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We are interested in the following questions of B. Hartley: (1) Is it true that, in an infinite, simple locally
finite group, if the centralizer of a finite subgroup is linear, then G is linear? (2) For a finite subgroup F

of a non-linear simple locally finite group is the order |CG(F )| infinite? We prove the following: Let G

be a non-linear simple locally finite group which has a Kegel sequence K = {(Gi, 1) : i ∈ N} consisting
of finite simple subgroups. Let p be a fixed prime and s ∈ N. Then for any finite p−subgroup F of G, the
centralizer CG(F ) contains subgroups isomorphic to the homomorphic images of SL(s,Fq). In particular
CG(F ) is a non-linear group. We also show that if F is a finite p-subgroup of the infinite locally finite
simple group G of classical type and given s ∈ N and the rank of G is sufficiently large with respect to
|F | and s, then CG(F ) contains subgroups which are isomorphic to homomorphic images of SL(s,K).
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Hartley asked the following question: Let G be a simple locally finite group containing a finite
subgroup with linear centralizer. Does it follow that G is linear? He proved in [2, Theorem A]
the following: Let G be any non-linear simple locally finite group and F be a finite subgroup
of G. Then there exist subgroups D � C 6 G such that D contains [C,F ] and C ∩ F , and C/D
is a direct product of finite alternating groups of unbounded orders. So the above question is
not answered positively in the general case because [C,F ] is not necessarily identity.

By standard methods, one may reduce the question to countable non-linear simple locally
finite groups. So, we may assume that G is a non-linear countable, simple locally finite group.
In [6] it is mentioned that, the structure of centralizers of simple locally finite groups which has
a Kegel sequence as a union of finite simple subgroups and the ones which has no, particular
type of such Kegel sequences are quite different.

Recall that an element in a simple group of Lie type is semisimple if its order and the
characteristic of the field is relatively prime. In the alternating groups all elements are semisimple.

Definition 1. A subgroup F of a finite non-abelian simple group G is called a totally semisim-
ple subgroup if every element of F is a semisimple element in G whenever it is a simple group
of Lie type. If G is alternating, then all finite subgroups are totally semisimple.

Observe that, a simple locally finite group G has a local system consisting of finite simple
subgroups if and only if G has a Kegel sequence K = {(Gi, 1) | i ∈ N}. For more information
about Kegel sequences see [3]. Our main result is the following.

Theorem 2. Let G be a non-linear simple locally finite group which has a Kegel sequence K =
{(Gi, 1) : i ∈ N} consisting of finite simple subgroups. Let p be a fixed prime and s ∈ N. Then
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for any finite p−subgroup F of G, the centralizer CG(F ) contains subgroups isomorphic to the
homomorphic images of SL(s,Fq). In particular CG(F ) is a non-linear group.

Proof. Step 1. Let F be a finite p-subgroup for a fixed prime p of the simple locally finite
non-linear group G which has a Kegel sequence consisting of finite simple subgroups Gi. By
the classification of the finite simple groups, we may assume that G has a Kegel sequence for a
fixed type of classical group. Let pi be the characteristic of the field over which the group Gi is
defined. Let ℘ = {pi | i ∈ N} be the set of all these primes. If the set ℘ is infinite, then we may
pass to a subsequence such that each Gi is defined over a field of characteristic pi and pi ̸= pi+1.
In this case, by deleting the fixed prime p from the infinite list and if necessary by passing to a
subsequence, we may assume that our p does not belong to the set of primes which appear as a
characteristic. Hence F becomes a totally semisimple subgroup in each Gi. Otherwise the set ℘
is finite. We may pass to a subsequence such that each Gi is a simple group over a field of fixed
prime r. If p ̸= r then again F becomes a totally semisimple subgroup in each Gi.

By the above paragraph we may choose a subsequence such that either F is a totally semisim-
ple subgroup in each finite simple group Gi of fixed classical type for all i ∈ N and so theorem
is proved in the totally semisimple and alternating cases in [1], or F is a p-group in Gi of fixed
classical type defined over a field of characteristic p.

So we are in the case that F is a p-group in Gi where Gi is of fixed classical type
defined over a field of characteristic p.

