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A wviscous flow of a horizontal compressible layer under the gravity and constant external pressure is
considered in this paper. It is assumed that medium motion is quasi-static and uniazial, and the reversible
and irreversible strains are finite. It is also assumed that the material is subject to the Green flow
condition with coefficients depending on the material density and the plastic strain rate. The irreversible
strains occur in the material at arbitrary non-zero load. The initial boundary value problem is reduced to
the first-order differential equation with separable variables. This equation contains the time variable as
a parameter. Fvolution of the density distribution over the layer height is determined in the particular
cases. An approzimate analytical solution for the density in the initial phase of densification is obtained
when reversible strains are negligible. The numerical solution for the density is obtained in the case of
small elastic strains. These solutions are valid until a fully densified region on the underlying surface

occurs. Further evolution of such region is not considered.
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Introduction

The problems of one-dimensional motions of a continuous medium are most studied in the
theory of elastoviscoplasticity. However, solutions for such problems are rather difficult when
geometrically nonlinear relations are taken into account. In addition, if deformations are large
then separation of total strains into elastic and plastic parts is not obvious. This separation can
be carried out in various ways [1,2] and it is often based on the multiplicative decomposition of
the deformation gradient tensor. Analytical solutions for finite reversible and irreversible strains
were obtained [3-6]. In particular, the plastic flow under gravity load was considered [6]. In these
papers the material is supposed to be incompressible, and the singular yield surfaces are used.
The abandonment of the incompressibility condition usually complicates solution of boundary
value problems. However, when certain yield surfaces are used such abandonment allows us to
consider uniaxial deformation of a continuous medium. In this case, the model relations are
greatly simplified. In this paper we consider the densification of a heavy flat layer of the porous
material under its own weight and under the action of constant external pressure. The elliptical
yield criterion, which depends on the shear stress intensity and the hydrostatic stress, was first
discussed for plastically compressible materials [7]. The elliptical yield surfaces with coefficients
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depending on the relative density of the material were proposed for non-continuous bodies [8,9].
Viscosity of materials can be taken into account in the framework of these models [10]. In this
paper we assume that the yield surface has zero initial radius. The expansion of the yield surface
is solely due to the viscous properties of the medium. In this case there is no elastoplastic
boundary in the medium since any non-zero force causes the irreversible deformation of the
material. The specified formulation of the problem may have application in modeling of foam
deformation and consolidation of metal powders at high temperature. It also can be applied
to model behavior of soils for which the yield strength depends on the invariants of the plastic
strain rates tensor [11].

1. Basic relationships

For the kinematics of the finite reversible and irreversible strains we assume the following
system of relations in the Euler spatial variables [12]. The irreversible (plastic) component AP
of the Almansi total strain tensor A = (V@u) + (Veou)” — (Vou) - (Veou)T) /2 is defined
by the equation

AP — P _ AP .gP _ P . AP, (1)

where AP = AP —r . AP + AP .1 is the objective derivative of the irreversible strain tensor,
AP — AP, 1 (v - V)AP is the material derivative of the irreversible strain tensor, hereinafter the
subscript ¢ denotes the partial differentiation with respect to time, v = u; + (v - V)u is the
velocity vector, u is the displacement vector, r = w + z is the antisymmetric rotation tensor; the
nonlinear part z of tensor r in the general case depends on the reversible strain tensor and the
strain rate tensor [6], w = ((V ®v)” — (V ®v)) /2 is the spin tensor, & is the plastic strain rate
tensor, V is the Hamilton operator.

The algebraic separation of the total strain into the reversible and irreversible components
follows from evolution equation (1) for AP and from similar equation for A® [6]. Such separation
has the form

A=A°+ (I-24°)"2. AP . (I —24°)"% (2)

where A® is the reversible (elastic) component of the total strain tensor, I is the unit tensor.
The constitutive physical relation is
p OW

o= g {249, (3)

where ¢ is the Cauchy stress tensor, p is the density of the medium, py is the density of the
undeformed medium, W is the strain energy density (a scalar-valued function of tensor argument)
which depends on the invariants of the reversible strain tensor.
The equation of equilibrium is
V.o= —P9, (4)

where g is the gravity acceleration vector.
We assume that the porous material satisfies the Green flow condition [9]

