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1. Introduction and preliminaries
The paper is devoted to the theory of real-analytic solutions of the Beltrami equation

fz̄ (z) = A (z) fz (z) (1)

which is directly related to theory of quasi-conformal mappings. The function A (z) is, in general,
assumed to be measurable with |A (z)| 6 C < 1 almost everywhere in the domain D ⊂ C.
Solutions of equation (1) are often referred to as A-analytic functions in the literature.

The solutions of equation (1), as well as quasi-conformal homeomorphisms in the complex
plane C, have been studied in sufficient details. Here we confine ourselves to giving the references
( [1, 4, 5, 8–10]) and formulating the following three theorems:

Theorem 1.1 ( [1]). For any measurable on the complex plane function A(z) : ||A||∞ < 1 there
exists a unique homeomorphic solution χ(z) of equation (1) which fixes the points 0, 1, ∞.

Note that if the function |A(z)| 6 C < 1 is defined only in the domain D ⊂ C, then it can
be extended to the whole C by setting A ≡ 0 outside D, so Theorem 1.1 holds for any domain
D ⊂ C.

Theorem 1.2 ( [4, 5]). All generalized solutions of equation (1) have the form f(z) = Φ[χ(z)],
where χ(z) is a homeomorphic solution in Theorem 1.1, and Φ(ξ) is a holomorphic function in
the domain χ(D). Moreover, if a generalized solution f(z) has isolated singular points, then the
holomorphic function Φ = f ◦ χ−1 also has isolated singularities of the same types.

Theorem 1.2 implies that an A-analytic function f carries out an internal (open) mapping,
i.e. it maps an open set to an open set. It follows that the maximum principle holds for such
functions: for any bounded domain G b D the maximum of the modulus is reached only on
the boundary, i.e. |f(z)| 6 max

z∈∂G
|f(z)|, z ∈ G. If the function is not zero, then the minimum

principle also holds, i.e. |f(z)| > min
z∈∂G

|f(z)|, z ∈ G.
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Theorem 1.3 ([8]). If a function A(z) belongs to the class Cm(D), then every solution f of
equation (1) also belongs, at least, to the same class Cm(D).

The aim of this paper is to investigate A-analytic functions in a special case when the function
A is an anti-analytic function in a domain. We prove that a continuous function satisfying the
integral condition of the Cauchy theorem is A-analytic (an analog of Morera’s theorem, Sec. 2). In
Sec. 3 we prove an analog of the Weierstrass theorem for functional series of A-analytic functions
and the expansion of A-analytic functions into functional series (Sec. 4).

The study of A-analytic functions was inspired by their applications in tomography problems.
In a series of papers by A. Bukhgeim and S. G.Kazantsev (see [6, 7]) the Radon problem is
interpreted as a boundary value problem for an infinite-dimensional analog of the equation fz̄ −
Afz = 0, where f is a function of complex argument z with values in some Banach space X, and
A is a linear continuous operator A : X → X, ||A|| < 1.

A-analytic functions can be applied in the theory of elliptic equations (see [11, 16]), when A
is a continuous linear operator in a finite or infinite-dimensional space. In papers [11, 16] A is a
linear continuous operator in X. In case when X = C the function A is a constant.

Let A be anti-analytic, i.e.
∂A

∂z
= 0 in D ⊂ C , and such that |A(z)| 6 C < 1, ∀z ∈ D. We

put

DA =
∂

∂z
− Ā(z)

∂

∂z̄
, D̄A =

∂

∂z̄
−A(z)

∂

∂z
.

Then according to (1) the class OA(D) of A-analytic functions in D is characterized by the fact
that D̄Af = 0. Since an anti-analytic function is smooth, Theorem 1.3 implies that OA(D) ⊂
C∞(D).

Theorem 1.4 (an analog of Cauchy’s theorem, see [16]). If f ∈ OA(D)
∩
C(D̄), where D ⊂ C

is a domain with rectifiable boundary ∂D, then∫
∂D

f(z)(dz +A(z)d z̄) = 0.

