\cdot \frac{\gamma}{2} \cdot \sin(u-1) \cdot \psi \\ b_u &= \frac{2 \cdot \sqrt{3} \cdot E_m}{u \cdot \pi \cdot x_k} \cdot \sin \frac{u \cdot \pi}{3} \cdot \frac{-1}{u+1} \cdot \sin(u+1) \cdot \frac{\gamma}{2} \cdot \sin(u+1) \cdot \psi + \frac{1}{u+1} \cdot \sin(u-1) \cdot \\ &\cdot \frac{\gamma}{2} \cdot \sin(u-1) \cdot \psi, \end{split}$$

где x_k- индуктивное сопротивление контура коммутации, E_m- амплитуда ЭДС питающей сети, $\psi=\alpha+\frac{\gamma}{2}$.

Таким образом, кривая несинусоидального тока (напряжения) представляет собой сумму основной гармоники (n = 1) с частотой, равной частоте сети, и высших гармоник с частотами, кратными основной. Очевидно, что чем

сильнее форма кривой отличается от синусоиды, тем выше амплитуды высших гармоник.

В идеальном случае гармоники, генерируемые статическим преобразователем в установившемся режиме, называются характерными гармониками, и их номера определяются следующим образом:

$$n = k \cdot p \pm 1, \tag{1}$$

где n - порядковый номер гармоники, k - натуральное число, p — пульсность преобразователя. Для трехфазного мостового преобразователя пульсность на одном периоде питающего напряжения p=6, и перечень характерных гармоник выглядит следующим образом: $n=k\cdot 6\pm 1=5,7,11,13,17,19\dots$

Указанное соотношение для характерных гармоник справедливо для установившегося режима работы преобразователя при условии симметричности и абсолютной синусоидальности напряжения в питающей сети. Несоблюдение хотя бы одного из указанных условий провоцирует генерирование нехарактерных гармоник в сеть и появление постоянной составляющей. На практике перечисленные выше условия часто не соблюдаются, из-за чего в реально полученных спектрах гармоник можно наблюдать те из них, которые не соответствуют соотношению (1).

1.5 Нормирование показателей, характеризующих несинусоидальные режимы.

Несинусоидальность напряжения и тока обуславливает дополнительные потери и нагрев, а также ускоренное старение изоляции электрооборудования и кроме того, отрицательно сказывается на функционировании различных видов электрооборудования. Электромагнитная составляющая ущерба, обусловленного дополнительными потерями как правило, невелика. Специфическое воздействие на различные виды электрооборудования, системы релейной защиты, автоматики, телемеханики и связи проявляется дифференцированно и зависит от амплитудного спектра напряжения (тока), параметров электрических сетей и других факторов. Таким образом, в общем случае отсутствует зависимость между энергией гармонической помехи и степенью воздействия ее на электрическую сеть[1]. Это обстоятельство, по-видимому, обусловило широкое применение показателя, характеризующего искажение кривой напряжения сети на зажимах электроприемников, называемого коэффициентом несинусоидальности напряжения, %:

$$k_{HC} = \frac{\sqrt{\sum_{v=2}^{n} U_{v}^{2}}}{U_{HOM}} \cdot 100,$$

где $U_{\rm v}$ и $U_{\rm hom}$ — напряжение v-й гармоники и номинальное напряжения сети.

В России нормальные и предельно допустимые значения вышеуказанных ПКЭ устанавливает государственный стандарт ГОСТ 32144-2013 [5].

Показателями КЭ, относящимися к гармоническим составляющим напряжения являются:

- значения коэффициентов гармонических составляющих напряжения до 40-го порядка $k_{U(n)}$ в процентах напряжения основной гармонической составляющей U_1 в точке передачи электрической энергии;
- значение суммарного коэффициента гармонических составляющих напряжения (отношения среднеквадратического значения суммы всех гармонических составляющих до 40-го порядка к среднеквадратическому значению основной составляющей) $k_{\rm U}$, % в точке передачи электрической энергии.

Для указанных показателей КЭ установлены следующие нормы:

- а) значения коэффициентов гармонических составляющих напряжения $k_{U(n)}$, усредненные в интервале времени 10 мин, не должны превышать значений, установленных в таблицах 1-3, в течение 95% времени интервала в одну неделю;
- б) значения коэффициентов гармонических составляющих напряжения $k_{U(n)}$, усредненные в интервале времени 10 мин, не должны превышать значений, установленных в таблицах 1-3, увеличенных в 1,5 раза, в течение 100% времени каждого периода в одну неделю;
- в) значения суммарных коэффициентов гармонических составляющих напряжения $k_{\rm U}$, усредненные в интервале времени 10 мин, не должны превышать значений, установленных в таблице 4, в течение 95% времени интервала в одну неделю;
- г) значения суммарных коэффициентов гармонических составляющих напряжения $k_{\rm U}$, усредненные в интервале времени 10 мин, не должны превышать значений, установленных в таблице 5, в течение 100% времени интервала в одну неделю.

Таблица 1 - Значения коэффициентов нечетных гармонических составляющих напряжения не кратных трем $k_{\mathrm{U}(n)}$

Подажения	Значения коэффициентов гармонических составляющих				
Порядок гармо- нической состав-	напряжения $K_{U(n)}$, % U_1				
ляющей п	Напряжение электрической сети, кВ				
	0,38	6-25	35	110-220	
5	6	4	3	1,5	

7	5	3	2,5	1
11	3,5	2	2	1
13	3,0	2	1,5	0,7
17	2,0	1,5	1	0,5
19	1,5	1	1	0,4
23	1,5	1	1	0,4
25	1,5	1	1	0,4
>25	1,5	1	1	0,4

Таблица 2 - Значения коэффициентов нечетных гармонических составляющих напряжения, кратных трем $\mathbf{k}_{\mathrm{U(n)}}$

11							
Порядок гармонической составляющей	Значения коэффициентов напряжения гармонических						
		составляющ	цих $K_{U(n)}$ % U_1				
п	Напряжение электрической сети, кВ						
11	0,38	6-25	35	110-220			
3	5	3	3	1,5			
9	1,5	1	1	0,4			
15	0,3	0,3	0,3	0,2			
21	0,2	0,2	0,2	0,2			
>21	0,2	0,2	0,2	0,2			

Таблица 3 - Значения коэффициентов напряжения четных гармонических составляющих $K_{U(n)}$

составлиощих						
П	Значения коэффициентов гармонических составляющих					
Порядок гармони- ческой составля- ющей п	напряжения $^{K_{U(n)}}$, % U_1					
	Наг	пряжение элект		кВ		
тощей п	0,38	6-25	35	110-220		
2	2	1,5	1	0,5		
4	1	0,7	0,5	0,3		
6	0,5	0,3	0,3	0,2		
8	0,5	0,3	0,3	0,2		
10	0,5	0,3	0,3	0,2		
12	0,2	0,2	0,2	0,2		
>12	0,2	0,2	0,2	0,2		

Таблица 4 - Значения суммарных коэффициентов гармонических составляющих напряжения K_U

Значения суммарных коэффициентов гармонических составляющих напряже-						
	ния K_U , $\%$					
	Напряжение электрической сети, кВ					
0,38		6-25	35	110-220		

- 1				
	0.0	~ •	4.0	2.0
	X ()	5 ()	$A \cap$	2.0
	0,0	J,0	+, 0	∠,0

Таблица 5 - Значения суммарных коэффициентов гармонических составляющих напряжения K_U

Значения суммарных коэффициентов гармонических составляющих напряже-						
	ния K_U , %					
	Напряжение электрической сети, кВ					
0,38 6-25 35 110-220						
12, 0	8,0	6,0	3,0			

1.5 Метрологическое обеспечение параметров качества электрической энергии

Наиболее достоверным способом оценки влияния нелинейного потребителя на сеть является экспериментальное измерение ПКЭ, влияющих на ЭМС. Измерения проводились прибором «РЕСУРС-UF2M».[7]

Измерители показателей качества электрической энергии «РЕСУРС-UF2М» предназначены для измерений характеристик напряжения, включая основные показатели качества электрической энергии (ПКЭ) по ГОСТ 32144-2013, характеристик тока, мощности и энергии переменного трехфазного и однофазного тока, как в автономном режиме, так и в составе информационно- измерительных систем. Измерители предназначены для контроля показателей качества электрической энергии в соответствии с РД 153-34.0-15.501-00 (часть 1) и анализа качества электрической энергии в соответствии с РД 153-34.0-15.501-01 (часть 2).

Рисунок 7 – Внешний вид прибора «РЕСУРС UF2M»

Прибор модификаций «Ресурс–UF2M» работает при подключении измерительных входов тока с помощью токоизмерительных клещей на одном или нескольких диапазонах измерений. Номинальное среднеквадратическое значе-

ние первичного тока определяется типом применяемых токоизмерительных клещей.

Токоизмерительные клещи подключаются к специально предназначенным входам.

Измерительные входы тока гальванически изолированы друг от друга и от остальных частей прибора.

Одновременное использование измерительных входов тока различных диапазонов, принадлежащих одной фазе не допускается.

Порядок проведения измерений следующий:

- 1. Подключить питание измерительные кабели к приборам «РЕСУР-2М"
- 2. Снять питание с высокочастотного генератора при помощи автоматического выключателя.
- 3. Выставить необходимые параметры регистрации и пределы измерений тока и напряжения на измерительных приборах.
- 4. Подключить токоизмерительные клещи и входы по напряжению ко вторичной обмотке измерительных трансформаторов согласно рис.8.
 - 5. Подать питание на высокочастотный генератор.
- 6. Активировать режим регистрации параметров электрической сети (ток, напряжение, мощность) и показателей электромагнитной совместимости в течение суток.
- 7. По окончании времени регистрации обесточить генератор и отсоединить прибор от их вторичных обмоток.

