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Let B0(2, 5) be the largest two–generator finite Burnside group of exponent five. It has the order 534.
We define an automorphism φ which translates generating elements into their inverses. Let CB0(2,5)(φ)

be the centralizer of φ in B0(2, 5). It is known that |CB0(2,5)(φ)| = 516. The growth functions of the
centralizer are computed for some generating sets in the article. As the result we got diameters and
average diameters of corresponding the Cayley graphs of CB0(2,5(φ).
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One of the important tools for defining the structure of a group is the study of its growth with
respect to a fixed generating set. Let G = ⟨X⟩. We call the ball Ks of radius s of a group G the
set of all its elements, which can be presented as a group words with length s in the alphabet X.
For each nonnegative integer s, one can define the growth function of the group F (s), which is
equal to the number of elements of the group G with respect to X that can be represented as an
irreducible group words with the length s. Thus,

F (0) = |K0| = 1, F (s) = |Ks| − |Ks−1| when s ∈ N.

As a rule, the growth function of a finite group is represented in the form of a table which
contains non-zero values of F (s).

Unfortunately, although the computation of the growth function of a large finite group is
solvable, it is a rather complicated problem. This is due to the fact that, in general, the task of
determination of the minimal word of a group element, as shown by S. Iven and O.Goldreich [1], is
NP–hard. Thus, in the worst case, the number of elementary operations that must be performed
to solve this problem is an exponential function of |X|.

Note also that computing the growth function of a group, we define in a parallel way the
characteristics of the corresponding Cayley graph, for instance, the diameter and the average
diameter [2]. Let F (s0) > 0, but F (s0+1) = 0, then s0 will be the diameter of the Cayley graph
of the group G in the generating alphabet X, which we will denote DX(G). Accordingly, the

average diameter DX(G) is equal to
1

|G|
s0∑
s=0

s · F (s).
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In recent decades, the Cayley graph theory has developed as a separate large branch of the
graph theory. The Cayley graphs are used both in mathematics and outside it. In particular,
the Cayley graphs were used in information technology after the pioneering work of 1986 by
S.Akers and B. Krishnamurti [3], who first proposed the use of these graphs to represent computer
networks, including for topology modeling (i. e., methods of connecting processors to each other)
multiprocessor computer systems (MCS) — supercomputers, as well as data centers [4,5]. Since
then this direction is actively developing. This is due to the fact that the Cayley graphs have
many attractive properties, of which we distinguish their regularity, vertex transitivity, small
diameter and degree with a sufficiently large number of vertices in the graph. Note that such
basic network topologies as «ring», «hypercube» and «torus» are the Cayley graphs. According
to the latest data, the performance of the most powerful MCS approaches 100 petaFLOPS, with
the total number of cores in the processors already exceeding 10 millions. As you know, the
network topology is a critical parameter of the MCS performance. Therefore, there is a reason
to believe that, not in the far future, the knowledge on very large graphs will be needed in the
designing of distributed systems, in which peak performance will reach 1 exaFLOPS and above.

One of the widely used topologies of MCS is the k–dimensional hypercube. This graph is
determined by the group B(k, 2), which is the k–generated Burnside group of period 2. B(k, 2),
has a simple structure and is equal to the direct product of k copies of a cyclic group of order 2.
In the work [6], the Cayley graphs of the groups B(k, 3), i. e. groups of period 3, were studied and
the comparative analysis of these graphs with respect to a hypercube carried out. The analysis
showed that the characteristics of B(k, 3) are more preferable than characteristics of B(k, 2).
It means that, while paired comparison graphs B(k1, 3) and B(k2, 2) with approximately the
same number of vertices, the first ones have the smaller diameters, the average diameters and
the degrees. A similar result was obtained in [7] in the study of groups of period 4. In this
regard, the task of the study of the Cayley graphs of finite Burnside groups of other periods is
interesting.

Let B0(2, 5) = ⟨a1, a2⟩ be a maximal finite two-generated Burnside group of period 5, which
order is equal to 534 [8]. Using the computer algebra system GAP, it is easy to obtain pc–
presentation (power commutator presentation) of this group [4, 9]. In this case, each element
g ∈ B0(2, 5) can be uniquely written in the following form:

∀g ∈ B0(2, 5) ⇒ g = aα1
1 · aα2

2 · . . . · aα34
34 , αi ∈ Z5, i = 1, 2, . . . , 34.