Reduction of centralizer from projective special classical groups to classical groups case.
As CG(F )N/N 6 CG/N (F/N) if CG(F )N/N contains subgroups isomorphic to SL(s,Fq),

then so is CG/N (F/N).
By using this we may reduce the proof of the Theorem to Classical groups.
Step 2. Let p be a fixed prime. Let F1 be a finite p-subgroup of the finite simple group G

of classical type defined over a field of characteristic p. G is constructed from a vector space
V of dimension m and G = T/Z(T ) where T = SL(V ), Sp(V ), Ω±(V ) or SU(V ). Since
(|Z(T )|, p) = 1, by Schur-Zassenhaus theorem, the inverse image L of F1 in T can be written as
L = F ×Z(T ) where F is a finite p-subgroup of T isomorphic to F1. Then CT (L) = CT (F ) and

CT (F × Z(T ))/Z(T ) = CT (F )Z(T )/Z(T ) 6 CT/Z(T )(F1) = CG(F1)

moreover as CT (F ) > Z(T ), the order

|(CT (F ) ∩ Z(T ))| = |Z(T )| = (m, |Fq| − 1) < |Fq| = q

So in order to prove the Theorem, it is enough to show that, for finite p-subgroup F of T
the group CT (F ) contains subgroups isomorphic to homomorphic images of SL(s,Fq). First we
show this for SL(n,Fq).

Lemma 3. Let F be a finite p-subgroup of SL(n,Fq) or GL(n,Fq) where Fq be a finite field of
order q of characteristic p. Then CSL(n,Fq)(F ) has subgroups isomorphic to SL( n

|F | ,Fq) provided
that n is large.

Proof. Let Vn be an n-dimensional vector space over Fq on which F acts. First we show
dim(CVn(F )) > n

|F |
. We may prove this by induction on |F |.

Assume that |F | = p. Since characteristic of the field is p and the element x ∈ F is of order
p, we have xp = 1, which implies (x − 1)p = 0. Then F has either Jordan block of size p or it
fixes the given vector. As we wish to show that F fixes a subspace of large dimension, we may
assume that, F has Jordan blocks of size p on the whole space. In this case Vn can be written
as a direct sum of the corresponding F invariant subspaces and in each F invariant subspace
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we have an eigenvector corresponding to the eigenvalue 1 and hence it is fixed. Then we have
dim(CVn(F )) > n

p
=

n

|F |
> number of Jordan blocks of F on Vn.

Now assume that |F | > p. Since F is a p-group, there exists a normal subgroup H � F such
that |F : H| = p. By induction assumption dim(CVn(H)) > n

|H|
. Now consider CVn(F ). The

group F acts on CVn(H) = W as a cyclic group of order p as H acts trivially on W . Hence

dim(CVn(F )) > dim(W )

p
=

n

|F |
by the first paragraph.

We may form a basis for Vn extending the basis of CVn(F ). Consider the non-singular linear
transformations of CVn(F ) which acts trivially on the remaining basis vectors of Vn. Then
CVn(F ) has a subgroup isomorphic to GL(

n

|F |
,Fq) and contained in CGL(n,Fq)(F ).

Now we prove the above result for the other classical groups that will complete the proof of
the Theorem.

Observe that in the next Lemma, classical groups over fields of characteristic 2 is also included,
main reference is [2]. In particular if G is an orthogonal group over a field of characteristic 2,
then we assume dim(Vm) is even as in [2].

Lemma 4. Let G = G(m,Fq) be unitary, symplectic or orthogonal group over a finite field Fq of
characteristic p. Let F be a finite p-subgroup of G. Let s be a given integer. If m > 4|F |+2s|F |,
then CG(F ) contains subgroups isomorphic to SL(s,Fq).

Proof. Let Vm be an m dimensional vector space over a finite field Fq of characteristic p associated
to the group G and ( , ) be a non-degenerate symmetric, unitary or symplectic form on Vm.
For the orthogonal groups over a field of characteristic 2, the vector space Vm is associated with
a quadratic form g : Vm → Fq together with a Fq valued bilinear form ( , ) on Vm such that
g(λx+ µy) = λ2g(x) + λµ(x, y) + µ2g(y) where x, y ∈ Vm and λ, µ ∈ Fq.

