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We describe the weighted Hilbert spaces Lo ., () with positive weight functions w(z) which are summable
on every bounded interval. We give sufficient condition for La ., (2) space to be extension of La ., (£2)
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Introduction

Let Ly ,,(£2), where w(z) is measurable positive function, Q C R is measurable subset, be a
space of real functions f : £ — R for which the integral

Aﬂwmmm

is finite. The measure and the integral are comprehended in Lebesgue sense. Given space is
often described (e.g. [1,2]) as a case of Lo(Q2, X, 1) space, where X is a o-algebra of measurable
subsets of 2, u is a measure on X, which is defined by:

mmzﬁwmm. 1)

Particularly, the space Lo ,,(£2) is Euclidean space with scalar product

meZAf@M@MﬂM7

which induces the norm
Hf”lw = (f»f)w-

It is also known that if the measure (1) has countable basis then the space Lo ,,(£2) is separable.

If w(z) =1 then the space Lg ,(€2) is denoted as Lo (2), and if @ = R then as Lg .

In [3, 7.1.3] they consider a weighted space L, (R, p(z)), where p € (0;+00), R, = R" is
n-dimensional arithmetic space, and p(x) > 0 is Borel measurable function on R,,. The paper
[4] gives conditions on weight function w(x), which makes wavelet spline system be a conditional
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or unconditional basis in L, _,(R) space, p € [1;+00). In the paper [5] they are studying similar
problem for Haar wavelet system.

The Lo ,,(£2) space finds its application in the problem of statistical estimating of probability
density function f¢(z) of continuous random variate £. Indeed, in a case of completeness and
separability of the space L ,,(f2) there is countable complete orthonormal system {¢;(z)}52,
i.e. the system which for all function f € Lo ,,(€2) satisfies the limiting relation

l

llir{.lo Z(ﬁ@j)w‘ﬁj —f =0.

7=0 2,w

Thus, if fe € L., (£2) then its projective estimate fi(x) defined by

!
ZO‘J@J Z fe; 05)wipi(@)
7=0

converges to f¢(x) in norm of the space Lg ,,(€2).

The paper [6] shows that for each continuous random variate £ and for appropriate weight
function w(x) there exists the space L ., (R) including it. In so doing, the choice of the function
w(z) is important for convergence speed of projective estimate. In connection with it there is
a necessity to investigate the properties of the L ,,(£) spaces in the context of weight function
choice.

1. Main results

By virtue of o-additivity of Lebesgue integral, for each measurable positive function w(z) the
measure defined by (1) is also o-additive. But if the function w(z) is not summable, i.e.

/Qw(:zz)d:c = +o00,

then it is possible the pathological behavior of the measure p in particular cases.

1
For instance, let © = [0;1], X is a o-algebra of measurable subsets of 2 and w(z) = —. Then
x
each segment from ¥ containing 0 has infinite measure:

a
u[O;a]:/ w(t)dt = lim Int| =400, a>0.
0

r—40

Now we take a sequence a,, | 0. Then

lim w[0;a,] = +o0.

n—0o0

(ijan)—u{O} /o} z=0.

1 (ﬂ [0;an1> # lim p[0; ],

n=1

On the other hand,

We receive that
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i.e. built measure p is not continuous.
Further we assume that the function w(z) is summable on each bounded interval X C R:

/X w(x)dr < 4o00.

Now, it is obvious that the measure p induced by the function w(x) is o-finite. Then the theorem
about completeness of L,(Q, X, 1) spaces with p € [1;400) and o-finite measure p [2, IV, 3.3]
leads to completeness of the space Lz, (2).

Besides the measure p has a countable basis consisted of, for example, elements from o-
ring generated by semiring of half-intervals on real axis with rational endpoints. This leads to
separability of the space L ,,(£2).

Thus, for each positive function w(z) which is summable on every bounded interval the
L., () space is separable Hilbert space.

Present paper considers relationship between Ls ,,(€2) spaces with common set €2 and different
weight functions w(z).