Here a1 and a2 are the generating elements B0(2, 5), a3, . . . , a34 are the commutators, which
are computed recursively by a1 and a2 [8].

In addition to the applied interest, there is another reason for the increased attention of
researchers to the growth function of B0(2, 5). This is because an obtained information may
be useful in solving of the open problem on finiteness of B(2, 5) which is a free two-generated
Burnside groups of period 5. If B(2, 5) is finite, then B0(2, 5) = B(2, 5). However, in the
foreseeable future, to calculate the growth function of B0(2, 5) is hardly possible, since the
number of elements is very large:

534 = 582076609134674072265625 ≈ 5 · 1023.

Note that until now, with the help of computer calculations, it was possible to obtain the
growth functions of the factor-groups of the group B0(2, 5), which order does not exceed 517 [10].
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Let us consider the map φ of the following form:

φ :

{
a1 → a−1

1 ,

a2 → a−1
2 .

It is easy to see [11], that φ is an involutive automorphism of groups B(2, 5) and B0(2, 5).
Let CB(2,5)(φ) and CB0(2,5)(φ) be the centralizers of the automorphism φ in B(2, 5) and

B0(2, 5) respectively. By the theorem of V.P. Shunkov [12], if CB(2,5)(φ) is a finite group, then the
group B(2, 5) is also finite. In other words, if CB(2,5)(φ) = CB0(2,5)(φ), then B(2, 5) = B0(2, 5).
By this reason, the study of the growth of CB0(2,5)(φ) is of great interest. Further, for brevity,
we will write C instead of CB0(2,5)(φ).

In [11], the structure of group C is studied and the following results are obtained:

1. |C| = 516,

2. C = C0 × ⟨z⟩ where |C0| = 515 and |⟨z⟩| = 5;

3. z is the central element of the group B0(2, 5),

4. C0 = ⟨X0⟩ where |X0| = 4 is the minimal number of the generators of C0,

5. pc–presentation of C0 is computed.

The purpose of this article is the study of the growth function of the group C with respect
to the minimal generating set X = X0 ∪ {z}, and also the symmetric — Y = X ∪X−1.

Since for the evaluation of growth function it is required to multiply elements of the group,
then for the practical implementation an efficient algorithm for multiplication is needed. There
are two ways to calculate the product of elements in the group given by pc–presentation: the col-
lective process [4, 9] and Hall’s polynomials method [13]. Numerous computational experiments
showed that the second method allows to multiply the elements in these groups much faster than
in a collecting process (at least in exponent) [6, 10,14,15].

The documentation of the computer algebra system GAP refers to the possibility of auto-
mated calculation of Hall’s polynomials in the simplest cases. However, in the general case, this
task is not trivial, because is not reduced to routine computation and requires the involvement of
programming languages that support complex regular expressions, and also systems of computer
mathematics with a wide range of procedures for symbolic computation. In fact, working with
a group that has a large order, usually it is required the unique revision of the code that takes
into account the feature of the group structure and characteristics of the computer.

In the following section of the article we present an algorithm to calculate the Hall’s polyno-
mials of the group C0. This algorithm in general was implemented in C++, with the exception
of symbolic procedures, which were written in the MATLAB language.

In the last section, the results of computer calculations of the growth function of the group
C with respect to the generating set X and Y are given.

1. The Hall’s polynomials of the group C0

Let C0 = ⟨X0⟩ where X0 = {a1, a2, a3, a4} is the minimal generating set of C0. The following
theorem is proved.

Theorem. Let ax1
1 . . . ax15

15 and ay1

1 . . . ay15

15 be two arbitrary elements of the group C0 recorded in
the commutator form. Then their product is equal ax1