Now we assume that the domain D ⊂ C is convex, and ξ ∈ D is a fixed point in it. Consider
the function

K(z, ξ) =
1

2πi

1

z − ξ +
∫

γ(ξ, z)

Ā(τ)dτ
, (2)

where γ(ξ, z) is a smooth curve which connects points ξ and z in D. Since the domain is simply
connected and the function Ā(z) is holomorphic, the integral

I(z) =

∫
γ(ξ, z)

Ā(τ)dτ

does not depend on a path of integration; it coincides with a primitive, i.e. I ′(z) = Ā(z).

Theorem 1.5 ([14]). K(z, ξ) is an A-analytic function outside of the point z = ξ, i.e. K ∈
OA(D r {ξ}). Moreover, at z = ξ the function K(z, ξ) has a simple pole.

Remark 1. If a simply connected domain D ⊂ C is not convex, then the function

ψ(z, ξ) = z − ξ +

∫
γ(ξ, z)

Ā(τ)dτ,

although well defined in D, may have other isolated zeros except for ξ: ψ(z, ξ) = 0 for z ∈
P = {ξ, ξ1, ξ2, . . . }. Consequently, ψ ∈ OA(D), ψ(z, ξ) ̸= 0 when z /∈ P , and K(z, ξ) is an
A-analytic function only in DrP , it has poles at the points of P . Due to this fact we consider
the class of A-analytic functions only in convex domains.
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According to Theorem 1.2, the function ψ(z, ξ) ∈ OA(D) carries out an internal mapping.
In particular, the set

L(ξ, r) =

{
z ∈ D : |ψ(z, ξ)| =

∣∣∣∣∣z − ξ +

∫
γ(ξ, z)

Ā(τ)dτ

∣∣∣∣∣ < r

}

is open in D. For sufficiently small r > 0 it compactly belongs to D and contains the point ξ.
This set is called an A-lemniscate with the center ξ and denoted by L(ξ, r). It is a simply
connected domain (see [13]).

Theorem 1.6 (the Cauchy formula, see [13]). Let D ⊂ C be a convex domain and G ⊂ D be
its subdomain with piecewise smooth boundary ∂G. Then for any function f(z) ∈ OA(G)

∩
C(Ḡ)

we have
f(z) =

∫
∂G

K(ξ, z)f(ξ)(dξ +A(ξ)d ξ̄), z ∈ G. (3)

Let A(z) be an anti-analytic function. The following theorem holds, which, as is not difficult
to see, without the condition of anti-analyticity A(z) does not hold.

Theorem 1.7. If f(z) ∈ OA(G) then

∂f =
∂f

∂z
∈ OA(G).

The proof of the theorem follows easily from the relation that D̄A∂f = ∂D̄Af , where

D̄A =
∂

∂ z̄
−A(z)

∂

∂z
= ∂̄ −A(z)∂.

In fact, direct calculation shows that D̄A∂ =
(
∂̄ −A∂

)
∂ = ∂̄∂ − A∂2, ∂D̄A = ∂

(
∂̄ −A∂

)
=

∂∂̄ − ∂A · ∂ −A∂2 = ∂̄∂ −A∂2, since ∂A = 0 because of anti-analyticity of A(z).
Note that if A(z) is not identically a constant then other derivatives such as ∂̄ f or DAf are

not A-analytic functions.

2. An analog of Morera’s theorem
As in the classical case, for A-analytic functions the inverse of the Cauchy theorem holds.

Theorem 2.1. Let f(z) be a continuous function in a simply-connected domain D and the
integral of f(z) over any closed smooth curve Γ that belongs to the domain D be equal to zero,
i.e. ∮

Γ

f(z)(dz +A(z)dz̄) = 0. (4)

Then f(z) is an A-analytic function in the domain D.

Proof. Let the function f(z) = u(x, y) + iv(x, y) and A(z) = a(x, y) + ib(x, y). Then condition
(4) can be rewritten in the form of contour integrals of the 2nd type:∮

Γ

f(z)(dz +A(z)dz̄) =

∮
Γ

((a+ 1)u− bv)dx+ ((a− 1)v + bu)dy+

+ i

∮
Γ

((a+ 1)v + bu)dx+ ((a− 1)u− bv)dy = 0.
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Hence, ∮
Γ

((a+ 1)u− bv)dx+ ((a− 1)v + bu)dy = 0,∮
Γ

((a+ 1)v + bu)dx+ ((a− 1)u− bv)dy = 0.