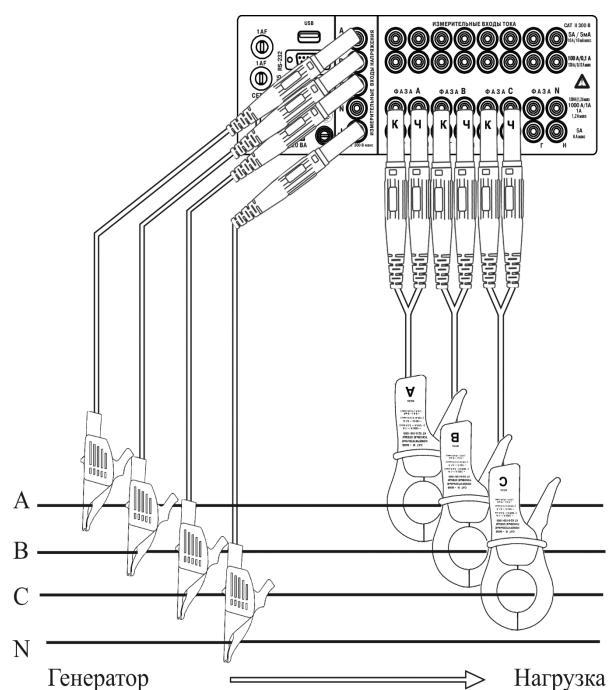


Рисунок 8 — Схема подключений прибора модификации «Ресурс—UF2M-3T52-5-100-1000» для измерений в трехфазной четырех-проводной системе с помощью токоизмерительных клещей КТ52-5-100-1000 на пределе 1000 А

Список архивируемых данных формируется на основании задания следующих элементов:

- U_a напряжение основной частоты фазы A;
- U_в напряжение основной частоты фазы В;
- U_c напряжение основной частоты фазы C;
- $U_{a\text{в}}$ напряжение основной частоты между фазами A и B;
- $U_{\text{вс}}$ напряжение основной частоты между фазами В и С;

- U_{са} напряжение основной частоты между фазами С и А;
- U₀ напряжение нулевой последовательности;
- U₁ напряжение прямой последовательности;
- U₂ напряжение обратной последовательности;
- К₀ коэффициент несимметрии напряжений по нулевой последовательности;
- К₂ коэффициент несимметрии напряжений по обратной последовательности;
- F частота;
- I_a сила тока фазы A;
- $I_{\text{в}}$ сила тока фазы B;
- I_c сила тока фазы C;
- I_0 сила тока нулевой последовательности;
- I_1 сила тока прямой последовательности;
- I₂ сила тока обратной последовательности;
- $-K_u$ коэффициенты искажения синусоидальности фазных и междуфаз- ных напряжений, для которых в список архивируемых данных включены на- пряжения основной частоты (U_a , U_b , U_c , U_a , U_b , U_c);
- K_i коэффициенты искажения синусоидальности фазных токов, для которых в список архивируемых данных включены токи основной частоты (Ia, Iв, Ic);
- $\phi u_i y$ глы фазового сдвига между первыми гармониками токов и напряжений одноименных фаз;
- $\phi u y$ глы фазового сдвига между первыми гармониками фазных напря- жений;
- ϕ Ku_i углы фазового сдвига между \emph{n} -ми гармоническими составляющими токов и напряжений одноименных фаз, для которых в список архивируемых данных включены напряжения основной частоты (Ua, Ub, Uc);
- ϕK_u углы фазового сдвига между \emph{n} -ми гармоническими составляющими фазных напряжений;
 - Рф активные однофазные мощности;
 - Р активная трехфазная мощность;
 - Q_{φ} реактивные однофазные мощности;
 - Q реактивная трехфазная мощность;
- $K_{u(n)}$ коэффициенты n-ых гармонических составляющих фазных и междуфазных напряжений, для которых в список архивируемых данных вклю- чены напряжения основной частоты (Ua, Ub, Uc, Uab, Ubc, Uca);
- $K_{i(n)}$ коэффициенты \emph{n} -ых гармонических составляющих фазных токов, для которых в список архивируемых данных включены токи основной час- тоты (I_a , I_B , I_c);
- K(02)–K(40) номера n-ых гармонических составляющих фазных и ме- ждуфазных напряжений и фазных токов.

Для прибора модификаций ««Ресурс–UF2M» список архивируемых параметров дополнен следующими параметрами:

- -U_н напряжение основной частоты фазы N;
- I_{H} сила тока фазы N;
- P_н активная мощность фазы N;
- $Q_{\rm H}$ реактивные мощность фазы N;
- $K_{\text{ин}}$ коэффициент искажения синусоидальности напряжения U_n ;
- K_{iH} коэффициент искажения синусоидальности тока I_n ;
- ϕ_{uin} угол фазового сдвига между первыми гармониками тока и напряжения фаз N;
- $K_{\text{(ин)}n}$ коэффициенты n-ых гармонических составляющих напряжения Un;
 - $K_{(iH)n}$ коэффициенты n-ых гармонических составляющих тока I_n ;
- $\phi_{\text{Киін}}$ фазовые углы между n-ми гармоническими составляющими токов и напряжений фазы N.

Измерения проводились на высокой стороне (6кВ) печного трансформатора.

Таблица 6 – Измеренные Коэффициенты n-ой гармонической составляющей в соответствие с нормативными.

Коэффициент n-ой гармонической составляющей Ku(n)						
n	Измеренный Ku(n)в	Нормативный Ku(n)в				
2	0,47	1,5				
3	2,55	3,0				
4	0,62	0,7				
5	6,00	4				
6	0,57	0,3				
7	4,50	3,0				
8	0,29	0,3				
9	0,9	1				
10	0,13	0,3				
11	2,99	2,0				
12	0,13	0,2				
13	2,99	2,0				
14	0,13	0,2				
15	2,55	0,3				
16	0,15	0,2				
17	2,55	1,5				
18	0,13	0,2				
19	2,55	1,0				

Вывод: Исходя из полученных измерениях сделанным прибором «РЕ-СУРС UF2M» коэффициент n-ой гармонической составляющей напряжения выходит за рамки допустимого.

2 Потери от высших гармоник в элементах системы электроснабжения предприятия.

В системе электроснабжения, содержащей нелинейные элементы (вентильные преобразователи, электродуговые печи, установки однофазной и трехфазной электросварки, газоразрядные лампы, силовые трансформаторы и др.), даже при синусоидальных ЭДС возникают несинусоидальные токи и напряжения. Несинусоидальные режимы, как правило, рассматривают по отдельным гармоникам. Наличие высших гармоник ведет к появлению дополнительных потерь активной мощности $\Delta P_{\rm Hc}$ и электроэнергии $\Delta \Theta_{\rm Hc}$ от несинусоидальных токов в элементах систем электроснабжения, а также вызывает ряд нежелательных явлений в питающей сети [6]. Дополнительные потери активной мощности и электроэнергии определяют с помощью расчетов, которые обусловлены следующими обстоятельствами:

- а) Необходимостью определения дополнительных потерь $\Delta P_{\text{нс}}$ и $\Delta \Theta_{\text{нс}}$ за определенный, искомый период (день, месяц, квартал, год) как в условиях эксплуатации, так и при проектировании;
- б) Необходимостью определения дополнительных потерь $\Delta P_{\rm hc}$, $\Delta \Theta_{\rm hc}$ при анализе изменения их значения от внедрения средств уменьшения гармоник с учетом экономической эффективности.

Сведения о дополнительных потерях активной мощности и электроэнергии от несинусоидальных токов представляют особый практический интерес, так как их необходимо учитывать в общем балансе предприятия, и, кроме того, дополнительные потери электроэнергии означают дополнительный расход топлива и электроэнергии.

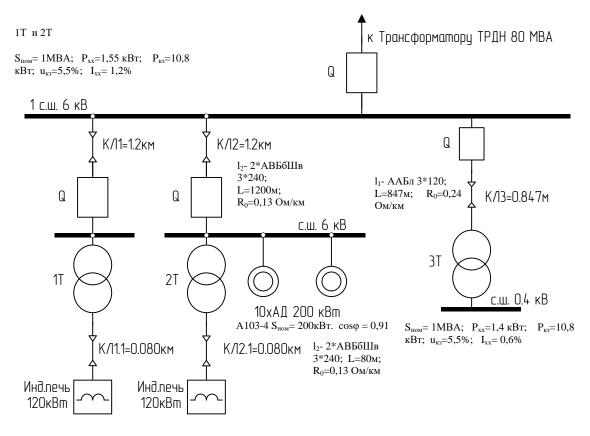


Рисунок 9 — Схема электроснабжения предприятия для определения дополнительных потерь активной мощности.

Потери в электрических машинах и трансформаторах.

При работе синхронных и асинхронных двигателей в условиях несинусоидального напряжения возникают добавочные потери мощности, обусловленные высшими временными гармониками тока в обмотках статора и ротора. Появляются также добавочные потери в стали статора и ротора; однако эти потери малы и ими можно пренебречь.

Основная часть добавочных потерь от гармоник в синхронных машинах приходится на долю успокоительной и статорной обмоток; потери в обмотке ротора, как правило оказываются меньшими. В асинхронных двигателях высокого напряжения потери в статоре и роторе примерно одинаковы[1].

Считаем дополнительные потери в трансформаторах Т1 и Т2.

Таблица 7 – Паспортные данные трансформатора T1 и T2.