1 . . . ax15
15 · ay1

1 . . . ay15

15 = az11 . . . az1515 where
zi ∈ Z5 are Hall’s polynomials given by formulas (1–15).
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z1 = x1 + y1, (1)

z2 = x2 + y2, (2)

z3 = x3 + y3, (3)

z4 = x4 + y4, (4)

z5 = x5 + y5 + x2y1 + 4x3y2, (5)

z6 = x6 + y6 + x3y1 + 4x3y2, (6)

z7 = x7 + y7 + x4y1, (7)

z8 = x8 + y8 + x4y2, (8)

z9 = x9 + y9 + x4y3, (9)

z10 = x10 + y10 + 2x3y2 + 2x4y1 + x7y4 + 3x2
4y1 + x4y1y4, (10)

z11 = x11 + y11 + 4x3y2 + 2x4y2 + x8y4 + 3x2
4y2 + x4y2y4, (11)

z12 = x12 + y12 + 2x3y2 + 2x4y3 + x9y4 + 3x2
4y3 + x4y3y4, (12)

z13 = x13 + y13 + 3x3y2 + 2x4y1 + 2x5y4 + x7y2 + 4x8y1 + 2x7y4 + x10y4+

+ 2x2
4y1 + x3

4y1 + 3x7y
2
4 + 3x4y1y

2
4 + 3x2

4y1y4 + 2x2x4y1 + 2x2y1y4 + x4y1y2 + 4x4y1y4, (13)

z14 = x14 + y14 + 3x3y2 + 2x4y2 + 4x6y4 + 2x7y3 + 3x9y1 + 2x8y4 + x11y4+

+ 2x2
4y2 + x3

4y2 + 3x8y
2
4 + 3x4y2y

2
4 + 3x2

4y2y4 + 4x3x4y1 + 4x3y1y4 + 2x4y1y3 + 4x4y2y4, (14)

z15 = x15 + y15 + x3y2 + 2x4y3 + x8y3 + 4x9y2 + 2x9y4 + x12y4 + 2x2
4y3+

+ x3
4y3 + 3x9y

2
4 + 3x4y3y

2
4 + 3x2

4y3y4 + 2x3x4y2 + 2x3y2y4 + x4y2y3 + 4x4y3y4. (15)

Proof. Let’s write the commutator representation of the group C0 [11]:
a1, a2, a3, a4 — generators;
a5 = [a2, a1], a6 = [a3, a1], a7 = [a4, a1], a8 = [a4, a2], a9 = [a4, a3] — commutators of weight 2;
a10 = [a4, a1, a4], a11 = [a4, a2, a4], a12 = [a4, a3, a4] — commutators of weight 3;
a13 = [a4, a1, a4, a4], a14 = [a4, a2, a4, a4], a15 = [a4, a3, a4, a4] — commutators of weight 4.

List of defining relations R for commutators: (trivial relations [aj , ai] = 1 are not given):
a5i = 1 (1 6 i 6 15), [a2, a1] = a5, [a3, a1] = a6, [a3, a2] = a45 a

4
6 a

2
10 a

4
11 a

2
12 a

3
13 a

3
14 a15,

[a4, a1] = a7, [a4, a2] = a8, [a4, a3] = a9, [a5, a4] = a213, [a6, a4] = a414, [a7, a2] = a13,
[a7, a3] = a214, [a7, a4] = a10, [a8, a1] = a413, [a8, a3] = a15, [a8, a4] = a11, [a9, a1] = a314,
[a9, a2] = a415, [a9, a4] = a12, [a10, a4] = a13, [a11, a4] = a14, [a12, a4] = a15.

Thus,
C0 = ⟨ a1, a2, . . . , a15 | R ⟩.

Each element of the group is expressed uniquely as a normal commutator word:

∀g ∈ C0 g = ax1
1 ax2

2 . . . ax15
15 , xi ∈ Z5.

Sometimes we will write g = (x1, . . . , x15).
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In order to determine the functions zi first we need to calculate the products of ayj a
x
i for

all 1 6 i < j 6 15, x, y = 1, 2, 3, 4. For the pair (j, i), it is required to find the interpolation
polynomial for each of the 15 commutators by the 16 values of the product (y, x).

Let’s start with the first pair ay2 a
x
1 :

a12 a
1
1 = (1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), a22 a

1
1 = (1, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

a32 a
1
1 = (1, 3, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), a42 a

1
1 = (1, 4, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

a12 a
2
1 = (2, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), a22 a

2
1 = (2, 2, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

a32 a
2
1 = (2, 3, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), a42 a

2
1 = (2, 4, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

a12 a
3
1 = (3, 1, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), a22 a

3
1 = (3, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

a32 a
3
1 = (3, 3, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), a42 a

3
1 = (3, 4, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

a12 a
4
1 = (4, 1, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), a22 a

4
1 = (4, 2, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

a32 a
4
1 = (4, 3, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), a42 a

4
1 = (4, 4, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

Let’s write:
ay2 a

x
1 = ax1 a

y
2 a

f
(1,2)
3 (x,y)

3 a
f
(1,2)
4 (x,y)

4 . . . a
f
(1,2)
15 (x,y)

15 ,

where f
(1,2)
r (x, y) =

∑4
p=1

∑4
q=1 β

r
pqx

pyq are some polynomials over the field Z5. To find them,
let’s perform interpolation for each commutator r = 3, 4, . . . , 15.