7" Jg
<1>=(91a) —1—?2—/@220, (5)

where I{ = tr(a), J§ = [tr (62) — tr(0)?/3] /2 is the quadratic invariant of the deviatoric stress
tensor. Coefficients a and b in relation (5) are assumed to be known functions of the relative
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density p/p1, where p is the solid phase density. The shear yield strength of the solid phase & is
assumed to be power function of the form x = kg (¢7)”, where £ is the intensity of plastic shear
strain rate, (7)? /2 = tr (€??) — tr (€P)® /3, ko and v are some material parameters. To asymp-
totically transfer yield surface (5) into the von Mises cylinder it is assumed that lim a = oo,

pP—P1
lim b =1.
pP—P1
The plastic flow rule associated with yield surface (5) is
o
P )\ 6
3 5 (6)

where A is the scalar Lagrange multiplier.

2. Formulation of the problem

Consider a horizontal plane layer that is initially at rest. It has thickness hy and the uniform
density equal to pg. The constant external pressure applied on the surface of the layer is equal
to Py. Let us consider the motion of the continuous medium under such conditions in order to
determine evolution of the material density distribution over the layer height.

We introduce a rectangular Cartesian coordinate system (X;, Xo, X3) with the origin on the
underlying surface of the layer (the X; axis is directed downward), X,  are the radius vectors
of a point of the medium at the initial and deformed state, respectively, X = £ —u. In this case,
the system of equations (1)—(6) is closed by the initial condition of zero stress-strain state and
by the following boundary conditions

ol T (pogho + Fo),  on e —Fo, (7)
where g = 9.8 m/s? is the acceleration due to gravity.

We assume that density of the medium can change both reversibly and irreversibly. The
yield condition (5), unlike some conditions known for a compressible medium (for example, the
von Mises — Schleicher cone), allows for the uniaxial irreversible deformation. The reversible
deformation is also assumed to be uniaxial.

3. Governing equation

In the given above formulation a1 = duq /0x4 —(8u1/8x1)2 /2 is the only non-zero component
of the Almansi total strain tensor. The relative density of the continuous medium is governed by
the strain tensor invariants: p/pg = (1 — 211 + 415 — 8]3)1/27 where I1 = tr(A), 21, = tr (A)2 —

tr (A%), I3 = det(A). Then we have

LT 2a, =124, (8)
Po Oxq

Equilibrium equation (4) has the form doy1/0x1 = —pg. Using (8), we integrate this equation
and obtain

o11 = —pog (C1(t) + x1 —uy). 9)

From the first boundary condition (7) follows Cy(t) = ho + Po/(pog) = ho = const.
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Let us introduce w = EO + x1 —u1, w > 0. Taking into account p/py = w, and 011 = —pogw,
then equation (3) allows us to express the reversible deformation as follows

w
ap =E (—pog> ; (10)
Wy
where function F is uniquely determined by the elastic potential.

In the case of uniaxial compressive strain relation 1 — 2a;3; = (1 —2a§;) (1 — 2af;) follows
from (2). Taking into account (8) and (10), we have

2
Wy

V1= 2E(—pg)

In addition, in the case of uniaxial deformation the rotation tensor r turns out to be zero and
relation (1) becomes

1—2af, =

(11)

5 5 , ) Ouq ouy Wt
. - = 1-2 P = o 9r1  w. 2
(5'15 t+u 8x1) ayy =&l ( ann), u ot o 0xq Wz .

Taking into account (11), we obtain

Wy
€11 =

v <°Jta _ a) In
wy Oz Ot \/1—2E(—,009u%)

and after some transformations we have

/ w
p _ Willss — WeiWe w F (—Pgwj)
en=——5 |1+ pg— ,
e Wrl-2F (—pgﬁ)

(13)

here the prime denotes derivative with respect to argument of function E.