Тип	S _{HOM} , MBA	$U_{\scriptscriptstyle{ ext{HOM.BH}}},$ к B	$egin{array}{c} U_{ ext{hom.HH}}, \ \kappa B \end{array}$	u _{к,} %	$\Delta P_{_{\mathrm{K3}}}$, $\kappa \mathrm{Bt}$	ΔP_{xx} , κB_T	I _{x.x.,} %
TM3- 1000/6	1	6	0,4	5,5	10,8	1,55	1,2

Номинальный ток трансформатора:

$$I_{\text{\tiny T.HOM}} = \frac{S_{\text{\tiny HOM}}}{\sqrt{3} \cdot U_{\text{\tiny HOM}}} = \frac{1000}{\sqrt{3} \cdot 6000} = 0,096 \text{ kA},$$

где $S_{\mbox{\tiny HOM}}$ — номинальная мощность силового трансформатора.

Активное сопротивление трансформатора:

$$R_T = \frac{\Delta P_{K3} \cdot U_{HOM}^2}{S_{HOM}^2} = \frac{0.0108 \cdot 6^2}{1^2} = 0.399 \text{ Om},$$

где $\Delta P_{_{\! K3}}-$ потери мощности короткого замыкания, мВт.

Номинальные потери мощности:

$$\Delta P_{T.\text{HOM}} = \Delta P_{xx} + 3 \cdot I_{T.\text{HOM}}^2 \cdot R_T = 1,55 + 3 \cdot 96^2 \cdot 0,399 \cdot 10^{-3} = 12,581 \,$$
 кВт, где ΔP_{xx} – потери мощности холостого хода трансформатора, кВт.

Дополнительные потери от токов высших гармоник:

$$\Delta P_{T.n} = \Delta P_{xx} \sum k_{U(n)}^2 + 0.6 \frac{\Delta P_{T.HOM}}{u_{K,\%}} \cdot \sum (k_{U(n)}^2 \cdot \frac{1}{n\sqrt{n}}),$$

где $k_{\mathrm{U(n)}}$ – коэффициенты n – ой гармонической составляющей напряжения взятые в относительных единицах. Значения будем выбирать из таблицы 6, и рассчитывать потери для 3,5,7,9,11,13,15,17,19 гармоник.

$$\begin{split} &\Delta P_{T.n} = 1,55 \cdot (0,025^2 + 0,06^2 + 0,045^2 + 0,029^2 + 0,0299^2 + 0,0255^2 + 0,025^2 + 0,$$

Суммарные дополнительные потери в трансформаторах Т1 и Т2:

$$\sum \Delta P_{\text{T1-T2.n}} = 0,164 \cdot 2 = 0,328 \text{ kBT}$$

Считаем дополнительные потери в трансформаторе Т3.

Таблица 7 – Паспортные данные трансформатора Т3.

	1						
Тип	S _{HOM} , MBA	U _{ном.ВН} , кВ	U _{ном.НН} , кВ	u _к , %	ΔP _{к3} , κΒτ	ΔP_{xx} , κB_T	I _{x.x.,} %
TMΓ- 1000/6	1	6	0,4	5,5	10,8	1,4	0,6

Номинальный ток трансформатора:

$$I_{\text{T.HOM}} = \frac{S_{\text{HOM}}}{\sqrt{3} \cdot U_{\text{NOM}}} = \frac{1000}{\sqrt{3} \cdot 6000} = 0,096 \text{ KA},$$

где $S_{\mbox{\tiny HOM}}$ — номинальная мощность силового трансформатора.

Активное сопротивление трансформатора:

$$R_T = \frac{\Delta P_{K3} \cdot U_{HOM}^2}{S_{HOM}^2} = \frac{0.0108 \cdot 6^2}{1^2} = 0.399 \text{ Om},$$

где ΔP_{κ_3} – потери мощности короткого замыкания, мВт.

Номинальные потери мощности:

$$\Delta P_{\text{T,HOM}} = \Delta P_{\text{xx}} + 3 \cdot I_{\text{T,HOM}}^2 \cdot R_{\text{T}} = 1,4 + 3 \cdot 96^2 \cdot 0,399 \cdot 10^{-3} = 12,431 \text{ kBt},$$

Дополнительные потери от токов высших гармоник:

$$\Delta P_{T.n} = \Delta P_{xx} \sum k_{U(n)}^2 + 0, 6 \frac{\Delta P_{_{T.HOM}}}{u_{_{K.\%}}} \cdot \sum (k_{U(n)}^2 \cdot \frac{1}{n\sqrt{n}}),$$

где $k_{U(n)}$ – коэффициенты n – ой гармонической составляющей напряжения взятые в относительных единицах. Значения будем выбирать из таблицы 6, и рассчитывать потери для 3,5,7,9,11,13,15,17,19 гармоник.

$$\begin{split} &\Delta P_{T3.n} = 1,4 \cdot (0,025^2 + 0,06^2 + 0,045^2 + 0,029^2 + 0,0299^2 + 0,0255^2 + 0,025^2 + 0$$

Потери в асинхронном двигателе (АД)

Номинальный ток АД:

$$I_{\text{\tiny T.HOM}} = \frac{P_{\text{M}}}{\sqrt{3} \cdot U_{\text{\tiny HOM}} \cdot \cos \varphi} = \frac{0,200}{\sqrt{3} \cdot 6 \cdot 0,91} = 0,021 \text{ KA}$$

Активное сопротивление обмотки статора:

$$R_{M} = \frac{K_{M}}{K_{1}^{2}} \cdot \frac{U_{HOM}^{2}}{P_{M}} = \frac{1,2}{5,1^{2}} \cdot \frac{6^{2}}{0,200} = 7,54 \text{ Om},$$

где K_1 – кратность пускового тока при номинальном напряжении основной частоты.

Номинальные потери мощности:

$$\Delta P_{\text{M.HOM}} = 3 \cdot I_{\text{HOM}}^2 \cdot R_{\text{M}}^1 = 3 \cdot 21^2 \cdot 7,54 \cdot 10^{-3} = 9,975 \text{ kBt}$$

Дополнительные потери от токов высших гармоник:

$$\begin{split} &\Delta P_{\text{\tiny M.HOM}} = 2 \cdot \Delta P_{\text{\tiny M,HOM}} \cdot K_1^2 \sum (K_{\text{\tiny U(n)}}^2 \cdot \frac{1}{n\sqrt{n}}) = 2 \cdot 9,975 \cdot 5,1^2 \cdot (0,025^2 \cdot \frac{1}{3\sqrt{3}} + 0,06^2 \cdot \frac{1}{5\sqrt{5}} + 0,045^2 \cdot \frac{1}{7\sqrt{7}} + 0,0299^2 \cdot \frac{1}{9\sqrt{9}} + 0,0299^2 \cdot \frac{1}{11\sqrt{11}} + 0,0255^2 \cdot \frac{1}{13\sqrt{13}} + 0,0255^2 \cdot \frac{1}{15\sqrt{15}} + 0,025^2 \cdot \frac{1}{17\sqrt{17}} + 0,0255^2 \cdot \frac{1}{19\sqrt{19}}) = 0,34 \text{kBt} \end{split}$$

Суммарные потери в двигателях:

$$\sum \Delta P_{v.\text{HOM.AJJ}} = \Delta P_{m.\text{HOM}} \cdot 2 = 0,34 \cdot 10 = 3,4 \text{ kBT}$$

Потери в кабельных линиях[9]

Номинальный ток $I_{\text{ном}} = 220,01 \text{ A}$

Таблица 8 – Ток соответствующей гармоники и коэффициент учитываюший влияние поверхностного эффекта.

щии влижне поверхностного эффекта.									
№ гармоники	3	5	7	9	11	13	15	17	19
Ток гармоники I _n , А	16,5	55,07	19,98	9,46	4,16	2,24	7,04	5,31	2,18
Коэффициент учитывающий влияние поверхностного эффекта, k _{rv}	0,81	1,05	1,24	1,41	1,55	1,69	1,82	1,93	2,04

Дополнительные активной мощности в КЛ вызваны протекание токов высших гармоник:

$$\Delta P_{\text{M.HOM}} = 3 \sum_{v=2}^{n} I_v^2 \cdot R_1 \cdot k_{rv},$$

где v— номер гармоники; n— число учитывающих гармоник; I_v^2 — ток гармоники; k_{rv} — коэффициент учитывающий влияние поверхностного эффекта, как правило его принимают равным: $k_{rv}=0.47\sqrt{v}$

Дополнительные потери активной мощности в КЛ-1 и КЛ-2:

$$\begin{split} \Delta P_{v.\text{ном}} &= 3 \cdot 10^{-3} \cdot (16,5 \cdot 0,156 \cdot 0,81 + 55,07 \cdot 0,156 \cdot 1,05 + 19,98 \cdot 0,156 \cdot 1,24 + \\ &+ 9,46 \cdot 0,156 \cdot 1,41 + 4,16 \cdot 0,156 \cdot 1,55 + 2,24 \cdot 0,156 \cdot 1,69 + 7,04 \cdot 0,156 \cdot 1,82 + \\ &+ 5,31 \cdot 0,156 \cdot 1,93 + 2,18 \cdot 0,156 \cdot 2,04) = 0,072 \text{кBT} \end{split}$$
 Суммарные потери в КЛ1 и КЛ2:

$$\sum \Delta P_{v.\text{Hom.K},11-2} = \Delta P_{m.\text{Hom}} \cdot 2 = 0,072 \cdot 2 = 0,144 \text{ kBT}$$