Definition. The space Lg ., () is called an extension of the space Lo ., (Q) if the strict in-
clusion
L2,w2 (Q) - LQ,wl (Q)

holds.
Let us denote obvious proposition.
Proposition 1. If the inequality wy(x) < wa(x) holds for all x from Q, then

LQ,w2 (Q) c L2,w1 (Q)

Particularly, if w(z) < 1 then the space Ls ,,(€2) includes the space Lz ().
Proof. Tt follows from wq(z) < wa(x) that for all functions f :  — R we have

Fa)ywi(z) < f2(@)ws(z),

and

2xw1$$\ zxwxx.
/Qf() ()d</ﬂf()z()d

Now, convergence of the integral at the left side follows from convergence of the integral at
the right one. Thus, for all function f : Q@ — R we have that f € Ls ,,(Q2) involves f € Lg ,, (Q),
ie.

LQ,w2 (Q) C L27w1 (Q)
Il

Remark 1. The conclusion of the Proposition 1 remains true even when the inequality wq(x) <
wa(z) holds almost everywhere on Q.

Proposition 2. With introduced assumptions on weighted functions wy(z) and wa(x) it is true
that

Lo 1, (2) N Lg 4, () = Lo 4y, (),

where Wmax () = max{w (z), wa(x)}.
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Proof. Tt is obvious that the function wpay(z) is also summable on each bounded interval.
Then the space Lg ,,,. (©) is defined and separable Hilbert. At the same time wyax(z) > w1 (x)
and Wiax () = wa(z). Then from Proposition 1 we have that

L2 10 Q) C Ls,u, () and L2,wmax(Q) C Lo w, (Q),
ie.
L2~,w1uax (Q) c L2,w1 (Q> N L2,w2 (Q)

To prove inverse inclusion we can take arbitrary function f(z) from the set Lg ., (2) N
L3 4, (€2). From definition of the space Lo ,,(€2) we will have:

/ A (z)w;(z)dr < +oo  and / A (z)we(z)dr < +oo.
Q Q
Let us split the space Q2 by two subsets 2; and 2, where

O ={z € Q]wi(x)>w(z)},

Qy =0\ Q ={z € Q| wi(r) <wsz)}
Then
/ A (2)w (z)dr = 2 (z)wy (z)dx + 2 (z)w; (z)de.
Q 931

Qa
We have got that both of the integrals

f2(z)wy(z)dr  and 2 (x)w; (z)dx
Q1 Q2

exist and are finite.
Similarly, folowing integrals exist and are finite:

f2(z)wy(z)dz  and 2 (z)ws(z)da.
Ql Q2
Now we will consider the sum of the integrals [, f?(z)wi(z)dz and [, f?(z)ws(z)dz:

fA@)w(z)de + | f(z)wa(z)de =
Qq Qo

= F2(2)wmax (2)dz + 2 (2)wiax (z)dr = / 2 (2)Wmax (7)dz < 4-00.
o Q

Q2
We have from this that f € Lg .. (€2). So the inclusion

L27w1 (Q) N L27w2 (Q) C L2,wmax (Q)a

is proved and the conclusion of the proposition as well. ([
The paper [6] gives necessary condition on weight functions wi(z) and wa(z) to spaces
L3 1, (Q) and Lg 4, (2) not be equal. We express here a stronger proposition.

Proposition 3. If Ly ., (Q) # Lo, (), then at least one of the inequalities holds:

. wi(x)
ess inf =0 or €ess sup

veQ wo(x) neo wa(T) oe @
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Proof. On the contrary we assume that all inequalities (2) do not hold. Then

ess inf wi(2) =m > 0, €ess sup wi(2) =M < o0;
z€Q wa(x) e Wa(x)
i.e. almost everywhere on {2
0<m< @ e o
wa(x)

It follows from the given inequalities that almost everywhere on 2

1

wy(z) € Mws(x), wa(z) < Ewl(x).
Then
/sz(x)wl(a:)dx < /QfQ(a:)ng(a:)dx = M/sz(.’L')wQ(QT)d.’E; (3)
2 2 ()2 _ 1 2(x)w: (z)dz
| Papn@ic< [ P@n@d = [ P (W

We have now that (3) leads to inclusion Lg 4, (2) € La ., (2), and (4) leads to Lg ., (£2)
Lo 4, ().
It follows from the Proposition 3 that if Ly ., () is an extension for Lo ., (€2), then

o

ess inf wi (z)

=0.
z€Q wo ()

Let we give sufficient condition for Ls ,,, (£2) to contain elements which are outside of Ly ,,, (€2).

