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Introduction

The complexity of analytic functions of several variables has been studied in [1-5]. A method
of measuring the complexity of an analytic function in two variables, possibly multivalued, is
proposed in [3]. For any analytic function of two variables z(x,y) one can define its complexity
N(z). It attains values 0, 1,...,00 and is preserved under any analytic continuation. Functions
of one variable have complexity N(z) = 0. Complexity one have functions z(x, y) of two variables
if they have the form z = c¢(a(z) + b(y)), where a, b, ¢ are nonconstant functions of one variable,
and so on. In other words, for a function z of two variables we write N(z) = n if z can be
represented in the form C(A(z,y) + B(x,y)), where C is a function of one variable, and the
complexity of A and B is less than n, and there is no such representation with a smaller value
of n. This produces an increasing system of classes of functions

ClopcCly cCly....

If a function does not belong to any of these classes we write N(z) = oo. Each of the above
classes is defined by differential-algebraic relations. For example, Clj is defined by the condition
2z, 2, = 0, and Cly by the condition

B(2) = 2 (2l 7 = ) 20 ()2l — (2))220) = 0. (1)

The differential polynomial ¢(z) is the numerator of the expression (In(z,/2;))%, -

1. Linear equations with constant coefficients

Consider the pair of functions (z; = €™ 2y = eP*T®W) If ab = pg = 0 then we have
max(N(z1), N(z2)) = 0. If it is not so, then max(N(z1), N(z2)) = 1. What condition on
(a, b, p, q) provides that the complexity of all linear combinations of z; and 25 does not exceed
one? The answer gives
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Lemma 1. Let (ab,pq) # 0. The complezity of all linear combinations of z1 and zy does not
exceed 1 only in three cases (1) p=a, (2) q=10, (3) ag = bp.

Proof. The condition (1) for z = t121 + t225 has the form
(b—q)(a—p)(ga—bp) ((e‘“""by)2 abts? — (ep$+qy)2pqt12> ety ePTHay ¢ ) = ().

So the lemma is proved. o

There is a curious corollary from this lemma. Consider a homogeneous linear equation with
constant coefficients P(D)(z(z,y)) = 0 and let £ be the space of its analytic solutions. The
complexity N (L) of the space of solutions £ is the maximum (finite or infinite) of the solutions’
complexities.

Theorem 2. If N(£)< 1, then the equation P(D)(z(x,y)) =0 has one of the forms:
(1) 2, — Az =0, solutions have the form z = % b(y),

(2) z, — Bz =0, solutions have the form z = PV a(x),

(8) kzy, + 1z, = 0, solutions have the form z = c(lx — ky),

(4) 27, = 0, solutions have the form z = a(x) + b(y).

Proof. Let x = {P(A1,\2) = 0} be the characteristic set of this equation and let (z; =
ettty - 2, = ePPT) be two solutions, i.e. (a,b), (p,q) € x. It follows from Lmma 1 that
X belongs to a vertical line (case (1)) or to a horizontal line (case (2)), or to a line passing
through the origin (case (3)). There is another case (case (4)) outside Lemma 1. In this case
X is the coordinate cross and N(z1) = N(z2) = 0. The characteristic polynomials have one of
the forms: in case (1) P(A1,\2) = (A1 — A)™, in case (2) P(A1,A2) = (A — B)"2, in case (3)
P(A1, A2) = (kA1 +1X2)™, in case (4) P(A1, A2) = (A1 A2)™. In all cases it is not difficult to solve
these differential equations. The condition N(£)< 1 is true only for ny = ny = ng = ny = 1.
The theorem is proved. O

Note that if the multiplicities (n1, na ns, n4) are arbitrary, then the complexities of the space
of solutions are finite but greater than one.

2. L-pairs

A collection of functions forms a linear space if this collection is closed under addition and
multiplication by a constant (complex numbers). Multiplication by a nonzero constant does not
change the complexity of a function: N(Az(z, y)) = N(z(x, y)). This means that a nonzero
function of complexity 1 generates a linear space lying in Cl;. As for a sum of two functions,
if N(z1(x,y)) and N(22(z,y)) do not exceed n then N(z1(z,y) + z2(x,y)) < (n+1). It can be
shown that in ‘general position’ this inequality becomes the equality. There is a simple example:
N(xy) =1, N(2?) = 0, then N(xy + 2?) = 2. But there exist exceptional pairs. For example
N(zy) =1, N(x +y) =1 and N(t1(zy) + t2(z + y)) =1 for any (¢1,t2).