Суммарные потери в КЛ1.1 и КЛ2.1:

$$\begin{split} \Delta P_{\text{v.hom}} &= 3 \cdot 10^{-3} \cdot (16, 5 \cdot 0, 0104 \cdot 0, 81 + 55, 07 \cdot 0, 0104 \cdot 1, 05 + 19, 98 \cdot 0, 0104 \cdot 1, 24 + 9, 46 \cdot 0, 0104 \cdot 1, 41 + 4, 16 \cdot 0, 0104 \cdot 1, 55 + 2, 24 \cdot 0, 0104 \cdot 1, 69 + \\ &7, 04 \cdot 0, 0104 \cdot 1, 82 + 5, 31 \cdot 0, 0104 \cdot 1, 93 + 2, 18 \cdot 0, 0104 \cdot 2, 04) = 0,005 \text{kBt} \end{split}$$

Суммарные потери в КЛ1 и КЛ2:

$$\sum \Delta P_{v.\text{HOM.K} \pi 1.1-2.1} = \Delta P_{m.\text{HOM}} \cdot 2 = 0,005 \cdot 2 = 0,01 \,\text{kBt}$$

Суммарные дополнительные потери в элементах системы электроснабжения:

$$\begin{split} & \sum \Delta P_{v(n)} = \sum \Delta P_{v.\text{Hom.kpl}-2} + \sum \Delta P_{v.\text{Hom.kpl}.1-2.1} + \sum \Delta P_{v.\text{Hom.Apl}} + \sum \Delta P_{T1-T2.n} + \\ & + \Delta P_{T3.n} = 0,144 + 0,01 + 3,4 + 0,328 + 0,149 = 4,031 \text{kBt} \end{split}$$

3 Разработка имитационной модели электроснабжения ЭИН в программном комплексе Matlab

3.1 Параллельный автономный инвертор тока (АИТ)

На рис.10 а приведена схема однофазного параллельного АИТ на обычных тиристорах с неполной управляемостью, а на рис. 10 б — временные диаграммы токов и напряжений в схеме.

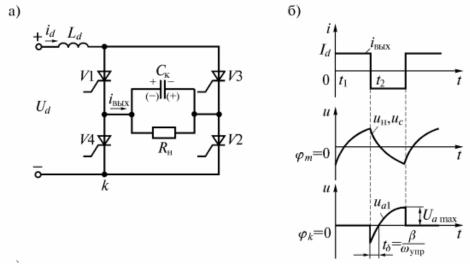


Рисунок 10 – а) Схема однофазного параллельного АИТ на обычных тиристорах с неполной управляемостью; б) Временные диаграммы токов и напряжений в схеме.

Запирание происходит с помощью энергии, запасенной в конденсаторе Ск. Рассмотрим работу схемы. В момент t1 после подачи управляющего импульса начинают проводить тиристоры V1, V2. Ток идет по пути "+", Ld, V1, RH | Ск, V2, "-". Под действием проходящего тока напряжение ис на коммутирующем конденсаторе получает полярность, показанную на рис. 10 а знаками «+», «-» без скобок. В момент t2 включаются тиристоры V3,V4, и конденсатор Ск подключается к цепочкам V2, V4 и V3, V1 так, что его разрядный ток короткого замыкания направлен навстречу току в ранее проводивших тиристорах V1, V2. Они выключаются. Коммутация происходит практически мгновенно, так как мала индуктивность в контуре коммутации. Поэтому за время коммутации напряжение на конденсаторе практически не успевает измениться. Ток через нагрузку меняет направление и конденсатор перезаряжается (знаки в скобках). Таким образом, коммутирующий конденсатор служит для выключения предыдущего вентиля при включении последующего.

На диаграмме (см. рис. 10 б) показано, что в момент выключения V1 к нему прикладывается отрицательное напряжение, которое при перезарядке конденсатора меняет знак. Во избежание опрокидывания инвертора за время $t\delta$ должна восстановиться запирающая способность тиристоров в прямом направлении. Это время ограничивает частотные возможности тиристоров. АИТ могут работать до частот 2-2.5 кГц. При больших частотах тиристор не успевает восстановить запирающие свойства[4].

3.1.2 Расчёт параметров параллельного АИТ

Рассчитаем параллельный инвертор тока для индукционной установки. Инвертор должен обеспечивать P_H =120 кВт, частоту f=2500 Γ ц; напряжение на выходе выпрямителя тиристорного преобразователя частоты U_d=500 В.

Исходные данные: $U_d=500 \text{ B}$; $P_H=120 \text{ кВт}$; f=2500 Гц; $r_H=0.035 \text{ Ом}$; $L_H=26$ мкГн.

1. Определим ориентировочный угол, отводимый на восстановление запирающих свойств тиристоров, принимая $t_{e.n.}$ =25 мкс,

$$\delta = 2\pi \cdot f \cdot 2 \cdot t_{_{B.II}} = 6,28 \cdot 2500 \cdot 2 \cdot 25 \cdot 10^{-6} = 0,785; \quad tg\delta = 1.$$

2. Найдем тангенс угла ф

$$tg\phi = \frac{2\pi \cdot f \cdot L_{_{H}}}{r_{_{H}}} = \frac{6,28 \cdot 2500 \cdot 26 \cdot 10^{-6}}{0,035} = 11,67$$

3. Напряжение на нагрузке составит, B,
$$U_{_{\rm H}} = \sqrt{P_{_{\rm H}} \cdot r_{_{\rm H}} \cdot (tg^2 \phi + 1)} = \sqrt{120 \cdot 10^3 \cdot 0,035 \cdot (11,67^2 + 1)} = 759,07$$

4. Определим необходимый коэффициент трансформации трансформатора, задаваясь $\eta = 0.97$,

$$k_{T} = \frac{1,11 \cdot \eta \cdot U_{d}}{U_{H}} \cdot \sqrt{tg^{2}\delta + 1} = \frac{1,11 \cdot 0,97 \cdot 500}{759,09} \cdot \sqrt{1^{2} + 1} = 1,003$$

5. Поскольку $k_{_{\rm T}} \approx \! 1$, согласующий трансформатор не нужен, то примем $k_{\rm T} = 1$ и пересчитаем tg ϕ ,

$$tg\phi = \sqrt{\left(\frac{U_{H}}{1,11 \cdot \eta \cdot U_{d}}\right)^{2} - 1} = \sqrt{\left(\frac{759,07}{1,11 \cdot 0,97 \cdot 500}\right)^{2} - 1} = 0,93$$

6. Найдем емкость конденсатора $C_{\text{пар}}$,

$$C_{\text{пар}} = \frac{(tg\delta + tg\phi)}{(tg^2\delta + 1) \cdot r_{_{\! H}} \cdot 2\pi \cdot f} = \frac{(0.93 + 11.67)}{(11.67 + 1) \cdot 0.035 \cdot 6.28 \cdot 2500} = 168.1 \text{ MK}\Phi.$$

7. Определим ток источника питания и средний ток тиристоров,

26

$$I_d = \frac{P_H}{U_d \cdot \eta} = \frac{120 \cdot 10^3}{500 \cdot 0,97} = 247,6 \text{ A}; \quad I_d = \frac{I_d}{2} = \frac{247,4}{2} = 123,7 \text{ A}.$$

8. Амплитуда напряжения на тиристорах в предположении синусоидальности выходного напряжения составит,

$$U_{\text{B.max}} = \sqrt{2} \cdot U_{\text{H}} = 1,414 \cdot 1^2 \cdot 759,07 = 1073,49 \text{ B}.$$

9. Уточним относительное время, отводимое схемой на восстановление запирающих свойств тиристора,

$$t_{\rm B} = \frac{\text{arctg } 0.93}{6.28 \cdot 2500} = 47 \text{ MKC}.$$

10. Индуктивность дросселя,

$$\begin{split} L_{d} \approx & \frac{2,22 \cdot U_{d}}{2\pi \cdot f \cdot q \cdot I_{d}} \cdot \sqrt{0,095 tg^{2} \delta + 0,023} = \frac{2,22 \cdot 500}{6,28 \cdot 2500 \cdot 0,01 \cdot 247,4} \cdot \\ \cdot & \sqrt{0,095 \cdot 0,93^{2} + 0,023} = 9,26 \text{m} \Gamma \text{H} \end{split}$$

3.2 Модель электроснабжения электроустановки индукционного нагрева

Библиотека блоков SimPowerSystems (в версии MATLAB 6.1 и ранее -Power System Blockset) является одной из множества дополнительных библиотек Simulink ориентированных на моделирование конкретных устройств. Sim-PowerSystems содержит набор блоков для имитационного моделирования электротехнических устройств. В состав библиотеки входят модели пассивных и активных электротехнических элементов, источников энергии, электродвигателей, трансформаторов, линий электропередачи и т.п. оборудования. Имеется также раздел содержащий блоки для моделирования устройств силовой электроники, включая системы управления для них. Используя специальные возможности Simulink и SimPowerSystems, пользователь может не только имитировать работу устройств во временной области, но и выполнять различные виды анализа таких устройств. В частности, пользователь имеет возможность рассчитать установившийся режим работы системы на переменном токе, выполнить расчет импеданса (полного сопротивления) участка цепи, получить частотные характеристики, проанализировать устойчивость, а также выполнить гармонический анализ токов и напряжений.