Theorem 1. Let Q C R contains right-side or left-side neighborhood of some point a € R, w1 (x)
and wy(x) are positive on Q functions which are summable on every bounded interval and for
which at least one of one-sided limits

lim wi(z) or lim w1 (@)
r—a+0 () (J,‘) x—a—0 () (J,‘)

is equal 0. Then
L2,w1 (Q) \L2,wz (Q) 7é g.

Proposition 1 and Theorem 1 lead to convenient sufficient condition for extension of the space
Lg’w(ﬂ). Let

1) Q contains right-side or left-side neighborhood of some point a € R;

2) wi(z) < wa(z) holds almost everywhere on ;

3) tim U oo i 9@

=0.
r—a+0 Wo ((E) r—a—0 Wo (;L')

Then
L2,w2 (Q) C L2,w1 (Q)
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2. Proof of the Theorem 1

We have to prove some intermediate propositions before we prove the Theorem 1.

Lemma 1. Let Q = (A;400), where A € [—o0;+00) and f(x) is differentiable positive non-
increasing on S function which satisfies

lim f(z)=0.

r—r+00

Then there exists non-negative on Q function g(x), for which

/Qg(z)dx =+too  and /Qf(x)g(x)da: < +oo.

Proof. We define the function g(z) on 2 in this way:

f'(x)
flx)

Because of f(x) > 0 and f’(x) < 0 then g(z) > 0. Further,

g(x) = —

+oo g/ T
/g(x)dx:f/ ' )dlenf(A)f lim In f(x) = +o0;
Q

A f@) zteo

+oo
f@gla)ds =~ [ fla)ds = F(4)~ Jim_f(a) = 1(4) < +oc.
Q

A r——+00

Thus, function g(z) satisfies the conclusion of the lemma. O

Lemma 2. The conclusion of the lemma 1 remains true if in the condition we change differen-
tiability of the function f(x) by its piecewise constancy on €.

Proof. Let the function f(x) is piecewise constant, positive and does not increase on 2. Then
Q can be split by points
A=zo<a1 < <Tp <---

to intervals
(o5 21), (T1522), -+, (Tno15Tn ), - - - (5)

in which the function f(x) is constant:

f(l'):yn, iL’G(Z’n,l;l’n), n:].,Q,...

In this case
y1>y2>...>yn>...
and

lim y, = 0.

n—00

We are going to prove that for the function f(z) there exists a majorizing function fo(z), i.e.

f(@) < folz),  xe, (6)

which satisfies the condition of the Lemma 1.
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We can build the function fo(z) in the form of 2nd order infinity spline passing through the
pOil’ltS (xlayl)a (-7;2) y2)a st

so(z), =€ (zo;x1]

s1(z), =z € (z1;22]

Sn(:E)a UAS (:L'n;anrl]

Each of the functions s, (z) is a 2nd order polynomial:
sn(x) = anx? + bpx + cp, x € (Tn;Tnt)-

To reach a continuity and smoothness of the function fy(z) over all set  we submit the

functions s, (z) to next conditions:

5n(Tn) = Yn
Sn($n+1 = Yn+1 ) n= 17 2a s (7)
Sp(xn) = 55,1 (2n)
At that for so(z) we can take
so(x) = 1.

We are going to show that the system (7) defines unique 2nd order polynomial s, (x) for all
Ty Tnt1s Yn, Ynt1 and s, (x,) = y), satisfying the conditions:

Tn < anrl» Yn > yn+1~

Indeed, the system (7) leads to system of linear equations with variable coefficients a,,, b,
and ¢,:
An®2 + by + Cp = Yn
anxiﬂ + by Tnt1 + Cn = Ynt1
2a4n, Ty + by = Y,

The determinant of basic matrix of this system is

x2 T, 1
$%+1 Tn+1 1| = (CEQ — 11)2 > 0,
2z, 1 0
so the system has a unique solution:
Ay Ag Az
an=—"——, bp=—"-—-, ch=—-"7"7-—= 8
" (wg — x1)? " (wg — x1)? " (z2 — x1)? ®)
where
Yn Tn 1 x% Yn 1 x% Tn Yn
Ay = Yn+1 Tn+1 1|, Ay = ‘T%+1 Yn+1 1/, Ag = z%-‘,—l Tn41  Ynt1|-
Yl 1 0 2T, y, 0 2T, 1 e
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Further, in order to make the spline fo(x) satisfy the condition of majority (6) it is necessary
and sufficient to satisfy

