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The algorithm of approximate solution has been developed for the differential equation describing the
anharmonical change of the spin orientation angle in the model of ferromagnet with the exchange compe-
tition between nearest and next nearest magnetic neighbors and the easy axis exchange anisotropy. The
obvious dependence of the angle velocity from angle and initial condition has been derived by erpanding

the first integral of the equation in the Taylor series in vicinity of initial condition.
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The theoretical description of incommensurate magnetic structures (IMS) in antiferromag-
netic dielectrics in the framework of Landau phenomenological theory of the phase transition was
elaborated by Dzyaloshinskii [1]. For helimagnet with the Dzialoshinskii-Moria antisymmetrical
exchange leading to a Lifshitz invariant in a free energy expansion (relativistic mechanism of
forming IMS) the energy minimization for the solutions within the anisotropic plane is reduced
to the solution of static sine-Gordon equation. The equation has the anharmonic solutions in the
form of elliptical integrals describing the inhomogeneous helical structure with the step changing
when moving along the helix vector - the so called soliton lattice [2]. For helimagnets with com-
peting exchange interactions between the nearest and further magnetic neighbours (the exchange
mechanism) it is necessary to take into consideration the second derivatives (and highter ones
in the general case) of an order parameter and the energy minimization can not be reduced to
an analiticaly integrable differential equation. The aim of the present work is to develop the
algorithm of approximate solution for the equation describing the anharmonic change of the spin
orientation angle in the easy axis ferromagnet with the exchange competition between the near-
est and next nearest neighbors. We consider the magnetic structure with the spin orientation
within the anisotropy plane (the flat anharmonic helix) and depends on the one coordinate.
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The Hamiltonian of the classical spins S=1 with the ferromagnetic and antiferromagnetic
exchanges between nearest and next nearest neighbors accordingly and the easy axis exchange
anisotropy (XXZ-model) has a form

H=J Z(Sisi-l-l + 5SZZ iz+1) + Jo Z(Sis’i-‘r? + 5Sf f+2), J1 <0, Jy>0, 6> 0. (1)

i i

The same relative anisotropy in the both exchanges allows to reduce the number of model pa-
rameters and simply separate an effect of frustration and anisotropy on the IMS energy. The
orientation of the spin S; in the plane with the easy axis z is determined by the total exchange field
from neighbor spins S;+1 and S;+o. At T=0 all spins have the equal length equal to saturation

one. The local field on the site i normalized on the exchange J; has the components
h, = (1+0)h?,

1
hg =3 (cos 0iy1 + cosB;_1 + R(cosb;tq + cos 91-_2)), (2)

1
hm = 5 (sin 97;_;'_1 + sin 91'_1 + R(sin 91‘4_2 + sin 97;_2)),

where hY is the z-component of exchange field without anisotropy, # is a polar angle and R =
Ja/J1 < 0 is a frustration parameter. The transition to the continual description is carried out
by the Taylor series expansion of the neighbor spins angles on the each site

0; =0, 041 =0E£3114+312, 012 =0%X0 + Yoo, (3)

where ¥,z are the sums of odd and even derivatives of the variable 0

< g2n—1) > (2n)
Y= —, Xi2= —
H ; (2n—1)1" P n; (2n)!”
5 > 22n—19(2n—1) 0 22n9(2n) (4)
21 = e v 22 = o
— (2n-1) — (2n)!

After substitution (3) the components (2) and longitudinal field on the spin (an energy density
on the single interval in coordinate space) takes the forms

h? = cos(f + X12) cos 11 + R(cos(f + Xaa) cos Xay),
hy = sin(0 4+ 313) cos X1 + R(sin(6 + Xa2) cos o). (5)
h)y=¢e=h,cos0 + h,sinf = 5h2 cos @ + €,

where €y = cos Y11 cos 212 + RcosYo; cos Yoo is an energy in the isotropic case § = 0. An

orientation of each spin is uniquely determined by the collinearity condition of spins and local
fields from the neighbor spins [3]. The transverse field on the spin must be equal to zero

hi = h,sin@ — hy cosf = 6h?sinf — Ay = 0,

Ag = cos 311 sin Yo + R cos Yog sin Yoo.

(6)

Taking into account the collinearity constraint (6) the magnetic energy density takes a multi-
plicative form - the anisotropic and frustration components hold as product terms
1446

€= ———+5— €
1+ dsin?0 0
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Rewriting the general equation (7) in the following form

€Os Y11 Sin Y19 + R cos Yo7 sin Yoo dsinf cos b

= (7)

cos X171 cos N1a + Rcos Yoy cos Yo 14 sin?6’

one can make a general conclusion that anharmonicity in the change of angle 6 (the derivatives
of the second order and higher) is appeared at § > 0, takes a maximum value at § = (2n+1)7/4
and vanish at § = nw/2.