Несомненным достоинством SimPowerSystems является то, что сложные электротехнические системы можно моделировать, сочетая методы имитационного и структурного моделирования. Например, силовую часть полупроводникового преобразователя электрической энергии можно выполнить с использованием имитационных блоков SimPowerSystems, а систему управления с помощью обычных блоков Simulink, отражающих лишь алгоритм ее работы, а не ее электрическую схему. Такой подход, в отличие от пакетов схемотехнического

моделирования, позволяет значительно упростить всю модель, а значит повысить ее работоспособность и скорость работы. Кроме того, в модели с использованием блоков SimPowerSystems (в дальнейшем SPS-модели) можно использовать блоки и остальных библиотек Simulink, а также функции самого MATLAB, что дает практически не ограниченные возможности для моделирования электротехнических систем.[10]

Модель системы электроснабжения представлена на рисунке. ТПЧ питается от трехфазного источника питания, моделируемого трехфазным источником напряжения 3-Phase Source с RL-цепями. Трехфазный трансформатор мощностью 1000 кВа. Управляемый выпрямитель на основе тиристоров в модели представлен Universal Bridge. Схема управления выпрямителя состоит в том, что управляющие сигналы вырабатываются 6-пульсным генератором (Synchronized 6-Pulse Generator), синхронизированным линейным напряжениями Uab, Ubc, Uca. Для получения высокочастотного тока, подаваемого на индуктор, использовались тиристоры Т1-Т4, включаемые одновременно по диагонялм квадрата. Тиристоры Т1 и Т3 управляются от источников сигнала прямоугольной формы Pulse Generator, а Тиристоры Т2 и Т4 от блока запаздывания Тransport Delay. При моделировании использовалась частота 2500 Гц. Источник сигнала настраивался на период сигналов 4·10-4 и скважность 2%. Время запаздывания блока Transport Delay задавалось равным половине периода сигнала от блока Pulse Generator.

Результаты моделирования работы тиристорного преобразователя частоты изображены на рис.12.

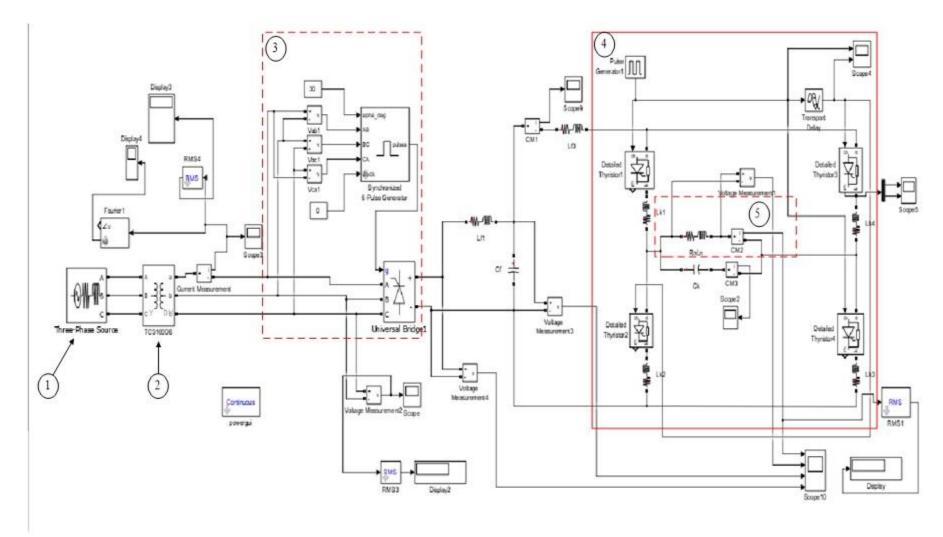


Рисунок 11 — Модель системы электроснабжения индукционной печи: 1 — Источник питания, 2 — Трансформатор, 3 — Выпрямитель с системой управления, 4 — АИТ, 5 — Индуктор

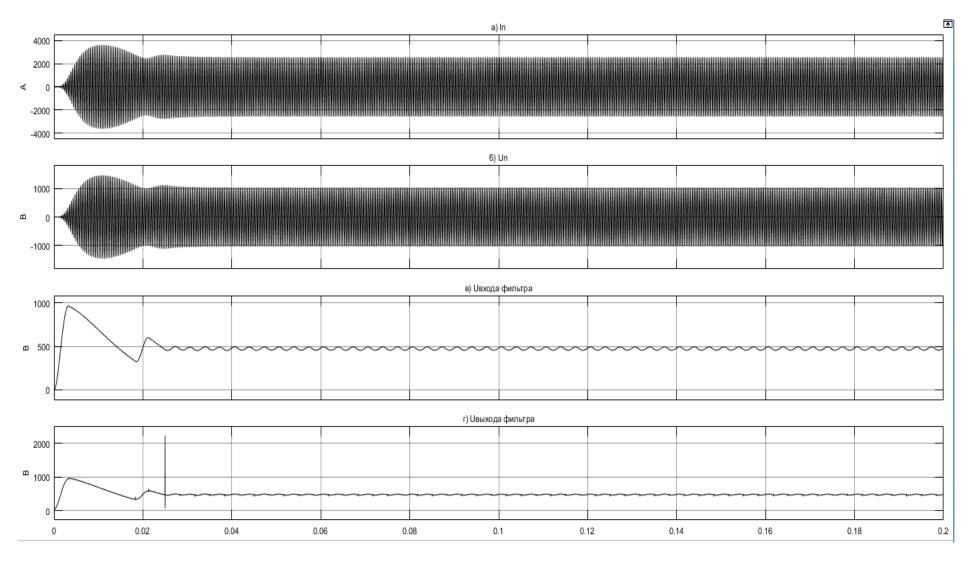


Рисунок 12 — Результаты моделирования работы тиристорного преобразователя частоты: a) Ток индуктора; б) Напряжение на индукторе; в) Входное напряжение фильтра; г) Выходное напряжение фильтра

3.2.1 Настройки блоков исследуемой модели

3-Phase Source Трехфазный источник напряжения

Назначение: вырабатывает трехфазную систему напряжений.

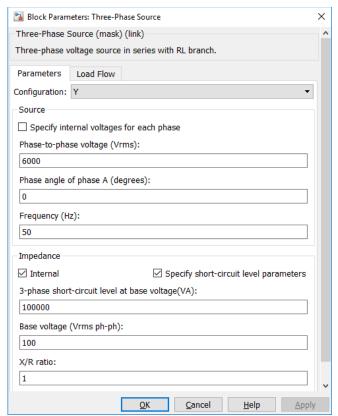


Рисунок 13 – Окно настройки блока Three-Phase Source

Параметры блока:

• Phase-to-phase rms voltage (V):

[Действующее значение линейного напряжения].

• Phase angle of phase A (deg):

[Начальная фаза напряжения в фазе А (град)].

• Frequency (Hz):

[Частота (Гц)]. Частота источника.

• Internal connection:

[Соединение фаз источника]. Значение параметра выбирается из списка:

- Y звезда,
- Yn звезда с нулевым проводом,
- Yg звезда с заземленной нейтралью.
 - Specify impedance using short-circuit level:

[Задать собственное полное сопротивление источника используя параметры короткого замыкания]. При установке данного параметра в окне диалога появляются дополнительные графы для ввода параметров короткого замыкания источника.

• Source resistance (Ohms):

[Собственное сопротивление источника (Ом)].

• Source inductance (H):

[Собственная индуктивность источника (Гн)].

• 3-Phase short-circuit level at base voltage (VA):

[Мощность короткого замыкания при базовом значении напряжения].

• Base voltage (Vrms ph-ph):

[Действующее значение линейного базового напряжения]. Величина базового линейного напряжения источника при котором определена мощность короткого замыкания.

• X/R ratio:

[Отношение индуктивного и активного сопротивлений].

Thyristor, Detailed Thyristor Тиристор

Назначение:

Моделирует тиристор. В библиотеке SimPowerSystem имеется две модели тиристора: Thyristor (упрощенная модель) и Detailed Thyristor (уточненная модель).

Упрощенная модель тиристора состоит из последовательно включенных резистора R_{on} , индуктивности L_{on} , источника постоянного напряжения V_f и ключа SW (рис. 14). Блок логики управляет работой ключа. При положительном напряжении на тиристоре $(V_{ak} - V_f)$ и наличии положительного сигнала на управляющем электроде (g) происходит замыкание ключа и через прибор начинает протекать ток. Размыкание ключа (выключение тиристора) выполняется при снижении тока I_{ak} , протекающего через тиристор, до нуля.

В уточненной модели тиристора длительность управляющего импульса должна быть такой, чтобы, при включении, анодный ток тиристора превысил ток удержания (I_l). В противном случае включение не произойдет. При выключении тиристора длительность приложения отрицательного напряжения анод-катод должна превышать время выключения титистора (T_q). В противном случае произойдет автоматическое включение тиристора даже, если управляющий сигнал равен нулю.

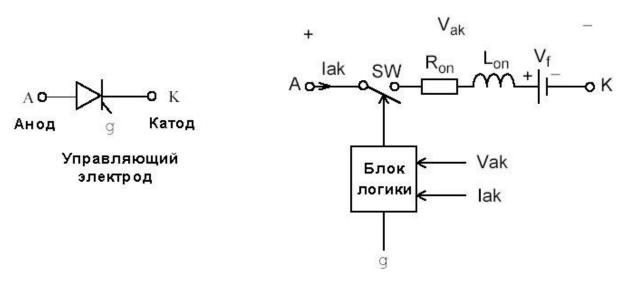


Рисунок 14 – Упрощенная Модель Thyristor, Detailed Thyristor

В модели параллельно самому тиристору включена последовательная RC-цепь, выполняющая демпфирующие функции.

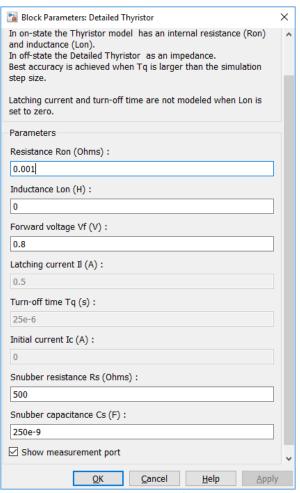


Рисунок 14 – Окно настройки блока Detailed Thyristor

• Resistance Ron (Ohm):

[Сопротивление во включенном состоянии (Ом)],

• Inductance Lon (H):

[Индуктивность во включенном состоянии (Гн)].