(5)

We fix a point a ∈ D and consider the following integral

F (z) =

∫
Γ(a, z)

f(z)(dz +A(z)dz̄), (6)

where Γ(a, z) is a smooth curve connecting the points a and z ∈ D. According to (4), the
integrals (5) do not depend on the path of integration Γ(a, z).

We write the function F (z) in the form

F (z) = U(z) + iV (z), (7)

where
U(z) =

∫
Γ(a, z)

((a+ 1)u− bv)dx+ ((a− 1)v + bu)dy,

V (z) =

∫
Γ(a, z)

((a+ 1)v + bu)dx+ ((a− 1)u− bv)dy,

and according to (6), each of these integrals do not depend on the path of integration, and the
following equalities hold

∂U

∂x
= (a+ 1)u− bv,

∂U

∂y
= (a− 1)v + bu,

∂V

∂x
= (a+ 1)v + bu,

∂V

∂y
= (a− 1)u− bv.

Hence,

∂F

∂z
=

1

2

(
∂F

∂x
− i

∂F

∂y

)
=

1

2

(
∂U

∂x
− ∂V

∂y

)
+
i

2

(
∂U

∂y
+
∂V

∂x

)
= u+ iv = f,

∂F

∂ z̄
=

1

2

(
∂F

∂x
+ i

∂F

∂y

)
=

1

2

(
∂U

∂x
+
∂V

∂y

)
+
i

2

(
∂U

∂y
− ∂V

∂x

)
= au− bv + i(bu+ av) = Af.

(8)

Since
∂F

∂ z̄
−A

∂F

∂z
= Af −Af = 0,

the function F (z) is an A(z)-analytic function, i.e. F ∈ OA(D). In particular, F ∈ C∞(D).

According to (8) f =
∂F

∂z
and by Theorem 1.7 f ∈ OA(D). The theorem is proved.

3. Functional series
Lemma 1. Let D ⊂ C be a bounded domain with a smooth boundary and f, g ∈ C1(D̄ × D̄),
then the function

F (z) =

∫
∂D

f(ξ, z)dξ + g(ξ, z)dξ̄

is differentiable with respect to z and the following equality holds

∂F =

∫
∂D

∂f(ξ, z)dξ + ∂g(ξ, z)dξ̄

– 53 –



Nasridin M. Jabborov Morera’s Theorem and Functional Series in the Class of A-analytic Functions

Proof. Let f(ξ, z) = f1(ξ, x, y) + if2(ξ, x, y) and g(ξ, z) = g1(ξ, x, y) + ig2(ξ, x, y), where
ξ = ζ + iη , z = x+ iy. Then

F (x, y) =

∫
∂D

(f1 + if2)(dζ + idη) + (g1 + ig2)(dζ − idη) =

=

∫
∂D

(f1 + g1)dζ + (g2 − f2)dη + i

∫
∂D

(f2 + g2)dζ + (f1 − g1)dη.

The rule of differentiation of an integral depending on a parameter implies

∂F

∂x
=

∫
∂D

(
∂f1
∂x

+
∂g1
∂x

)
dζ +

(
∂g2
∂x

− ∂f2
∂x

)
dη + i

∫
∂D

(
∂f2
∂x

+
∂g2
∂x

)
dζ +

(
∂f1
∂x

− ∂g1
∂x

)
dη.

Moreover

∂F

∂y
=

∫
∂D

(
∂f1
∂y

+
∂g1
∂y

)
dζ +

(
∂g2
∂y

− ∂f2
∂y

)
dη + i

∫
∂D

(
∂f2
∂y

+
∂g2
∂y

)
dζ +

(
∂f1
∂y

− ∂g1
∂y

)
dη.