Further solution of equation (6) will be carried out in the linear anharmonicity approximation
(0" << 1), neglecting the derivatives which are higher than second order. In this approach the
Eq. (6) takes an autonomous form

g . €0 0" +4Rcos20’  20sin6cos6

= 8
cos @’ + R cos 26’ 1+0sin%6’ ®)
and at the substitution z = 0'2/2 is integrated by quadratures
=C
I(z,20) = / ﬁdz = In(1 + dsin?0), (9)
z0 60

where C(z) = cosv2z + 4Rcos2v2z, €(z) = cosv2z + Rcos2y/2z. The variable z range
{20, Zmax} In the interval 6 € {0, 7/2}. Expanding the integral in the Taylor series in vicinity of
2o and taking into account that ag = I(z = z9) = 0 we obtain the series

(n—1)

[(z’zo)zian.w7 ay, = (%) . (10)
n=1

n! €0 20

At linear anharmonicity keeping first two nonzero terms of series (10) (the quadratic approxima-
tion) we obtain the obvious dependence of the angle velocity from angle and initial condition zq

B €o(2)
3R - K(20)(1 4 2cos? /22

Z =20 X
)

« (\/02(20) —6R - K(20)(1 + 2cos?v/22) - In(1 + §sin? ) — C(ZO))v (11)

where K(z0) = sin(v/229)/v/220.
The energy of the quarter of period divided by the corresponding length is equal to the
average energy of one spin

™2 e(z) do
(1+94) )
B(z) = /0 1+ dsin?6 \/22(0, 20) . (12)

- /ﬂ/Q do
0o /2z(0,20)

The ground state of the solutions is determined by an extreme of the function (12) (the
maximum in our case, because the fields and energy density are normalized on the J; < 0).
The corresponding initial condition zy = 2.t parametrizes the ground state solution for each
set of the parameters § and R and after substituting into Eq. (11) determines the functional
dependence of z on the angle 6 in the ground state. The solutions with increasing helix pitch
upon changing the angle between the spin and easy axis 6 from zero to 7/2 (6" > 0) are exist
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when the condition zg > zmin = (1 + 4R)/(1 + 16R) > 0 is fulfilled. It is impossible for the
IMS wave vector to tend to zero at the phase transition from incommensurate to commensurate
state, which also follows from the phenomenological analysis based on the Landau theory [2].
It is means that the transition on the model parameters § and R is accompanied by step-like
change of the magnetic structure vector and hence is a first order phase transition.

The range of the z variation from zeg¢r t0 Zpmas 1S increased with increasing 6 and takes a
maximal value on the phase boundary with collinear phases. The difference z,,q0 — Zextr takes
the maximum value equal to 0.4 in the triple point R = 1/2, § ~ 1.34 where the energy of the
soliton phase is equal to the energies of ferromagnetic and "up-up-down-down" phases.

To assess the application of the quadratic approximation at the expansion of the first integral
(10) one makes a numerical integration in the triple point and compares the result with the
quadratic and cubic decomposition (10) (Fig. 1).

I(z) In(1+8sin’0)
7777777777777777 1n[558i112(m2)] » :1 /
0.8} - 408

R=-1/2, 6=1.34
In[1 +3sin’ (/4 )
0.4} 404
Z
0!0 . max 0,0
0.4 0.6 0,8

Fig. 1. The numerical integration of the first integral (9) (solid line 1) and the quadratic (dash
line 2) and cubic (dash-dot line 3) approximations are shown with the right part of Eq. (9)

The coefficients a; and ay are positive. The third coefficient a3 is negative and together with
the next terms of expansion forms an alternate series which provides a fast expansion convergence
to the numerical integration result.
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Poccus

Paspaboman arzopumm npubsuicennozo peweHus JuBPhepenyuaivnozo YpasrHeHus, OnucCoeauLe20 aH-
2GPMOHUYECKOE USMEHEHUE Y2A0 OPUEHMAYUUY, CNUKG 68 MOJEAU AELKOOCHO20 HePPOMaZHeMUKa ¢ KOHKY-
peryuets 0bmenos menHcdy bAUNCATUWUMU U CAeIYOUUMU 36 OAUNCATULUMY MAZHUMHBLMU COCEOAMU.
Henaa 366UCUMOCTVG Y2A060T CKOPOCTIU OM Y2AG U HAYANDHOZO YCAOBUSA NOAYUEHE NYMEM PASAOHCEHUS
nepeo2o uHmMe2pasa ypasHerusa 6 pad Tetiopa 6 oKPECMHOCU HAYANLHOZ0 YCAOBUA.

Karouesvie ca06a: HECOUSMEPUMDBLE MAZHUTMHDLE CTMPYKIMYPDL, COANUMOHHAA PEULEMKR, KOHMUHYAALHOE
npubsudicerue.
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