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A viscous flow of a horizontal compressible layer under the gravity and constant external pressure is
considered in this paper. It is assumed that medium motion is quasi-static and uniaxial, and the reversible
and irreversible strains are finite. It is also assumed that the material is subject to the Green flow
condition with coefficients depending on the material density and the plastic strain rate. The irreversible
strains occur in the material at arbitrary non-zero load. The initial boundary value problem is reduced to
the first-order differential equation with separable variables. This equation contains the time variable as
a parameter. Evolution of the density distribution over the layer height is determined in the particular
cases. An approximate analytical solution for the density in the initial phase of densification is obtained
when reversible strains are negligible. The numerical solution for the density is obtained in the case of
small elastic strains. These solutions are valid until a fully densified region on the underlying surface
occurs. Further evolution of such region is not considered.
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Introduction

The problems of one-dimensional motions of a continuous medium are most studied in the
theory of elastoviscoplasticity. However, solutions for such problems are rather difficult when
geometrically nonlinear relations are taken into account. In addition, if deformations are large
then separation of total strains into elastic and plastic parts is not obvious. This separation can
be carried out in various ways [1, 2] and it is often based on the multiplicative decomposition of
the deformation gradient tensor. Analytical solutions for finite reversible and irreversible strains
were obtained [3–6]. In particular, the plastic flow under gravity load was considered [6]. In these
papers the material is supposed to be incompressible, and the singular yield surfaces are used.
The abandonment of the incompressibility condition usually complicates solution of boundary
value problems. However, when certain yield surfaces are used such abandonment allows us to
consider uniaxial deformation of a continuous medium. In this case, the model relations are
greatly simplified. In this paper we consider the densification of a heavy flat layer of the porous
material under its own weight and under the action of constant external pressure. The elliptical
yield criterion, which depends on the shear stress intensity and the hydrostatic stress, was first
discussed for plastically compressible materials [7]. The elliptical yield surfaces with coefficients
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depending on the relative density of the material were proposed for non-continuous bodies [8,9].
Viscosity of materials can be taken into account in the framework of these models [10]. In this
paper we assume that the yield surface has zero initial radius. The expansion of the yield surface
is solely due to the viscous properties of the medium. In this case there is no elastoplastic
boundary in the medium since any non-zero force causes the irreversible deformation of the
material. The specified formulation of the problem may have application in modeling of foam
deformation and consolidation of metal powders at high temperature. It also can be applied
to model behavior of soils for which the yield strength depends on the invariants of the plastic
strain rates tensor [11].

1. Basic relationships

For the kinematics of the finite reversible and irreversible strains we assume the following
system of relations in the Euler spatial variables [12]. The irreversible (plastic) component ApApAp

of the Almansi total strain tensor AAA =
(
(∇∇∇⊗ uuu) + (∇∇∇⊗ uuu)T − (∇∇∇⊗ uuu) · (∇∇∇⊗ uuu)T

)
/2 is defined

by the equation
ÂpApAp = εpεpεp −ApApAp · εpεpεp − εpεpεp ·ApApAp, (1)

where ÂpApAp = ȦpApAp − rrr · ApApAp + ApApAp · rrr is the objective derivative of the irreversible strain tensor,
ȦpApAp = ApApApt + (vvv · ∇∇∇)ApApAp is the material derivative of the irreversible strain tensor, hereinafter the
subscript t denotes the partial differentiation with respect to time, vvv = uuut + (vvv · ∇∇∇)uuu is the
velocity vector, uuu is the displacement vector, rrr = www+zzz is the antisymmetric rotation tensor; the
nonlinear part zzz of tensor rrr in the general case depends on the reversible strain tensor and the
strain rate tensor [6], www =

(
(∇∇∇⊗ vvv)T − (∇∇∇⊗ vvv)

)
/2 is the spin tensor, εpεpεp is the plastic strain rate

tensor, ∇∇∇ is the Hamilton operator.
The algebraic separation of the total strain into the reversible and irreversible components

follows from evolution equation (1) for ApApAp and from similar equation for AeAeAe [6]. Such separation
has the form

AAA = AeAeAe + (III − 2AeAeAe)
1/2 ·ApApAp · (III − 2AeAeAe)

1/2
, (2)

where AeAeAe is the reversible (elastic) component of the total strain tensor, III is the unit tensor.
The constitutive physical relation is

σσσ =
ρ

ρ0

∂W

∂AeAeAe
· (III − 2AeAeAe) , (3)

where σσσ is the Cauchy stress tensor, ρ is the density of the medium, ρ0 is the density of the
undeformed medium, W is the strain energy density (a scalar-valued function of tensor argument)
which depends on the invariants of the reversible strain tensor.