By [2, (b), p. 508] if m > 2s|F |+4|F |, then F leaves invariant a totally isotropic (respectively
totally singular) subspace of Vm of dimension at least s|F |. Then F acts on this F invariant
subspace of dimension s|F | and by Lemma 3, if dimension of the totally isotropic subspace > s|F |,
then CSL(m, Fq)(F ) contains a subgroup isomorphic to SL(s,Fq). Then by Witt extension
theorem we may extend the action to the isometries of the vector space Vm and hence CG(F )
contains subgroups isomorphic to SL(s,Fq).

Completion of the Proof of Theorem 2. Let s be a given integer. In a non-linear locally finite
simple group with a given finite subgroup F , we may find a classical group Gi where the rank of
Gi is sufficiently large. Then by Lemma 3 and Lemma 4, CGi(F ) contains a subgroup which is
isomorphic to SL(s,Fq). Hence CG(F ) contains subgroups isomorphic to homomorphic images
SL(s,Fq) for any s ∈ N. In particular CG(F ) is a non-linear group. 2

Theorem 5. If F is a finite p-subgroup of the infinite locally finite simple group G of classical
type and the rank of G is sufficiently large with respect to |F |, then CG(F ) contains subgroup
isomorphic to homomorphic images of SL(s,K) where K is a locally finite field. In particular
CG(F ) is an infinite group.

Proof. If F is a totaly semisimple element of G, then the result can be extracted from [1,
Theorem 1.11] and the proof of [1, Theorem 2.1]. If F is a p-subgroup of a locally finite simple
group defined over a field of characteristic p, then Lemma 3 and Lemma 4 give the result.

Definition 6. Let K = {(Gi, Ni) | i ∈ I} be a Kegel cover of a simple locally finite group G. A
finite p-subgroup F of G is called a K-p-subgroup if (p, |Ni|) = 1 for all i ∈ I.
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In general, for any non-linear, simple locally finite group, it is not true that, every finite p-
subgroup is a K-p-subgroup. In [7] Meierfrankenfeld showed that, there exists a simple non-linear
locally finite group G such that CG(x) is a p-group for an element x of order p. But by [1], if G
has a Kegel sequence as above, then CG(x) involves an infinite non-linear simple subgroup. So
the groups in [7] do not have such a nice Kegel sequence. Our results can be used in this direction
to decide whether G has a nice Kegel sequence or not; provided that we know the structure of
the centralizers of its elements.

Corollary 7. Let G be a non-linear simple locally finite group and K = {(Gi, Ni) | i ∈ N}
be a Kegel sequence of G. Then for any finite K-p-subgroup F , the centralizer CG(F ) contains
subgroups isomorphic to the homomorphic images of SL(s,K). In particular CG(F ) is an infinite
group.

Proof. This result is an easy application of splitting of the centralizer

CGi/Ni
(FNi/Ni) = CGi(F )Ni/Ni.

Lemma 8. Let G be an infinite simple linear group over a locally finite field K of characteristic
p and F be a p-subgroup of G (F could be infinite). Then |CG(F )| > |K|. Moreover if |K| is
infinite, then |CG(F )| is infinite.

Proof. By Zorn’s lemma every p-subgroup of G is contained in a maximal p-subgroup P of G.
As maximal p-subgroups of G are nilpotent; P is nilpotent and hence Z(P ) 6 CG(F ). As Z(P )
contains a subgroup isomorphic to the additive group of K we have whenever |K| is infinite, then
|CG(F )| is infinite.

Definition 9 ( [1]). Let Ḡ be a simple linear algebraic group. A finite abelian subgroup A
consisting of semisimple elements in Ḡ is called a d-abelian subgroup if one of the following
holds:

1. The root system associated with Ḡ has type Al, and the Hall π-subgroup of A is cyclic where
π is the set of primes dividing l + 1.