Using now
∂

∂x
=

∂

∂z
+

∂

∂z̄
,

∂

∂y
= i

(
∂

∂z
− ∂

∂z̄

)
we have

∂F

∂z
=

1

2

(
∂F

∂x
+ i

∂F

∂y

)
=

1

2

∫
∂D

(
∂f1
∂z

+
∂g1
∂z

)
dζ +

(
∂g2
∂z

− ∂f2
∂z

)
dη+

+
i

2

∫
∂D

(
∂f2
∂z

+
∂g2
∂y

)
dζ +

(
∂f1
∂z

− ∂g1
∂y

)
dη =

∫
∂D

∂f

∂z
dξ +

∂g

∂z
dξ̄

We can similarly prove that

∂̄F =

∫
∂D

∂̄f(ξ, z)dξ + ∂̄g(ξ, z)dξ̄.

Now we consider an A(z)-analytic function f(z) in a simply-connected domain D. We fix a
point a ∈ D and a lemniscate L(a, r) = {ξ : |ψ(a, ξ)| < r} b D. Then we have

Lemma 2. In L(a, r) the following equality holds

∂nf(z)

∂zn
=

n!

2πi

∫
∂L(a, r)

f(ξ)

[ψ(ξ, z)]
n+1 (dξ +A(ξ)d ξ̄), n = 0, 1, . . . , (11)

where we recall ψ(ξ, z) = ξ − z +
∫
γ(z, ξ)

A(τ) dτ .

Proof. By the Cauchy integral formula we have

f(z) =
1

2πi

∫
∂L(a, r)

f(ξ)(dξ +A(ξ)d ξ̄)

ξ − z +
∫
γ(z, ξ)

A(τ) dτ
=

1

2πi

∫
∂L(a, r)

f(ξ)(dξ +A(ξ)d ξ̄)

ψ(ξ, z)
.

We use the obvious relation

∂ψn(ξ, z)

∂z
= nψn−1(ξ, z)

∂ψ(ξ, z)

∂z
= −nψn−1(ξ, z)
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and

∂n

∂zn

(
1

ψ(ζ, z)

)
=

∂n−1

∂zn−1

(
∂

∂z

1

ψ(ζ, z)

)
=

∂n−1

∂zn−1

(
1

ψ2(ζ, z)

)
= . . . =

n!

ψn+1(ζ, z)
.

We have

∂nf

∂zn
= ∂nf = ∂n

1

2πi

∫
L(a, r)

f(ξ) (dξ +A(ξ)dξ̄)

ψ(ξ, z)
=

1

2πi

∫
L(a, r)

∂n
(

1

ψ(ξ, z)

)
f(ξ) (dξ +A(ξ)dξ̄) =

=
1

2πi

∫
L(a, r)

n!

ψn+1(ζ, z)
f(ξ) (dξ +A(ξ)dξ̄) =

n!

2πi

∫
∂L(a, r)

f(ξ)

[ψ(ξ, z)]
n+1 (dξ +A(ξ)d ξ̄).

Theorem 3.1 (an analog of the Weierstrass theorem). If a series of A-analytic functions in the
domain D

f(z) =
∞∑

n=1

fn(z), fn(z) ∈ OA(D), (11)

converges uniformly on any compact subset of this domain, then
1) f(z) ∈ OA(D);
2) the series (11) can be differentiated term by term:

∂f(z) =

∞∑
n=1

∂fn(z), ∂̄f(z) =

∞∑
n=1

∂̄fn(z), DAf(z) =

∞∑
n=1

DAfn(z); (12)

3) the series (12) converge uniformly on any compact subset of D.

Proof. We fix an arbitrary simply connected domain G b D. By the hypothesis of the theorem
the series (11) converges uniformly in Ḡ, i.e. its sum f(z) is continuous in G. We can integrate
the series term by term along any closed curve γ ⊂ G:∫

γ

f(z)(dz +A(z)d z̄) =
∞∑

n=1

∫
γ

fn(z)(dz +A(z)d z̄).

Since fn(z) is an A-analytic function in G, then by the Cauchy theorem (Theorem 1.4) all the
integrals on the right-hand side are zero. Therefore, the integral of f(z) along γ is also zero.
Morera’s theorem (Theorem 2.1) implies that f(z) is A-analytic, which proves statement 1.