• Forward voltage Uf (V):

[Падение напряжения в прямом направлении (В)].

• Initial current I_c (A):

[Начальное значение тока (A)]. При значении параметра равном нулю моделирование начинается при закрытом состоянии тиристора. Если параметр задан положительным значением, то моделирование будет начато при открытом состоянии тиристора.

• Snubber resistance Rs (Ohm):

[Сопротивление демпфирующей цепи (Ом)].

• Snubber capacitance C_s (F):

[Емкость демпфирующей цепи (Φ)].

• Latching current I_i (A):

[Величина тока удержания (А)]. Параметр задается в уточненной модели тиристора.

• Turn of time Tq (s):

[Время выключения (с)]. Параметр задается в уточненной модели тиристора.

Series RLC Branch Последовательная RLC-цепь

Назначение:

Моделирует последовательное включение резистора, индуктивности и конденсатора.

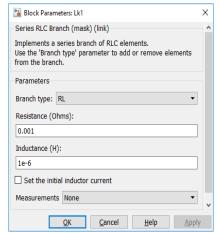


Рисунок 15 – Окно настройки блока Lk1

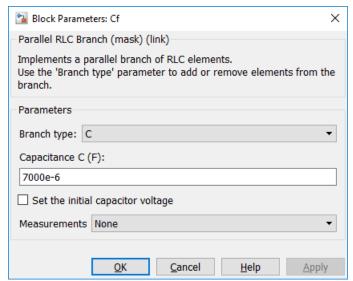


Рисунок 15 – Окно настройки блока Cf

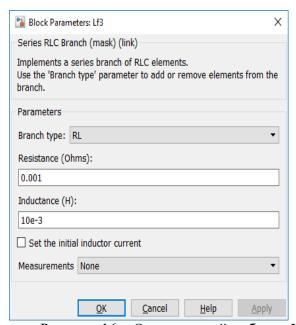


Рисунок 16 – Окно настройки блока Lf3

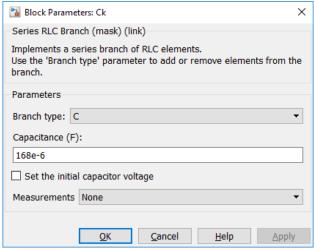


Рисунок 17 – Окно настройки блока Ck

• Resistance R (Ohms):

[Сопротивление (Ом)]. Величина активного сопротивления. Для исключения резистора из цепи значение сопротивления нужно задать равным нулю. В этом случае на пиктограмме блока резистор отображаться не будет.

• Inductance L (H):

[Индуктивность (Гн)]. Величина индуктивности. Для исключения индуктивности из цепи ее величину нужно задать равным нулю. В этом случае на пиктограмме блока индуктивность отображаться не будет.

• Capacitance C (F):

[Емкость (Φ)]. Величина емкости. Для исключения конденсатора из цепи значение емкости нужно задать равной inf (бесконечность). В этом случае конденсатор на пиктограмме блока показан не будет.

Universal Bridge	Универсальный мост
------------------	--------------------

Назначение:

Моделирует универсальный мост.

Модель позволяет выбирать количество плеч моста (от 1 до 3), вид полупроводниковых приборов (диоды, тиристоры, идеальные ключи, а также полностью управляемые тиристоры, IGBT и MOSFET транзисторы, шунтированные обратными диодами). В модели можно также выбрать вид зажимов A, B и C (входные или выходные). На рис. 165, в качестве примера, представлены схемы тиристорного трехфазного моста для обоих вариантов вида входных зажимов.

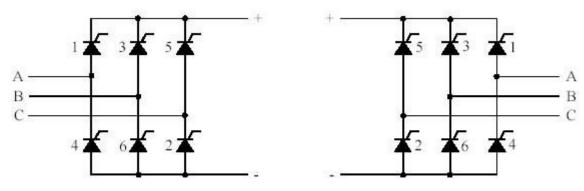


Рисунок 18 — Пример реализации тиристорного трехфазного моста для обоих вариантов входных зажимов.

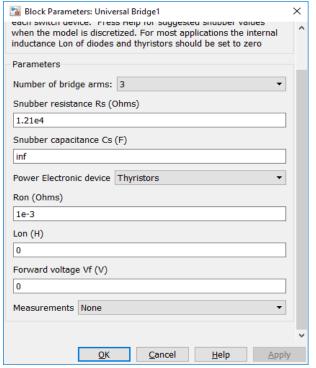


Рисунок 19 – Окно настройки Universal Bridge1.

• Number of bridge arms:

[Число плеч моста]. Выбирается из списка: 1, 2 или 3.

• Snubber resistance Rs (Ohms):

[Сопротивление демпфирующей цепи (Ом)].

• Snubber capacitance C_s (F):

[Емкость демпфирующей цепи (Ф)].

• Power Electronic device:

[Вид полупроводниковых устройств моста]. Значение параметра выбирается из списка:

- Diodes диоды,
- Thyristors тиристоры,
- GTO / Diodes полностью управляемые тиристоры, шунтированные обратными диодами,
- MOSFET / Diodes MOSFET- транзисторы, шунтированные обратными диодами,
- IGBT / Diodes IGBT-транзисторы, шунтированные обратными диодами,
- Ideal Switches идеальные ключи.

Three-phase Transformer (Two Wind-	Трехфазный двухобмоточный трансфор-
ings)	матор

Назначение:

Моделирует двухобмоточный трехфазный трансформатор. Модель построена на основе трех однофазных трансформаторов. В модели может учитываться нелинейность характеристики намагничивания материала сердечника.

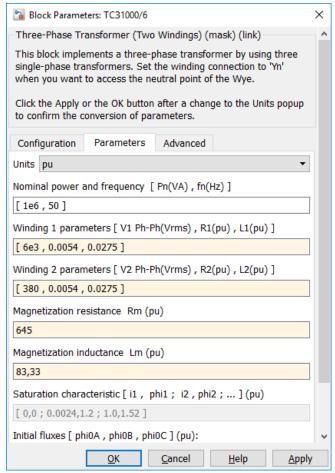


Рисунок 20 – Окно настройки ТС31000/6.

Параметры блока:

• Nominal power and frequency [Pn(VA) fn(Hz)]:

[Номинальная мощность (ВА) и частота (Гц) трансформатора].

• Winding 1 (ABC) connection [Y, Yn, Yg, Delta(D1), Delta(D11)]:

[Схема соединения первичной обмотки]. Значение параметра выбирается из списка:

- · Y звезда,
- · Yn звезда с нейтралью,
- · Yg -звезда с заземленной нейтралью,
- · Delta(D1) треугольник первой группы (сдвиг напряжений на 300 эл. в сторону опережения, по сравнению с соединением в звезду),
- Delta(D11) треугольник одиннадцатой группы (сдвиг напряжений на 300 эл. в сторону отставания, по сравнению с соединением в звезду).
- Winding 1 parameters [V1 Ph-Ph(V), R1(pu), L1(pu)]

[Параметры первичной обмотки]. Линейное напряжение (В), активное сопротивление обмотки (о.е.), индуктивность обмотки (о.е.).

• Winding 2 (abc) connection [Y, Yn, Yg, Delta(D1), Delta(D11)]

[Схема соединения вторичной обмотки]. Значение параметра выбирается из списка:

- · Y звезда,
- · Yn звезда с нейтралью,
- Уg -звезда с заземленной нейтралью,
- · Delta(D1) треугольник первой группы,
- · Delta(D11) треугольник одиннадцатой группы.
- Winding 2 parameters [U2 Ph-Ph(V), R2(pu), L2(pu)]:

[Параметры вторичной обмотки]. Линейное напряжение (В), активное сопротивление обмотки (о.е.), индуктивность обмотки (о.е.).

• Magnetization resistance Rm(pu):

[Сопротивление цепи намагничивания (о.е.)].

• Magnetization inductance Lm(pu):

Источник импульсного сигнала Pulse Generator

Назначение: Формирование прямоугольных импульсов. Параметры:

- 1. Pulse Type Способ формирования сигнала. Может принимать два значения:
 - Time-based По текущему времени.

- Sample-based Π о величине модельного времени и количеству расчетных шагов.
- 2. Amplitude Амплитуда.
- 3. Period Период. Задается в секундах для Time-based Pulse Туре или в шагах модельного времени для Sample-based Pulse Туре.
- 4. Pulse width Ширина импульсов. Задается в в % по отношению к периоду для Time-based Pulse Туре или в шагах модельного времени для Sample-based Pulse Type.
- 5. Phase delay Фазовая задержка. Задается в секундах для Time-based Pulse Туре или в шагах модельного времени для Sample-based Pulse Туре.
- 6. Sample time Шаг модельного времени. Задается для Sample-based Pulse Type.

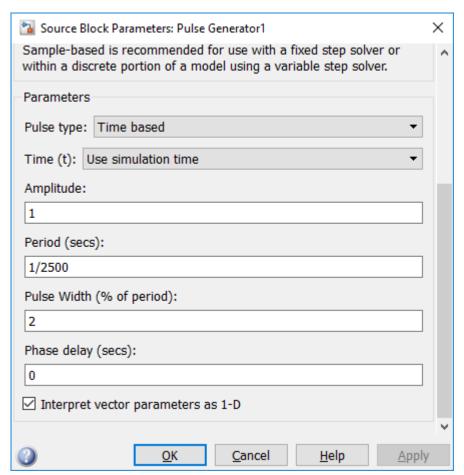


Рисунок 20 – Окно настройки Pulse Generator1.