The equation of equilibrium is
∇∇∇ · σσσ = −ρggg, (4)

where ggg is the gravity acceleration vector.
We assume that the porous material satisfies the Green flow condition [9]

Φ =
(Iσ1 )

2

9a
+
Jσ2
b

− κ2 = 0, (5)

where Iσ1 = tr(σσσ), Jσ2 =
[
tr
(
σσσ2
)
− tr(σσσ)2/3

]
/2 is the quadratic invariant of the deviatoric stress

tensor. Coefficients a and b in relation (5) are assumed to be known functions of the relative
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density ρ/ρ1, where ρ1 is the solid phase density. The shear yield strength of the solid phase κ is
assumed to be power function of the form κ = κ0 (ε

p
i )
ν , where εpi is the intensity of plastic shear

strain rate, (εpi )
2
/2 = tr

(
εpεpεp2
)
− tr (εpεpεp)

2
/3, κ0 and ν are some material parameters. To asymp-

totically transfer yield surface (5) into the von Mises cylinder it is assumed that lim
ρ→ρ1

a = ∞,

lim
ρ→ρ1

b = 1.

The plastic flow rule associated with yield surface (5) is

εpεpεp = λ
∂Φ

∂σσσ
, (6)

where λ is the scalar Lagrange multiplier.

2. Formulation of the problem

Consider a horizontal plane layer that is initially at rest. It has thickness h0 and the uniform
density equal to ρ0. The constant external pressure applied on the surface of the layer is equal
to P0. Let us consider the motion of the continuous medium under such conditions in order to
determine evolution of the material density distribution over the layer height.

We introduce a rectangular Cartesian coordinate system (X1, X2, X3) with the origin on the
underlying surface of the layer (the X1 axis is directed downward), XXX, xxx are the radius vectors
of a point of the medium at the initial and deformed state, respectively, XXX = xxx−uuu. In this case,
the system of equations (1)–(6) is closed by the initial condition of zero stress-strain state and
by the following boundary conditions

σ11

∣∣∣
X1=0

= − (ρ0gh0 + P0) , σ11

∣∣∣
X1=h0

= −P0, (7)

where g = 9.8 m/s2 is the acceleration due to gravity.
We assume that density of the medium can change both reversibly and irreversibly. The

yield condition (5), unlike some conditions known for a compressible medium (for example, the
von Mises – Schleicher cone), allows for the uniaxial irreversible deformation. The reversible
deformation is also assumed to be uniaxial.

3. Governing equation

In the given above formulation α11 = ∂u1/∂x1−(∂u1/∂x1)
2
/2 is the only non-zero component

of the Almansi total strain tensor. The relative density of the continuous medium is governed by
the strain tensor invariants: ρ/ρ0 = (1− 2I1 + 4I2 − 8I3)

1/2, where I1 = tr(AAA), 2I2 = tr (AAA)
2 −

tr
(
AAA2
)
, I3 = det(AAA). Then we have

ρ

ρ0
=

√
1− 2α11 = 1− ∂u1

∂x1
. (8)

Equilibrium equation (4) has the form ∂σ11/∂x1 = −ρg. Using (8), we integrate this equation
and obtain

σ11 = −ρ0g (C1(t) + x1 − u1) . (9)

From the first boundary condition (7) follows C1(t) = h0 + P0/(ρ0g) = h̃0 = const.
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Let us introduce ω = h̃0 + x1 − u1, ω > 0. Taking into account ρ/ρ0 = ωx and σ11 = −ρ0gω,
then equation (3) allows us to express the reversible deformation as follows

αe11 = E

(
−ρ0g

ω

ωx

)
, (10)

where function E is uniquely determined by the elastic potential.
In the case of uniaxial compressive strain relation 1 − 2α11 = (1− 2αe11) (1− 2αp11) follows

from (2). Taking into account (8) and (10), we have

1− 2αp11 =

 ωx√
1− 2E

(
− ρ0g

ω
ωx

)
2

. (11)

In addition, in the case of uniaxial deformation the rotation tensor rrr turns out to be zero and
relation (1) becomes(

∂

∂t
+ v1

∂

∂x1

)
αp11 = εp11 (1− 2αp11) , v1 =

∂u1
∂t

+ v1
∂u1
∂x1

= − ωt
ωx
. (12)