To find f
(1,2)
r (x, y), it is required to solve a system of linear equations over the given field:

4∑
p=1

4∑
q=1

βr
pqx

pyq = zyxr ∀ x, y = 1, 2, 3, 4, (16)

where zyxr is a value of r-th commutator for the pair (y, x). This system will have 16 variables
and consist of 16 equations.

Let’s show how to find f
(1,2)
5 (x, y) at the example of the 5-th commutator. For short, we will

write βpq instead of β5
pq. Substituting in (16) all values of zyx5 we receive:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 4 2 3 4 2 1 3 4 2 1 3 4 1 3 1

3 4 3 2 4 3 1 2 4 3 1 2 4 1 2 1

4 1 4 4 1 4 1 4 1 4 1 4 1 1 4 1

2 2 4 2 4 3 2 4 3 1 4 3 1 3 1 1

4 3 3 1 1 1 2 2 2 2 4 4 4 3 3 1

1 3 2 4 1 4 2 3 2 3 4 1 4 3 2 1

3 2 1 3 4 2 2 1 3 4 4 2 1 3 4 1

3 3 4 3 4 2 3 4 2 1 4 2 1 2 1 1

1 2 3 4 1 4 3 2 3 2 4 1 4 2 3 1

4 2 2 1 1 1 3 3 3 3 4 4 4 2 2 1

2 3 1 2 4 3 3 1 2 4 4 3 1 2 4 1

4 4 1 4 1 4 4 1 4 1 1 4 1 4 1 1

3 1 2 2 4 3 4 3 1 2 1 2 4 4 3 1

2 1 3 3 4 2 4 2 1 3 1 3 4 4 2 1

1 4 4 1 1 1 4 4 4 4 1 1 1 4 4 1



·



β11

β21

β12

β31

β22

β13

β41

β32

β23

β14

β42

β33

β24

β43

β34

β44



=



1

2

3

4

2

4

1

3

3

1

4

2

4

3

2

1
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The rank of the matrix is equal to 16, therefore it has the unique solution: β11 = 1, and all
the remaining coefficients βij are equal to zero. Therefore,

f
(1,2)
5 (x, y) = xy.

In a similar way, we get that f
(1,2)
r (x, y) = 0 for all r ̸= 5.

Thus,
ay2 a

x
1 = (x, y, 0, 0, xy, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

Using this method, let’s calculate other noncommutative pairs ayj a
x
i .

ay3 a
x
1 = (x, 0, y, 0, 0, xy, 0, 0, 0, 0, 0, 0, 0, 0, 0),

ay3 a
x
2 = (0, x, y, 0, 4xy, 4xy, 0, 0, 0, 2xy, 4xy, 2xy, 3xy, 3xy, xy),

ay4 a
x
1 = (x, 0, 0, y, 0, 0, xy, 0, 0, 2xy + 3xy2, 0, 0, 2xy + 2xy2 + xy3, 0, 0),

ay4 a
x
2 = (0, x, 0, y, 0, 0, 0, xy, 0, 0, 2xy + 3xy2, 0, 0, 2xy + 2xy2 + xy3, 0),

ay4 a
x
3 = (0, 0, x, y, 0, 0, 0, 0, xy, 0, 0, 2xy + 3xy2, 0, 0, 2xy + 2xy2 + xy3),