2. The root system associated with Ḡ has type Bl, Cl, Dl or G2 and the Sylow 2-subgroup of
A is cyclic.

3. The root system associated with Ḡ has type E6, E7 or F4 and the Hall-{2, 3}-subgroup of A
is cyclic.

4. The root system associated with Ḡ has type E8 and the Hall-{2, 3, 5}-subgroup of A is cyclic.

Theorem 10. Let G be an infinite simple classical group of rank l over a field of characteristic
p and F be a finite subgroup of G with F = P ×Q where P is a p-subgroup and Q is p′-part of
F . Let s be a given integer. If Q is d-abelian and l is sufficiently large with respect to |F | and
s, then CG(F ) contains subgroup isomorphic to homomorphic images of SL(s,K). In particular
CG(F ) is an infinite group.

Proof. Let G be an infinite simple locally finite group over a field K of characteristic p. Let Ḡ
be the simple linear algebraic group of adjoint type over an algebraically closed field K̄ which we
obtain G as a union of fixed points of Frobenius automorphisms σni where ni|ni+1, i ∈ N, for
details see [1]. Then Q is a d-abelian subgroup of Ḡ and by [8, Theorem 5.8(c) and Exercise 5.11],
Q is contained in a maximal torus fixed by σni for all i. The group CḠ(Q)◦ is generated by T
and the Ua with a ∈ Σ1 where Σ1 be the system of roots vanishing on Q and CḠ(Q)◦ is reductive
group by [8, 4.1 (b) E35] with Σ1 as its root system.

Since the order of CḠ(Q)/CḠ(Q)◦ is a finite fixed number it is enough to consider the theorem
for CḠ(Q)◦.
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By [4, p 20, Proposition ] if s ∈ G is semisimple, then s ∈ CG(s)
◦ and every unipotent ele-

ment of CG(s) lies in CG(s)
◦ hence the p-part P of F also lies in CG(Q)◦. The group (CG(Q)◦)

′

is a semisimple subgroup and P is a finite p-subgroup which is fixed by the Frobenius auto-
morphisms σni . The automorphisms σni are automorphisms of CG(Q)◦ see [8, 3.2, E.10.] and
so automorphisms of (CG(Q)◦)

′
. Our group P lies in the semisimple part of CḠ(Q)◦. Let

(CḠ(Q)◦)′ = H1H2 . . .Hk be the product of simple algebraic groups Hi. Then the Frobenius
automorphism acts on the components and choose an orbit of σn1 containing a component of
large rank. Since the rank of CḠ(Q)◦ is sufficiently large and this rank is the sum of the ranks of
the simple components Hi, we have such a component. For the existence of this large rank see [5].
Then the rank of CCḠ(Q)◦ (P ) is sufficiently large. Then the fixed points of the automorphisms
σni on this component gives the centralizers of large cardinality as the fixed points contains the
classical groups of large cardinalities and certainly they are in the centralizer of F .

Then the fixed points of the automorphisms on this component gives the centralizers which
proves the theorem.

Dedicated to V.M. Levchuk and A.Yu.Ol’shanskii on the occasion of their 70th birthday.
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Централизаторы конечных p-подгрупп в простых
локально конечных группах

Махмут Кузусуоглу
Департамент математики

Средневосточный технический университет
Анкара, 06531

Турция

Нас интересуют следующие вопросы Б.Хартли: (1) Правда ли, что в бесконечной простой ло-
кально конечной группе, если централизатор конечной подгруппы линейный, то G является ли-
нейной? (2) Для конечной подгруппы F нелинейной простой локально конечной группы порядок
|CG(F )| бесконечен?

Доказывается следующее: пусть G — нелинейная простая локально конечная группа, имею-
щая последовательность Кегеля K = {(Gi, 1) : I ∈ N}, состоящую из конечных простых под-
групп. Пусть p — фиксированное простое число, s ∈ N. Тогда для любой конечной p-подгруппы
F группы G централизатор CG(F ) содержит подгруппы, изоморфные гомоморфному образу
SL(s,Fq). В частности, CG(F ) является нелинейной группой. Мы также показываем, что если
F — конечная p-подгруппа бесконечной локально конечной простой группы G задачи классического
типа и заданных s ∈ N, и ранг G достаточно большой относительно |F | и s, то CG(F ) содержит
подгруппы, изоморфные гомоморфным образам SL(s,K).

Ключевые слова: централизатор, простая локально конечная, нелинейная группа.
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