S’ﬂ(x> >yn+17 S (mn;xn+1), n20717"'

Last condition will hold if s, (zp41) <0, ie. 2a,Zpt1 + by < 0.
When we substitute in this inequality the solution (8), we will have

S 2(ynJrl — yn)

yn - Tp+1 — Tn
In the case 2 )
/ Yn+1 — Yn
Yp < ————, 9
WS oz 9)

we will build the function s, (x) by this way:

where s%l)(x) and s (z) are 2nd order polynomials

st (x) = aVa? + oV + D,
52 (x) = aPa? + bPz + P,

which are defined by this conditions:

s () = wn
1
2
disgll)(x) =yl s )(t) = §(y7z + Ynt1)
L T=x, 2 o
) 1 , s% )(.Z‘n—‘,-l) = Yn+1 , Ty <t<Tpi (10)
sn’(t) = 5 (Yn + Ynt1) d
2 — s (x) =0
" =
is(l)(x) —0 dx r=t
dx" et
(see Fig. 1).
The second system in (10) is similar to the system (7), therefore it defines unique function
(2)

If we substitute the expression for sg)(x) in (10), we will get (after exclusion ¢):

alz2 + b + e =y,
20, + 08 =y,
2
4aiell = () = 30l + ynsa)

The last system is not linear but we can get unique solution by elementary simplifying:

/\2
O (¥n)
2(yn - ynJrl)
bng) = y;L - 2a7(11)xn
C’Ell) =Yn+ agll)x% - xny;L
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y 1
/ ' (€]
1y =8y (%)
Yn ," 1
A y= E(Yn + Yn+1)
P ey N Ly =50 ()
Y ; X
Xp € Xn+1

Fig. 1. Building of the function s,(z) in the case (9)

Now we check whether found solution satisfies to inequality in (10). From the first system

we find ¢: "
tszn) = 7yn_yn+1
24y Y,

2 _
At the same time because of y, — y,+1 > 0 and y/, < M < 0, then t > z,,. Further,
Tpt+1 — Tn

T + xn+1

_ Yn — Yn+1 Yn — Ynt+1 _
t=an— < In 2(Ynt1=Yn) 2 < Tt

!
Y
n Trt1—Tn

Thus, part s, (x) of the spline fo(x) in the case of (9) is also built. We have that whole spline
fo(x) is smooth on 2, passes through the points (z1,y1), (z2,¥y2), ... and satisfies (6).

We will show that the function fo(x) satisfies the condition of the Lemma 1. First, fo(z) is
differentiable on Q. Second, fo(x) is positive because of fo(z) = f(x) > 0. Third, according to
building we have f{(x) < 0, therefore the function fo(x) does not increase.

Last, for all x € (x,; p41) the following holds: fo(z) < yn, and so

0< lim fo(z) < lim g, =0
n— o0

Tr—+o0

lim fo(x) =0.

T—+00

Then it follows from Lemma 1 that there exists non-negative function g(z), for which

/ g(x)dr = 400 and / fo(x)g(z)dr < +o0.
Q Q

Finiteness of the first integral and the inequality (6) lead to that the integral

/Q f(2)g(x)da

is finite.
Thus, the function g(z) satisfies the conclusion of the Lemma 2.
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Lemma 3. The conclusion of the Lemma 1 is true for all positive function f(z), for which

lim f(z)=0.

T—+00

Proof. Let function f(z) satisfies to the condition of the Lemma 3. According to definition
of limit of function, for all ¢ > 0 there exists M € § for which for all z > M following holds:

flz) <e.

1 . .
Now we take a sequence €, = —. Some sequence M,, corresponds to it. Let us to consider a
n
function
, X E [Ml; Mg)

1
3, @€ [My; Ms)

Lz e [My; Myyq)

n?

This function satisfies the condition of the Lemma 2. Therefore, there exists non-negative
function g(x), for which

/ g(z)dr = 400 and / fo(x)g(z)dx < 4o0.
Q Q

It is obvious that on ) the inequality f(z) < fo(z) holds. Then the integral

/Q f(2)g(x)da

is finite. 0
Lemma 4. Let Q = (a;b) and f(x) is positive on Q function for which at least one of single-sided
limat

Jmo ) er i f@)

is equal 0. Then there exists non-negative on Q function h(x), for which

/Q h(z)dz = 400, /Q F(@)h(z)dz < +oo.