We now prove statement 2. We choose an arbitrary point a ∈ D and construct a lemniscate
L(a, r) = {|ψ(z, a)| < r} b D. According to Lemma 2 we have

∂f |z=a =
1

2πi

∫
∂L(a, r)

f(z)(dz +A(z)d z̄)(
z − a+

∫
γ(z, a)

A(τ)dτ
)2 . (13)

Since the series

f(z)(
z − a+

∫
γ(z, a)

A(τ)dτ
)2 =

∞∑
n=0

fn(z)(
z − a+

∫
γ(z, a)

A(τ)dτ
)2 (14)
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converges uniformly on ∂L(a, r), then we can substitute (14) into the integral (13) and inter-
change the sum and the integral:

∂f |z=a =

∞∑
n=0

1

2πi

∫
∂L(a, r)

fn(z)(dz +A(z)d z̄)(
z − a+

∫
γ(z, a)

A(τ)dτ
)2 =

∞∑
n=0

∂fn|z=a,

i.e. ∂f =
∞∑

n=0
∂fn. Uniform convergence of the series

∞∑
n=1

∂fn(z) on any compact subset of the

domain D follows from Cauchy’s formula and from the uniform convergence of the series (11).
Similarly, we can prove

∂̄f(z) =
∞∑

n=1

∂̄fn(z), DAf(z) =
∞∑

n=1

DAfn(z).

We have

∂̄f = Ā(z)∂f = Ā(z)∂
∞∑

n=1

fn(z) =
∞∑

n=1

Ā(z)∂fn(z) =
∞∑

n=1

∂̄fn(z)

and

DAf = ∂f −A(z)∂̄f =
∞∑

n=1

∂fn(z)−A(z)
∞∑

n=1

∂̄fn(z) =

=
∞∑

n=1

∂fn(z)−
∞∑

n=1

A(z)∂̄fn(z) =
∞∑

n=1

[∂fn(z)−A(z)∂̄fn(z)] =
∞∑

n=1

DAfn(z).

Since the series
∞∑

n=1
Ā(z)∂fn(z) converges uniformly and absolutely inside D, then all the series

participating in these relations also converge uniformly and absolutely inside D.

Here it is pertinent to note that from uniform convergence of the series, its differentiability
in general does not follow. For this, the series of differentials must also be uniformly convergent.

4. Expansion of A-analytic functions into power series
First we note that the analog of power series for A-analytic functions are the following series

∞∑
j=0

cjψ
j(z, a), a ∈ D, (15)

where cj are constants. The domain of convergence of the series (15) is the lemniscate L(a, R) =
{|ψ(z, a)| < R}, where the radius of convergence is given by the Cauchy-Hadamard formula:

1

R
= lim

j→∞
j

√
|cj |.

We show that the series (15) converges absolutely and uniformly inside the lemniscate |ψ(z, a)| =∣∣∣z − a+
∫
γ(a, z)

Ā(τ)dτ
∣∣∣ < R. Let r < R. For |ψ(z, a)| = R+ r

2
the series (15) converges, and

therefore ∃n0 : for n > n0 the following inequality holds

n
√

|cn| 6
2

r +R
.
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Then for such n > n0 and for |ψ(z, a)| 6 r we have

|cnψ(z, a)n| 6 |cn||ψ(z, a)|n 6
(

2r

r +R

)n

.

Hence, the series (15) can be reduced to a convergent numerical series and it converges
absolutely and uniformly in {|ψ(z, a)| 6 r}.

There is inverse

Theorem 4.1 (see [14]). If f(z) ∈ OA(L(a, r)), where L(a, r) = {ξ ∈ D : |ψ(ξ, a)| < r} b D is
a lemniscate, then the function f(z) can be expanded into the series in L(a, r):

f(z) =

∞∑
k=0

ckψ
k(z, a). (16)

Coefficients of the series are determined by the formula

ck =
1

k!