Блок фиксированной задержки сигнала Transport Delay

Назначение:

Обеспечивает задержку входного сигнала на заданное время. Параметры:

- 1. Time Delay Время задержки сигнала (не отрицательное значение).
- 2. Initial input Начальное значение выходного сигнала.

- 3. Buffer size Размер памяти, выделяемой для хранения задержанного сигнала. Задается в байтах числом, кратным 8 (по умолчанию 1024).
- 4. Pade order (for linearization) Порядок ряда Паде, используемого при аппроксимации выходного сигнала. Задается целым положительным числом.

При выполнении моделирования значение сигнала и соответствующее ему модельное время сохраняются во внутреннем буфере блока **Transport Delay**. По истечении времени задержки значение сигнала, извлекается из буфера и передается на выход блока. В том случае, если шаги модельного времени не совпадают со значениями моментов времени для записанного в буфер сигнала, блок **Transport Delay** выполняет аппроксимацию выходного сигнала.

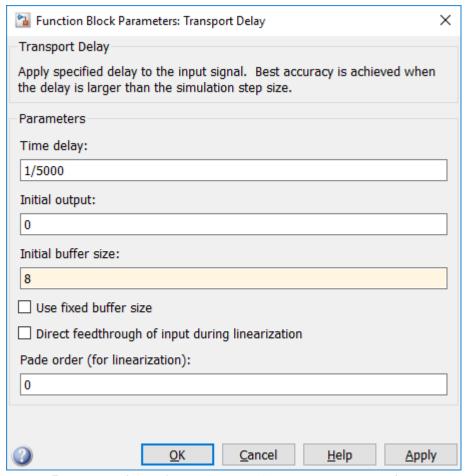


Рисунок 21 – Окно настройки Transport Delay

Synchronized 6-Pulse Generator

Назначение: Моделирует синхронный пульсирующий генератор, который служит для открывания тиристоров 6-ти пульсного преобразователя.

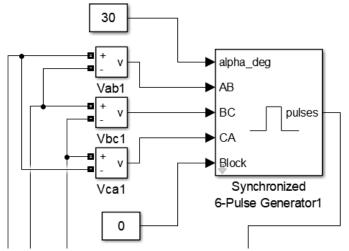


Рисунок 21 – Внешний вид блока.

- 1. Alpha_deg угол открывания тиристоров.
- 2. АВ, ВС, СА синхронизация с напряжениями сети.
- 3. Block позволяет блокировать работу генератора.

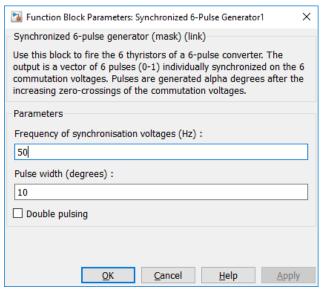


Рисунок 22 — Окно настройки блока Synchronized 6-Pulse Generator.

- Frequency of synchronization voltages (Hz): Частота синхронизации напряжения (Гц).
- Pulse width (degrees): Ширина импульса (градусы).

3.3 Гармонический анализ исследуемой модели

Гармонический анализ исследуемой модели проводим с помощь блока Powergui.

Powergui	Графический интерфейс пользователя
----------	------------------------------------

Назначение:

Блок является инструментом графического интерфейса пользователя и обеспечивает решение следующих задач:

- расчет схемы комплексным методом,
- расчет установившегося режима,
- дискретизация модели,
- задание начальных условий,
- инициализация трехфазных схем содержащих электрические машины, таким образом, чтобы расчет начался с установившегося режима,
 - анализ схемы с помощью инструмента Simulink LTI-Viewer,
 - определение полного сопротивление (импеданса) цепи,
 - выполнение гармонического анализа,
 - создание отчета,
- создание файла характеристик намагничивания для модели нелинейного трансформатора.

Для проведения гармонического анализа необходимо предусмотреть вывод исследуемых сигналов в рабочую область MATLAB. Это можно выполнить путем соответствующей настройки осциллографа Scope или с помощью блока To Workspace. Формат выводимых данных должен быть задан как Structure With Time (структура с полем "время"). После того как процесс расчета модели завершен, необходимо открыть окно блока Powergui и нажать кнопку FFT Analysis - быстрое преобразование Фурье (БПФ). После этого откроется окно Powergui FFT Tools, в котором необходимо нажать кнопку Display для отображения результатов.

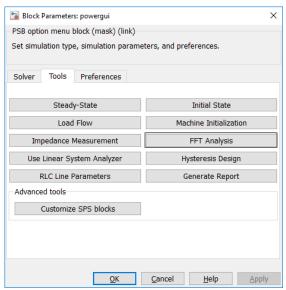


Рисунок 33 – Окно настройки блока.

Осциллограмма линейного напряжения на стороне НН 0.4 кВ изображена рис. 34 и гармонический анализ напряжения на рис. 35.

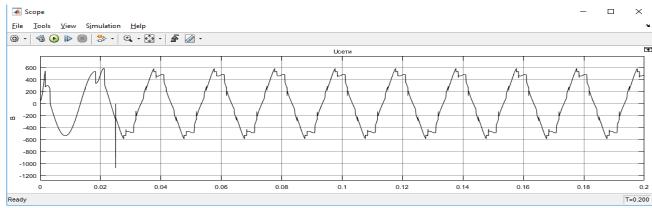


Рисунок 34 — Осциллограмма линейного напряжения на стороне 0.4 кВ печного трансформатора.

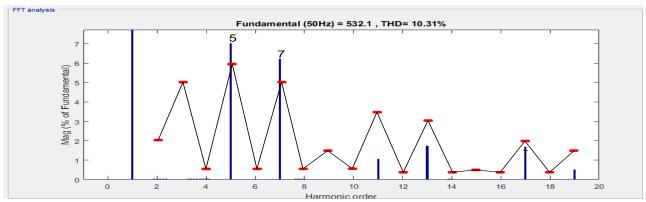


Рисунок 35 — Гармонический анализ осциллограммы на рис. 34 (красными рисками обозначены допустимые значения коэффициента n-ой гармонической составляющей для каждой гармоники согласно [5]).

Согласно полученному гармоническому анализу, изображенному на рис.34, значение суммарных коэффициентов гармонических составляющих напряжения (THD) равно 10.31, что противоречит [5] (THD=8% для сетей 0.38 кВ). Значения гармонических составляющих напряжения 5,7 гармоники также выходит за рамки допустимого, что является недопустимым.

4 Расчёт фильтрокомпенсирующего устройства (ФКУ) и его применение в исследуемой модели.

Снижение уровней ВГ в электросетях является частью общей задачи уменьшения влияния нелинейных нагрузок на питающую сеть и улучшения качество электроэнергии в СЭС предприятий. Комплексной решение этой задач, основывается на применении многофункциональных устройств обеспечивающих минимизацию уровней ВГ в СЭС предприятий и КРМ. Примером таких многофункциональных устройств являются силовые резонансные фильтры ВГ, иначе называемое фильтрокомпенсирующими устройствами (ФКУ). При определенных условиях ФКУ могут использоваться также для симметрирования системы линейных напряжений в СЭС. ФКУ могут устанавливаться для разделения линейных и нелинейных нагрузок (заградительные фильтры) или для шунтирования (поглощения) токов ВГ.

Display4				
0.007688				
274.2				
0.2648				
0.36				
0.1769				
183.4				
0.03988				
115.8				
0.06372				
0.07109				
0.01348				
12.39				
0.01085				
17.39				
0.03372				
0.04895				
0.008861				
12.93				
0.008926				
3.589				
0.01416				

Рисунок 36 — Действующее значение токов n-ой гармоники в исследуемой модели (сверху в низ начиная с 0 гармоники и заканчивая 20), A.

Структурная схема включение фильтров высших гармоник показана на рис. 37, где Z_{φ} — фазное сопротивление питающей сети, B — вентильная нагрузка, Z_5 , Z_7 , Z_{11} , Z_{13} — резонансные фильтры гармоник.

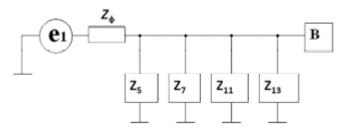


Рисунок 37 — Структурная схема включения фильтров высших гармоник.

Рассчитаем ФКУ для 5,7,17 гармоники, т.к значения коэффициента несинусоидальности для этих гармоник выходит за рамки нормативных значений.

Для расчёта фильтров используем методику предложенную авторами [11, 12].

1. Определим мощность батареи конденсаторов:

$$Q_{\kappa} = 1, 3 \cdot \sqrt{3} \cdot U_{\phi_{\pi}} \cdot I_{\kappa\pi} = 1, 3 \cdot \sqrt{3} \cdot 220 \cdot 183, 4 = 90,85 \text{ kBap},$$

где $U_{\varphi д}$ — действующее значение фазного напряжения, B; $I_{\kappa д}$ — действующее значение тока к-ой гармоник A.

2. Учитывается уменьшения реактивной мощности конденсаторов при уменьшении сетевого напряжения. Учет производится с помощью коэффициента β , значения которого для 5,7 гармоник принимаются 0.83-0.82; для 11-17 гармоник -0.77-0.765. Тогда

$$Q_{\Phi}^* = \beta \cdot Q_{\kappa} = 0,83 \cdot 90,85 = 75,41 \text{ кВар}$$

3. Емкостное сопротивление БСК на 5-ой гармоники

$$C = \frac{Q_{\kappa}}{U_{\pi}^2 \cdot 2\pi \cdot f \cdot k} = \frac{75,41}{380^2 \cdot 6,28 \cdot 50 \cdot 5} = 33,26 \text{ мк}\Phi,$$

где f – промышленная частота сети равная 50 Γ ц, k – порядковый номер гармоники.