On the other hand, for arbitrary functions a(p/p1), b(p/p1) and the power law & = kg (e})”
in the yield surface equation (5), expression o3 = —F (p/p1) |€};]” is the result of associated
flow rule (6) [13]. Taking into account (9), for ), < 0 we have

1/v
po_ _ Po
€11 = {POQW/F(mel)} ) (14)

where function F' is uniquely determined by the coefficients a(p/p1) and b(p/p1).
Let us introduce new variables ¢ = t(,ol/po)l/V7 & = x1pog, @ = wgpi/p1. Eliminating &7,
from (13) and (14), we obtain the equation for the function &

Wikss — WsiWe [ T w —El( ~ &) | =- [o& }1/'/ (15)
w2 Wz 1—2E(-2) Flas)]

The von Mises transformation [14] ¢ = &, n = @, ¥(¢,n) = &z reduces the order of equa-
tion (15):

2 (. v (o
o \"\ ioam(—n) ~(#) 1o
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Differential relation (16) is an equation with separable variables in which 7 appears as a
parameter. This equation is valid for an arbitrary function of the internal energy density, for
arbitrary coefficients a(p/p1), b(p/p1) in flow condition (5) and for the yield strength k = kg ()"
In addition, pressure exerted by the layer on the underlying surface must be constant and there
is no fully densified region in the material.

4. Results

We assume linear relationship between the yield strength and the intensity of the irreversible
shear strain rate (v = 1). We specify functions a and b in the form a(p/p1) = 4/3(p/p1)*/(1 —
p/p1), b(p/p1) = (p/p1)? [15]. Using [13],one can show that in this case function F' in (16) has

the form 1o
4 3
F(i) = —go (11&/}) . (17)

Let us consider some variants of the formulated problem.
I. Ideal flow. If reversible change in the density of the material is insignificant, integration

of (16) with respect to ¢ gives

[P as =g+ ol
Taking into account (17), for v = 1 we have

~4/3r0 (V/U(L = ) +arccos /i) = ¢ + Co(n), (1)

Co(n) = —4/3kKo ( Yo (1 — 1) + arccos \/%) = const, where ¢y = pg/p1, follows from initial
conditions ¢ = 0, ¥ = 1.

Relation (18) is an implicit expression for w, in term of w. Time ¢ is included in (18) as
a parameter. Solution of equation (18) with respect to w contains an arbitrary function of
time. To determine this function one should use the first boundary condition (7) in the form of

w = ho.
I1:0

When 1y < 1) << 1 one can assume that /(1 — 1)) + arccos /o ~ 7/2 — 2/31)*/2. Then

relation (18) can be approximately expressed as n{ = 8/9kg (wg/z - 1/13/2) or
9
Wy = (1+kwt)2/3, k= Lg/z.
8koty
Then .
kxqt - \1/3
kwt = —1+ (? + f(t)> . ft)= (1 + kh0t> (19)

and the density distribution satisfies the following relation

% - <k§1t + f(t))Q. (20)

Analytical solution (19), (20) is valid only if the state of the material is far from the state of
full consolidation.
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II. Small elastic strains. If the elastic strain of; = E (o11p0/p) = F (—n/1) is small then
—In(1—-2E(—n/v)) /2 = E(—n/v). The expansion of E in powers of (—n/1) does not contain
constant term because E(0) = 0. Let us take into account only linear term of the series with
coefficient x;. Considering (17), we integrate (16) for » = 1 and obtain

dro [ (1 xam) ¢
— [ -+25 dy = n¢ + Ci(n),
3 ( Y = ¥ =n¢+ Ci(n)
where function C;(n) is uniquely identified by initial conditions, as in the previous case, but it
is not a constant. Coefficient y; is determined by elastic moduli of the material. After some
mathematical treatment we have

o recos Yo — arccos v/Powz + /Po(1 — o) — /1Pows (1 — wowx). (21)

pog (t/Ko — 2o x1(arccos /1Py — arccos v/Powy))

Relation (21) and the second boundary condition (7) in the form w = hg on the surface z; = 0
uniquely determine function w at any moment ¢t > 0 and, consequently, all unknown variables
of the problem. The current position of the free surface of the layer is determined by equality
w = Py/(pog). The results of numerical solution of equation (21) in the form of the density
distribution over the current layer height h at different time points are shown at Fig. 1.

1
098
08F-
0.7

PP,

Fig. 1. The distribution of the relative density over the current layer height at different time
pointst: 1 —t=250s, 2 —t=500s, 3—¢t=1000s, 4 —¢t=2000s, 5—¢=23000s

Dashed lines correspond to the density distribution at the same time points without taking
into account the elastic deformation component (y; = 0).