Definition. We call a pair of functions (z1(x,y), z2(x,y) an L-pair of complexity n if
N(ti1(z1(z, y) + taza(z, y)) < max(N(z1), N(z2)) =n for any (t1, t2).

Here we assume that z; and z5 have analytic germs at the same point. Lemma 1 then becomes
a classification of L-pairs of a special form.
Let us formulate several obvious statements.

Statement 3. Two functions (z1,22) is an L-pair of complexity zero if and only if they are
functions of the same argument x or y.
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Statement 4. The property of being an L-pair is invariant under the action of
(1) the pseudo-group of transformations {(x — p(x), y — q(y))},

(2) the change {(x =y, y — x)},

(8) the affine group of transformations of (z1, z2)-plane.

The pseudo-group generated by the transformations (1), (2) and (3) we denote by G. The
description of L-pairs is natural to give up to the G-action.

Now let us turn back to Lemma 1. If we assume only that N(z1 4+ 22) < 1, we have the same
description. Indeed, the condition (1) for z = z; + 22 has the form

(b—¢q) (a —p) (ga — bp) ((e‘”ery)Q ab — (epm+qy)2 pq) A tbygprtay —

and it is enough to reach the conclusion of Lemma 1. Taking this into account we modify the
definition.

Definition. We call a pair (z1(z,y), z2(x,y)) a pair of complezity n, if N(z1(x,y) + z2(z,y)) <
max(N(z1), N(z2)) = n.

We can strengthen Lemma 1 as follows.

Lemma 1°. Let (ab,pq) # 0. The pair (z; = ¥+ 2y = ePTTW) s q pair of complexity one
only in three cases (1) p=a, (2) ¢ =0, (3) aqg = bp.

Now we turn to the construction of an arbitrary L-pair of complexity one. Their description
is given in the form of a list of cases that are specified and denoted in the course of exposition.

Let z; and 23 be two functions of complexity not exceeding 1, that is z; = ¢1(a1(x) + b1(y)),
29 = co(az(x) + ba(y)). Assume also that max(N(z1), N(z2)) = 1, i.e one of the functions has
complexity one, let it be z. Then as, b2, and r are non constant and locally invertible at a
general point. Replace by a5 *(z) and y by b, ' (y). The condition takes the form

cla(x) +b(y)+t-r(zx+y)eCli Vt, r' #0. (2)

Let the first term have complexity zero, this is Case (01). Then the first term is a function of
one variable, denote it by a(z). From (1) for a(x) + ¢ - r(x + y) we get

aryrirs = 2a179” — agriry,
rirs = 7"22.
By lower indices we denote orders of derivatives. If ro = 0 then r(v +y) = k- (z +y) + [ and
a(z) is arbitrary. This is Case (01.1). This pair is equivalent to (a(x), (z + y)).

If 75 is not zero then from the second equation we have r(t) = p-e™ + p. And from the first
equation we have a(x) = a-e™ +a. This pair is equivalent to (kz, zy). We call this Case (01.2)

Consider now Case (11) when both terms have complexity one. This means that o', ¥/, ¢/, /
are nonconstant functions. From (1) for c(a(z) + b(y)) +t - r(z + y) we get

2 2 2 2 2 2 2
a1“bicar1® —aibi"car1” — ar“cariry — arbacar:” + asbicar” +
2 2 2
+b1 cor1Te — ayc1TiT3 + 2a1¢1m2° — ageyrire + bicyrirs — 2bycire® 4 bacyirire = 0,

2 2

c 2
7@?1)161637"12 — a1‘3610227’1 — a1b130163T12 —+ a1b1302 7’12 — 2(112b2C102’I”12 —+ 2 a2b1 61021"12 —

2.2 2.2, 2 2 2 2.2 2. 2.2
—a1°c1rirs + a1?c1“ro” + 2 arboci“rire — 2 asbic1“rire + b1“cr“rirs — b1%e1“re” =0, (3)

2 2 3 3
a13b1 CcC1C3T1 — 2a13b1 0227"1 — a12b1 C1C37T1 + 2a12b1 6227“1 + a13b161027‘2 — a13b28102’l“1 —

3 3 2 2 2 2 2.2 2.2
—a1b1”cieary + asbi"cicary — a1bic1 rs + a1°baci“re + a1b1c1°rs — agbi“c1re = 0.
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Eliminating c3 from the first and second equations and then from the first and third equations,
we get two equations. Each of them is a quadratic form in (e¢;,ce) with a common factor
arbyry (ap — b1)2. In our case this factor can be equal to zero only if a; —b; = 0 (Case (11.1)).
This pair has the form (c(z + ), r(z + y)).