4. Определяем требуемое значение индуктивного сопротивления дросселя. Сопротивление выбранного конденсатора X_{κ} емкостью C на κ -ой гармонике определяется по формуле:

$$X_{K} = \frac{1}{2\pi \cdot C \cdot f \cdot k} = \frac{1}{6.28 \cdot 33.26 \cdot 10^{-6} \cdot 50 \cdot 5} = 19,15 \text{ Om}$$

Тогда индуктивность дросселя получим из соотношения:

$$X_{K} = X_{L}; L = \frac{X_{K}}{2\pi \cdot f \cdot k} = \frac{19,15}{6,28 \cdot 50 \cdot 5} = 0,012 \text{ }\Gamma_{H}.$$

Расчет параметров фильтров для 7,17 гармоники приведены в Таблице 9.

Таблица 9 – Параметры ФКУ.

		Мощность			
Номер	Мощ-	батареи с учётом	Емкостное сопротивле-	Сопротивле-	Индуктив-
гармони-	ность ба-	учетом уменьше-	ние БСК на	ние конден-	ность дрос-
ки	тареи, кВар	нии мощ-	к-ой гармо-	сатора Хк, Ом	селя, Гн
	162 o.p	ности,	ники, мкФ		
		кВар			
7	57,363	47,611	15	30,33	0,014
5	90,85	75,41	33,26	19,15	0,012

4.1 Реализация ФКУ в программном комплексе Matlab и гармонический анализ сети после его установки

Трехфазный фильтр Three-Phase Harmonic filter

Назначение: Блок Three-Phase Harmonic Filter моделирует 4 типа трехфазных гармонических фильтров, используя RLC — элементы. Фильтры подобного рода используются в энергетических системах для снижения искажений напряжения и тока, а также повышения коэффициента мощности.

Модель сети с установленными ФКУ на 5,7,17 гармонику изображены на рис.37.

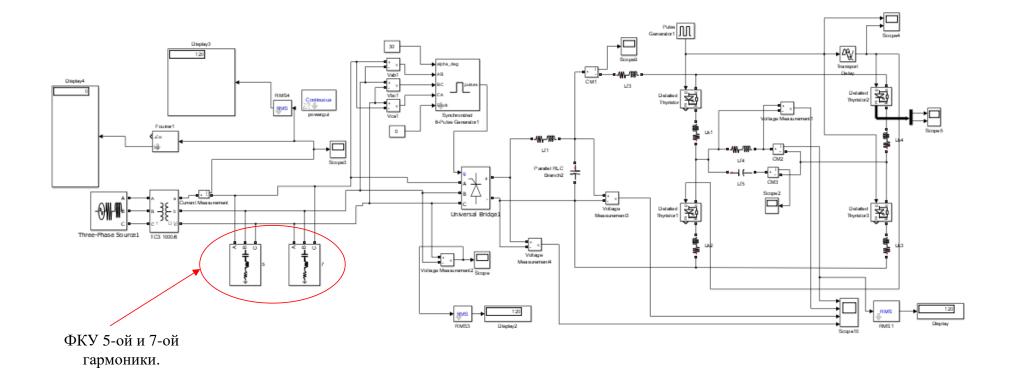


Рисунок 37 — Модель системы электроснабжения индукционной печи с установленными ФКУ.

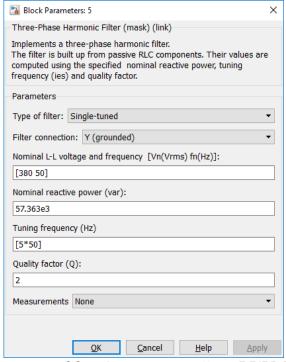


Рисунок 38 – Окно настройки ФКУ 5.

• Type of filter:

[Тип фильтра]. Значение параметра выбирается из списка:

- Single tuned однорезонансный фильтр;
- Double-tuned двух резонансный фильтр;
- High pass фильтр верхних частот;
- C-type High-pass фильтр верхних частот С-типа.
- Filter Connection:

[Соединение]. Параметр задает схему соединения фильтра. Значение выбирается из предложенного списка.

• Nominal L-L voltage and frequency [Vn(Vrms) fn(Hz)]:

Номинальное линейное напряжение и частота [Uh(B) fh(Γ ц)]. В качестве номинального напряжения задается действующее значение линейного напряжения.

• Nominal reactive power (var):

[Номинальная реактивная мощность (Вар)].

• Tuninng frequency (Hz):

[Резонансная частота (Гц)]. Параметр задается для однорезонансных фильтров.

• Quality factor (Q):

[Добротность (Q)].

Осциллограмма линейного напряжения на стороне 0.4 кВ печного трансформатора и гармонический анализ напряжения изображен на рис.39-40.

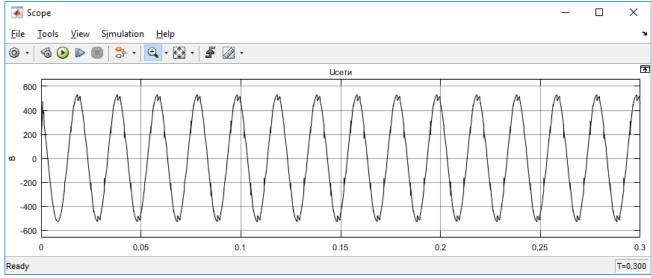


Рисунок 39 — Осциллограмма линейного напряжения 0,4 кВ печного трансформатора после установки ФКУ.

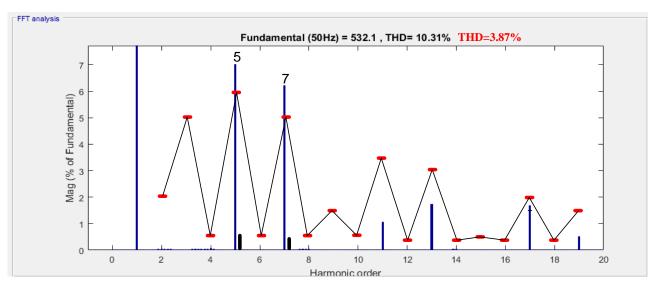


Рисунок 39 – Гармонический анализ сети после установки ФКУ.

Из приведенного выше гармонического анализа видно, что что после установки ФКУ суммарный коэффициент несинусоидальности уменьшился до THD=3,87%, что обосновывает их применение.

Заключение

- 1. Проведенный гармонический анализ питающего напряжения СЭС предприятия с ЭИН показывает, что при работе индукционных печей значительно искажается синусоидальность питающего напряжения (THD=10.31%)
- 2. Рассчитаны дополнительные потери мощности от временных гармоник тока и напряжения в элементах системы электроснабжения промышленного предприятия.
- 3. Разработана имитационная модель системы электроснабжения предприятия с ЭИН в программном комплексе Matlab Simulink с использованием библиотеки SimPowerSystems, для, оценки уровня искажения синусоидальности при работе индукционной печи.
- 4. Коэффициент несинусоидальности питающего напряжения , снизился с 10.31% до 3.87%.
- 5. Оптимизация параметров ЭМС в системе электроснабжения предприятия достигается комплексом мероприятий с установкой ФКУ.

Список использованных источников

- 1. Жежеленко И.В. Высшие гармоники в системах электроснабжения промпредприятий. 2-е изд., перераб. и доп. Москва.: Энергоатомиздат, 1984 160 с.
- 2. Коржов Д.Н. Обеспечение электромагнитной совместимости в системах электроснабжения промышленных предприятий с электроустановками индукционного нагрева, диссертация на соискание ученой степени кандитата технических наук, Белгород 2015, 168 с.
- 3. Егоров А.В., Моржин А.Ф. Электрические печи (для производства сталей). М.: "Металлургия", 1975, 352 с.
- 4. Яров В.М. Полупроводниковые преобразователи частоты для установок индукционного нагрева: Уч.пособие / В.М. Яров, В.П. Терехов, А.Н. Ильгачев. Чебоксары: Изд-во Чуваш, ун-та, 2005, 228 с.
- 5. ГОСТ 32144-2013. Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения.
- 6. Федоров А.А., Каменева В.В. Основы электроснабжения промышленных предприятий: Учебник для вузов. 4-е изд., перераб. и доп. М.: Энергоатомиздат, 1984. 472 с.
- 7. Руководство по эксплуатации БГТК.411722.009 РЭ. Измерители показателей качества электрической энергии «РЕСУРС – UF2»
- 8. Суднова, В.В. Качество электрической энергии / В.В. Суднова. М.:ЗАО «Энергосервис», 2000. 80 с.
- 9. Лютаревич, А.Г. Оценка дополнительных потерь мощности от высших гармоник в элементах систем электроснабжения / АГ. Лютаревич [и др.) // Омский научный вестник. 2009. С. 109-113.
- 10. Черных, И.В. Моделирование электротехнических средств в Matlab, SimPowerSystems и Simulink. М.: ДМК Пресс; СПб.: Питер, 2008 288с.
- 11. Б. В. Лукутин, И. О. Муравлев. Силовые преобразователи в электроснабжении. Расчет режимов работы выпрямителя: Методические указания к выполнению курсовой работы для студентов спец. 140211 «Электроснабжение» ИДО / .— Томск: Изд. ТПУ, 2009. 28 с.
- 12. Коваленко Д. В. Применение пассивных фильтров для компенсации высших гармоник тока в системах электроснабжения промышленных предприятий // Молодой ученый. 2016. №19. С. 72-76.