ay5 a
x
4 = (0, 0, 0, x, y, 0, 0, 0, 0, 0, 0, 0, 2xy, 0, 0),

ay6 a
x
4 = (0, 0, 0, x, 0, y, 0, 0, 0, 0, 0, 0, 0, 4xy, 0),

ay7 a
x
2 = (0, x, 0, 0, 0, 0, y, 0, 0, 0, 0, 0, xy, 0, 0),

ay7 a
x
3 = (0, 0, x, 0, 0, 0, y, 0, 0, 0, 0, 0, 0, 2xy, 0),

ay7 a
x
4 = (0, 0, 0, x, 0, 0, y, 0, 0, xy, 0, 0, 2xy + 3x2y, 0, 0),

ay8 a
x
1 = (x, 0, 0, 0, 0, 0, 0, y, 0, 0, 0, 0, 4xy, 0, 0),

ay8 a
x
3 = (0, 0, x, 0, 0, 0, 0, y, 0, 0, 0, 0, 0, 0, xy),

ay8 a
x
4 = (0, 0, 0, x, 0, 0, 0, y, 0, 0, xy, 0, 0, 2xy + 3x2y, 0),

ay9 a
x
1 = (x, 0, 0, 0, 0, 0, 0, 0, y, 0, 0, 0, 0, 3xy, 0),

ay9 a
x
2 = (0, x, 0, 0, 0, 0, 0, 0, y, 0, 0, 0, 0, 0, 4xy),

ay9 a
x
4 = (0, 0, 0, x, 0, 0, 0, 0, y, 0, 0, xy, 0, 0, 2xy + 3x2y),

ay10 a
x
4 = (0, 0, 0, x, 0, 0, 0, 0, 0, y, 0, 0, xy, 0, 0),

ay11 a
x
4 = (0, 0, 0, x, 0, 0, 0, 0, 0, 0, y, 0, 0, xy, 0),

ay12 a
x
4 = (0, 0, 0, x, 0, 0, 0, 0, 0, 0, 0, y, 0, 0, xy).

Not listed pairs are commutative, i.e. ayj a
x
i = axi a

y
j .

Thus, we have a complete set of relations for the implementation of the collection process in
analytical form:

ayj a
x
i = axi a

y
j a

f
(i,j)
j+1 (x,y)

j+1 a
f
(i,j)
j+2 (x,y)

j+2 . . . a
f
(i,j)
15 (x,y)

15 , 1 6 i < j 6 15. (17)

Using (17) we can calculate the product ax1
1 . . . ax15

15 · ay1

1 . . . ay15

15 = az11 . . . az1515 . Following this
procedure, we will find all zi (1–15). 2
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2. Computer calculations of the growth of the group C

The calculation of the growth function of the group C0 in alphabets X0 = {a1, a2, a3, a4} and
Y0 = X0 ∪X−1

0 was carried out according to the algorithm from [10]. For efficient multiplication
of elements Hall’s polynomials obtained in section 2 were used. The algorithm was implemented
in C++. As a tool for parallelization, it was used OpenMP library. For the calculations, it
was used the computer which has 4–core processor and 32 GB of RAM, running the Linux
operating system. The program was compiled by the embedded compiler GCC. Calculating
growth functions for the generating set X0 takes about 1.5 hours, and for Y0 3 hours.

Then it is easy to get the growth function of the group C in alphabets generating X =

{a1, a2, a3, a4, z} and Y = X ∪ X−1. Their graphs are shown in Figs. 1, 2. For clarity, an
approximating Gaussian curve obtained by the method of the least squares is added on each
graph.

As already mentioned, the growth function of the group that containing information about
the characteristics of the corresponding Cayley graph is:

Corollary 1. DX(C) = 29, DX(C) ≈ 21.

Corollary 2. DY (C) = 19, DY (C) ≈ 14.

Fig. 1. The growth function of C generated by X

Fig. 2. The growth function of C generated by Y
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О приложениях графов Кэли некоторых конечных
групп периода 5

Александр А.Кузнецов
Константин В.Сафонов

Институт информатики и телекоммуникаций
Сибирский государственный университет науки и технологий им. М.Ф.Решетнева Красноярский

рабочий, 31, Красноярск, 660037
Россия

Пусть B0(2, 5) — максимальная конечная двупорожденная бернсайдова группа периода 5, порядок
которой равен 534. Определим автоморфизм φ, который инвертирует порождающие элементы.
Пусть CB0(2,5)(φ) — централизатор φ в B0(2, 5). Известно, что |CB0(2,5)(φ)| = 516. В настоящей
работе вычислены функции роста данного централизатора для некоторых порождающих мно-
жеств. В результате были получены диаметры и средние диаметры соответствующих графов
Кэли CB0(2,5)(φ).

Ключевые слова: периодическая группа, собирательный процесс, полиномы Холла, граф Кэли, мно-
гопроцессорная вычислительная система.
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