Taking into account (11), we obtain

εp11 =

(
ωt
ωx

∂

∂x1
− ∂

∂t

)
ln

 ωx√
1− 2E

(
− ρ0g

ω
ωx

)


and after some transformations we have

εp11 =
ωtωxx − ωxtωx

ω2
x

1 + ρ0g
ω

ωx

E′
(
−ρg ω

ωx

)
1− 2E

(
−ρg ω

ωx

)
 , (13)

here the prime denotes derivative with respect to argument of function E.
On the other hand, for arbitrary functions a(ρ/ρ1), b(ρ/ρ1) and the power law κ = κ0 (ε

p
i )
ν

in the yield surface equation (5), expression σ11 = −F (ρ/ρ1) |εp11|
ν is the result of associated

flow rule (6) [13]. Taking into account (9), for εp11 < 0 we have

εp11 = −
[
ρ0gω/F

(
ωx
ρ0
ρ1

)]1/ν
, (14)

where function F is uniquely determined by the coefficients a(ρ/ρ1) and b(ρ/ρ1).
Let us introduce new variables t̂ = t (ρ1/ρ0)

1/ν , x̂ = x1ρ0g, ω̂ = ωgρ20/ρ1. Eliminating εp11
from (13) and (14), we obtain the equation for the function ω̂

ω̂t̂ω̂x̂x̂ − ω̂x̂t̂ω̂x̂
ω̂2
x̂

(
1 +

ω̂

ω̂x̂

E′(− ω̂
ω̂x̂

)
1− 2E

(
− ω̂

ω̂x̂

)) = −
[

ω̂

F (ω̂x̂)

]1/ν
. (15)

The von Mises transformation [14] ζ = t̂, η = ω̂, ψ(ζ, η) = ω̂x̂ reduces the order of equa-
tion (15):

∂

∂ζ

ln

 ψ√
1− 2E

(
− η

ψ

)
 =

(
η

F (ψ)

)1/ν

. (16)
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Differential relation (16) is an equation with separable variables in which η appears as a
parameter. This equation is valid for an arbitrary function of the internal energy density, for
arbitrary coefficients a(ρ/ρ1), b(ρ/ρ1) in flow condition (5) and for the yield strength κ = κ0 (ε

p
i )
ν .

In addition, pressure exerted by the layer on the underlying surface must be constant and there
is no fully densified region in the material.

4. Results

We assume linear relationship between the yield strength and the intensity of the irreversible
shear strain rate (ν = 1). We specify functions a and b in the form a(ρ/ρ1) = 4/3(ρ/ρ1)

4/(1 −
ρ/ρ1), b(ρ/ρ1) = (ρ/ρ1)

3 [15]. Using [13],one can show that in this case function F in (16) has
the form

F (ψ) =
4κ0
3

(
ψ3

1− ψ

)1/2

. (17)

Let us consider some variants of the formulated problem.
I. Ideal flow. If reversible change in the density of the material is insignificant, integration

of (16) with respect to ζ gives∫
ψ−1F (ψ)1/νdψ = η1/νζ + C0(η).

Taking into account (17), for ν = 1 we have

−4/3κ0

(√
ψ(1− ψ) + arccos

√
ψ
)
= ηζ + C0(η), (18)

C0(η) = −4/3κ0

(√
ψ0(1− ψ0) + arccos

√
ψ0

)
= const, where ψ0 = ρ0/ρ1, follows from initial

conditions ζ = 0, ψ = ψ0.
Relation (18) is an implicit expression for ωx in term of ω. Time t is included in (18) as

a parameter. Solution of equation (18) with respect to ω contains an arbitrary function of
time. To determine this function one should use the first boundary condition (7) in the form of
ω
∣∣∣
x1=0

= h̃0.

When ψ0 6 ψ << 1 one can assume that
√
ψ(1− ψ) + arccos

√
ψ ≈ π/2 − 2/3ψ3/2. Then

relation (18) can be approximately expressed as ηζ = 8/9κ0
(
ψ3/2 − ψ

3/2
0

)
or

ωx = (1 + kωt)
2/3

, k =
9ρ0g

8κ0ψ
3/2
0

.