∂kf(z)

∂zk

∣∣∣∣
z=a

=
1

2πi

∫
∂L(a, ρ)

f(ξ)

[ψ(ξ, a)]
k+1

(dξ +A(ξ)d ξ̄), 0 < ρ < r, k = 0, 1, . . . .

Theorem 4.2. The coefficient of a series
∞∑
k=0

cjψ
k(z, a) converging in a lemniscate L(a, r),

r > 0, are uniquely determined by its sum

f(z) =

∞∑
k=0

cjψ
k(z, a) (17)

by the formulas

ck =
1

k!

∂kf (z)

∂zk

∣∣∣∣
z=a

=
1

2πi

∫
∂L(a, ρ)

f(ξ)

[ψ(ξ, a)]
k+1

(dξ +A(ξ)d ξ̄), 0 < ρ < r, k = 0, 1, . . . .

Proof. We use formulas (11)

∂nf(z)

∂zn
=

n!

2πi

∫
∂L(a, r)

f(ξ)

[ψ(ξ, z)]
n+1 (dξ +A(ξ)d ξ̄), n = 0, 1, . . . , (18)

and
∂ψn(z, a)

∂z
= nψn−1(z, a).

Substituting into (17) z = a , we find f(a) = c0. We now take the partial derivative of the series
(17) with respect to z:

∂f(z)

∂z
= c1 + 2c2ψ(z, a) + 3c3ψ(z, a)

2
+ . . . (19)

and then substite z = a, thus we find
∂f(z)

∂z

∣∣∣∣
z=a

= c1. The series (19) is a series converging

in the lemniscate L(a, r). We take its partial derivative and substitute z = a again to obtain

c2 =
1

2
· ∂

2f(z)

∂z2

∣∣∣∣
z=a

. And so, in k-th step we get ck =
1

k!

∂kf(z)

∂zk

∣∣∣∣
z=a

.
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The second part of the formula

1

k!

∂kf(z)

∂zk

∣∣∣∣
z=a

=
1

2πi

∫
∂L(a, ρ)

f(ξ)

[ψ(ξ, a)]
k+1

(dξ +A(ξ)d ξ̄)

follows from (18).

For completeness of the presentation of the material, we give the expansion of functions into
‘Laurent’ series.

Theorem 4.3 (Laurent series expansion, see [14]). Let f(z) be A-analytic in a ring of lemnis-
cates: f ∈ OA(L(a, R)\L(a, r)), r < R. Then f(z) admits a ‘Laurent’ series expansion in this
ring:

f(z) =
∞∑

k=−∞

cjψ
k(z, a), (20)

where the coefficients of the series are determined by the formulas

ck =
1

2πi

∫
∂L(a, ρ)

f(ξ)

[ψ(ξ, a)]
k+1

(dξ +A(ξ)d ξ̄), r < ρ < R, k = 0, ±1, ±2, . . . .

The series (20) converges uniformly inside the ring

L(a, R)\L(a, r) = {z ∈ D : r < |ψ(z, a)| < R}.

The Cauchy inequalities (see [14]). For the coefficients of this series there hold the fol-
lowing inequalities

|ck| 6
max{|f(z)| : z ∈ ∂L(a, ρ)}

ρk
, r < ρ < R, k = 0, ±1, ±2, . . . . (21)
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Теорема Морера и функциональные ряды в классе
A-аналитических функций

Насридин М. Жабборов
Национальный университет Узбекистана им. М. Улугбека

ВУЗ-городок, Ташкент, 100174, Узбекистан

Цель данной статьи — исследование A-аналитических функций в частном случае, когда функ-
ция A является антианалитической функцией в области. Доказано, что непрерывная функция,
удовлетворяющая интегральным условиям теоремы Коши, аналитическая функция (аналог тео-
ремы Морера, § 2). В § 3 доказывается аналог теоремы Вейерштрасса для функционального ряда
по A-аналитическим функциям и разложение A-аналитических функций в функциональные ря-
ды (§ 4).

Ключевые слова: A-аналитическая функция, аналог теоремы Морера, аналог теоремы Вейер-
штрасса, разложение A-аналитических функций.
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