1
Proof. Let us to consider the case of right-sided limit. We define a variable y = ——.

Then
r —a+0 isequivalent to y — +o0;

x =>b isequivalent to y=

f(x)f<a+;>,

1 1
and the function f (a + y) (from variable y) defined on Q' = (ba; —l—oo) satisfies the condi-

tion of the Lemma 3. Then there exists the function g(x), for which

/, g(y)dy = +oo  and / f (a + ;) g(y)dy < +oo.
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Because of

/lg(y)dy/,g<xia>(x_la)2dx+oo,
//f<a+;>g(y)dy=/ﬂ/f(w)g(x1a)(xla)zdx<+oo,

we can take for function h(x)

or=o(7=) e

1
The case of left-sided limit is considered similar: y = P and
—x

o=~ (555) 5o
O

Proof of Theorem 1. We are going to prove that in the L ,,, () space there is a function f
which does not belong the L, ,,, (2) space, i.e.

/ 2 (z)wy (z)dr < +oo and / 2 (z)we(z)dr = +oo.
Q Q

w1 (x)
wa(x)

on ) function h(zx), for which

The function

satisfies the condition of the Lemma 4. Then there exists non-negative

/Qh(x)dx = 400, /Qh(x) wl(x)dx < +o00.

wy(x)
We define the required function f(x) by this way: f(z) = h() .
wa(x)
We get:
/fQ(x)wg(x)dx = / h(z)dx = +o0;
Q Q
2 _ wi (z)
/Qf () wy (z) dx = /Qh(ac) s (m)dm < 400.
O
Conclusion

Present paper describes the properties of weighted functional Hilbert spaces of Ls ,,(€2) kind
in the context of building probability density function estimate for continuous random vari-
able £. Proposition about convergence of probability density function projective estimate is
true in assumption that the probability density belongs to the space Lg ,,(£2) with appropriate
weight function w(z). However, the situations when that information is absent can appear in
applications. The Theorem 1 of present paper suggests particularly the method of choice re-
quired function w(x). For instance, if according to the received values of random variate £ being
investigated we have reasons to assume that for the chosen weight function ws(x) the equality

1712, = / 12 () wa(@)de = +oo,
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holds, i.e. f ¢ Lg,,(f2), then we can try to extend the space /fZ(x)wg(:U)dw to space
Q

/ f2(z)w (z)dx by taking the function wi (z) satisfied condition:
Q

im 2@ _
z—a we(x)

e.g.
—al® ) € - &
wl(:ﬂ:{'x ), welameio e s ce i)

wa(z), else
and the point a is chosen from the condition

a+d
/ A (z)wy(2z)dr = +oo  for all § > 0.
a—9
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O HEKOTOpPBLIX CBOMCTBAX BECOBBIX I'MJILOEPTOBBIX
IIPOCTPAHCTB

Baaaucnas B. Bpannmrnu

NMucturyT nHpOpMaTUKNA U TEJIEKOMMYHUKAIAN

CubupcKuit TOCYITaPCTBEHHBIN a39POKOCMUYIECKUI YHUBEPCUTET
Kpacnosipcknit pabounit, 31, Kpacunospck, 660014

Poccus

B pabome paccmampueatomes 6ecogve 2usvbepmosv, npocmparncmsa Lo ., (£2) npu nosostcumenvor u
CYMMUDYEMBIT 1A A060M 02ZPAHUMEHHOM UHMEPSaae 6eco6biT Pynryuas w(z). ITpusodumesa docmamou-
HOE YCA0BUE, NPU KOTNOPOM NPOCMPancmeo La ., () asasemcea pacwuperuem npocmparcmsa Lo v, (Q).
Onucvl8aemes NPuMeEHeHUe NOAYYEHHO20 PE3YALINAMA NPU CMAMUCTNUNECKOM OUCHUBAHUL HYHKUUL
NAOTMHOCTU BEPOATHOCTNU, CAYHATHOT SEAUNUHDL.

Karoueswie cro6a: mpocmpancmea unmezpupyemus Gynkuyutl, 2usb0epmoss, NPOCMPAHCMEa, BeCo8ble
PYHKUUOHAADHBIE NPOCTIPAHCNGA, CNAGTUHDL 6TNOPO20 NOPAJKG, O0UEHUBAHUE PYHKUUU NAOMHOCTIU 6€-
poamHocmu.
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