Then

kωt = −1 +

(
kx1t

3
+ f(t)

)3

, f(t) =
(
1 + kh̃0t

)1/3
(19)

and the density distribution satisfies the following relation

ρ

ρ0
=

(
kx1t

3
+ f(t)

)2

. (20)

Analytical solution (19), (20) is valid only if the state of the material is far from the state of
full consolidation.
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II. Small elastic strains. If the elastic strain αe11 = E (σ11ρ0/ρ) = E (−η/ψ) is small then
− ln (1− 2E (−η/ψ)) /2 ≈ E (−η/ψ). The expansion of E in powers of (−η/ψ) does not contain
constant term because E(0) = 0. Let us take into account only linear term of the series with
coefficient χ1. Considering (17), we integrate (16) for ν = 1 and obtain

4κ0
3

∫ (
1

ψ
+
χ1η

ψ2

)
ψ3/2

√
1− ψ

dψ = ηζ + C1(η),

where function C1(η) is uniquely identified by initial conditions, as in the previous case, but it
is not a constant. Coefficient χ1 is determined by elastic moduli of the material. After some
mathematical treatment we have

ω =
arccos

√
ψ0 − arccos

√
ψ0ωx +

√
ψ0(1− ψ0)−

√
ψ0ωx(1− ψ0ωx)

ρ0g
(
t/κ0 − 2ψ0χ1(arccos

√
ψ0 − arccos

√
ψ0ωx)

) . (21)

Relation (21) and the second boundary condition (7) in the form ω = h̃0 on the surface x1 = 0

uniquely determine function ω at any moment t > 0 and, consequently, all unknown variables
of the problem. The current position of the free surface of the layer is determined by equality
ω = P0/(ρ0g). The results of numerical solution of equation (21) in the form of the density
distribution over the current layer height h at different time points are shown at Fig. 1.

Fig. 1. The distribution of the relative density over the current layer height at different time
points t: 1 — t = 250 s, 2 — t = 500 s, 3 — t = 1000 s, 4 — t = 2000 s, 5 — t = 3000 s

Dashed lines correspond to the density distribution at the same time points without taking
into account the elastic deformation component (χ1 = 0).

The following parameters of the problem are used: ρ0 = 250 kg/m3, ρ1 = 2500 kg/m3,
h0 = 200 m, P0 = 0, κ0 = 109 Pa · s, χ1 = 10−6 Pa−1. The elastic moduli and hence the
stiffness coefficient χ1 are related to the material with the initial density ρ0. Coefficient κ0 is
related to the solid material with the limit density ρ1.
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The obtained solutions exist until the material density at the underlying surface x1 = 0

reaches the limit value ρ1. From equation (21) follows that it will occur at the time moment

t1 = κ0

[(
arccos

√
ψ0 +

√
ψ0(1− ψ0)

)/(
ρ0gh̃0

)
+ 2ψ0χ1 arccos

√
ψ0

]
.

For the parameter set given above we have t1 = 3.41 · 103 s. If elastic properties of the
material are not taken into account then t1 = 3.16 · 103 s. The influence of the elastic properties
becomes noticeable when initial thickness of the layer is large enough or for significant external
pressure.

Remark. Let us consider the expansion of the quantity − ln (1− 2E (−η/ψ)) /2 in equa-
tion (16). The expansion can include an arbitrary number of terms, i. e., the requirement
of smallness of the reversible strains is not essential. In this case, taking into account (17),
solution η = η(ζ, ψ) can be found for an arbitrary exponent ν > 0 in the form of combi-

nation of incomplete Beta-functions by virtue of the equality
∫
ψ−n (ψ3/(1− ψ)

)1/(2ν)
dψ =

B (ψ; 1− n+ 3/(2ν); 1− 1/(2ν)).
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Вязкое уплотнение тяжелого пористого слоя с учетом
упругих эффектов

Георгий М.Севастьянов
Институт машинной инженерии и металлургии ДВО РАН

Металлургов, 1, Комсомольск–на–Амуре, 681005
Россия

В квазистатическом приближении рассмотрено вязкое течение горизонтального слоя сжимае-
мого материала из состояния покоя под действием собственного веса и постоянного внешнего
давления. Одноосные обратимые и необратимые деформации полагаются большими. Поверхность
текучести принята в форме Грина с коэффициентами, зависящими от плотности материала и
скоростей пластических деформаций. При этом полагается, что необратимые деформации воз-
никают в материале при любой отличной от нуля нагрузке. Начально-краевая задача сведена к
интегрированию дифференциального уравнения первого порядка с разделяющимися переменными,
в которое время входит в качестве параметра. В частных случаях определена эволюция распре-
деленной по высоте слоя плотности материала. А именно в случае пренебрежимых обратимых
деформаций для плотности в начальной фазе уплотнения получено приближенное аналитическое
решение; в случае малых упругих деформаций построено численное решение. Указанные решения
справедливы до момента зарождения на подстилающей поверхности слоя полностью уплотнен-
ной области, дальнейшая эволюция которой не рассматривается.

Ключевые слова: сжимаемая среда, конечные деформации, тензор Альманси, вязкое течение, по-
ристость, поверхность текучести Грина, одноосная деформация, уплотнение, сила тяжести,
преобразование Мизеса.
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