The following parameters of the problem are used: pg = 250 kg/m?, p1 = 2500 kg/m3,
ho =200 m, Py =0, kg = 10° Pa-s, x1 = 1076 Pa~!. The elastic moduli and hence the
stiffness coefficient x; are related to the material with the initial density po. Coeflicient kg is
related to the solid material with the limit density p;.
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The obtained solutions exist until the material density at the underlying surface x; = 0
reaches the limit value p;. From equation (21) follows that it will occur at the time moment

t1 = Ko Karccos Vb + Vho(1 — wo)) / (pogﬁo> + 21pgx1 arccos \/%} )

For the parameter set given above we have t; = 3.41 - 10 s. If elastic properties of the
material are not taken into account then ¢; = 3.16 - 102 s. The influence of the elastic properties
becomes noticeable when initial thickness of the layer is large enough or for significant external
pressure.

Remark. Let us consider the expansion of the quantity —In(1 —2E (—n/v)) /2 in equa-
tion (16). The expansion can include an arbitrary number of terms, i. e., the requirement
of smallness of the reversible strains is not essential. In this case, taking into account (17),
solution n = 7({,%) can be found for an arbitrary exponent v > 0 in the form of combi-

nation of incomplete Beta-functions by virtue of the equality / v (YR (1 - ¢))1/ (2v) dyp =

B((¢y;1—n+3/(2v);1—1/(2v)).
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Bszkoe ynyioTHeHnEe TA2KEJIOTO MOPUCTOTO CJI0S C YUETOM
yrpyrux 3¢ @deKToB

TI'eopruit M. CeBacTbsiHOB
UNucruryTr mamunnoit nnxkenepun u Merasurypruu JIBO PAH
Meramnypros, 1, Komcomonbck—na—Amype, 681005

Poccus

B xeazucmamuieckom npubAudfCeHUL PACCMOMPEHO BAZKOE MEUEHUE 20PUZOHMAABHOZ0 CAOSA CHCUMAE-
MO20 MAMEPUAAA U3 COCTROAHUSA NOKOA No0 delicmeuem cobCmeennozo 6eca U NOCMOAHH020 BHEWHE20
dasaerus. Odnoochuie obpamumovie u Heobpamumuie degpopmayuu nosazaromes borvwumu. IToseprrnocmo
mexkyuecmu npunama 6 gopme I'puna c Koagduyuenmamu, 3a8UCAUUMY OM NAOTVHOCTY MAMEPUAALL U
ckopocmet naacmuveckur depopmavyudi. IIpu amom nonrazaemces, wmo neobpamumoie deopmayuy, 603-
HUKAIOM 68 MAMEPUALE NPU A1060T 0OmAauHOT om nyaa nazpyske. Havarvro-xpaesas 3adaua ceedena %
UHMEPUPOBAHUI0 QUPPHEPEHUUANLHO20 YDABHEHUSL NEPEO20 NOPAJKA C PA30CAAOUUMUCS NEPEMEHHDLMU,
6 KOmopoe 8pems 8Lo0uMm 6 Kawecmse napamempa. B wacmuoir caywasxr onpedesena 360410UUA PAcnpe-
denerHotll no 8vLLCOME CAOA NAOMHOCTIU MAMEPUAAG. A UMEHHO 8 CAYHAE NPEHEOPEHCUMBIT 0OPATNUMDBLE
depopmayuti 0As% NAOMHOCTIU 8 HAAALHOT Pa3e YNAOTMHENUA NOAYUEHO NPUOAUNCEHHOE AHANUMUYECKOE
pewenue; 8 CAYHAE MAADIT YNPY2uT 0epopmayuti NOCMPOEHO YUCAEHHOE DeweHue. YKa3aHHble PeWeHUs
CNPABEIAUBDL 00 MOMEHMA 3GPONHCOEHUA HA NOOCTNUAAIOWET NOBEPTHOCTNU CAOA NOAHOCTDIO YNAOTHEH-
Hol obaacmu, dasbHeTWas 260M0UUS KOMOPOT He PACCMAMPUBAEMCA.

Karouesvie crosa: corcumaemas cpeda, Koneurve deopmayut, men3op Asomarcu, 8A3K0E meueHue, no-
pucmocmov, noseprHocms mexyvwecmu I'pura, 00noocHas depopmayus, YnAOMHEHUE, CUAG MAHCECTNU,
npeobpasosarue Museca.
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