Assume now a; — by # 0. After dividing by the common factor we get

2
a12b16227’12 + a1b1 6227”12 — a1201627‘17’2 -2 a1b161627’1’l"2 + &1b26162T12+

2
tagbicicari® — by cicarire + arci®ro? — aser®rire + biei®re? — baci?riry = 0, )

2 2
2(112b1 6227’12 — 2&121)101627"17’2 + (112b201€27’12 — 2a1b1 c1CoT1T2+

+a22b1201027"12 + daibic1?r9? — 2a1bac12rire — 2a9b1c12r1ry = 0.
After elimination of ¢5/c; we have
(a1 — 61)3 a1b171%asbars (a12b1r2 — a12bory — ayby’re + (12b127"1) =0. (5)
Consider all the possibilities separately.

Case (11.2). One of the functions o’ = 0 and " = 0 is linear, let it be b, then b(y) = k-y+1,
where k # 0. Replace k-y +1 by y and k-2 — [ by x, then r(¢) becomes r(t/k). The condition
(1) for c(a(x) +y) +t-r(z +y) takes the form

2 2.2 2
a1361627“2 + 0,1361037‘1 — 2&1362 rL—ai1°c1°rs —ai“ciesry +
2,2 2 2
2a1°co”r1 + a1c1°r3 — ajc1cary — asc1ro 4+ ascicary = 0,

3 2 3,22 2.2 2
a1”cicgry” —ai1tce r1t —ai1terrirs +ait e

(110227‘12 — 2a2012r1r2 + 2(1261027‘12 + 0127'17’3 — 6127’22 = 0,

2.2 2
re” —aicicsri” +

2 2 2 2 2
—Qa1 CaT1T9 + a1 C3Tr1” —aicirirs + 2a101r2 — aiczry —

2 2
AoC1T172 + ascori® 4+ c1riry — 2c¢1r9” 4+ corire = 0.
The expressions for ¢3 from each of these equations are fractions with the denominators

a2eyr (a1 — 1), ayciry? (a12 — 1) . ar? (a1 —1).

There are two possibilities for vanishing of one of the denominators: a; =1 or a; = —1. In our
case a1 # by, hence we have only the second possibility a; = —1, a(z) = —z + «. The condition
(1) yields

—012’1"3 —ci1e3T1 + 2 0227‘1 = 0,
C17T173 — 2017"22 + C37”12 = 0,
where ¢ and r are functions of two independent variables z — y and = + y.
Separating the variables and solving the differential equations we arrive at Case (11.2.1) :
c(—x +y) =y L5 r(z+y) = pet™@HY) 4 5. The pair then has the form (y/z, zy).
If a3 # £1, we can eliminate c3 from (5) to get two quadratic form in (¢, co):
(cary — c172) (02a13r1 + coa1°%11 — cra1’ry — crairs + agrl) =0,
(cor1 — e172) (2¢2a1®r1 — 2¢1a1m3 + crasry) =0
with the common factor (cor; — rocy). If this factor is equal to zero (Case (11.2.2)), then

we can separate the variables and, taking into account that the Jacobian of the change (¢t =
a(x) + y; s = v+ y) does not vanish, we see that both logarithmic derivatives are equal to the
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same constant m. From this we get z; = ye™@®)+y) L 5 2, = pem™(@+¥) £ 5 The pair has
the form (a(z)y, zy).

Otherwise, (Case (11.2.3)), dividing out the common factor and eliminating ¢s /¢y from two
linear forms, we get aj2asri? (a1 — 1) = 0. It vanishes only if az = 0, a; is then the constant A.
In this case Aco/c1 = ro/r1, and 21 = c¢(Azx 4 y) = ye XA+ 25 = r(x 4+ y) = pe™@+Y), The
pair has the form (z¥y, zy)

We see that Cases (11.2.1) and (11.2.3) are subcases of Case (11.2.2). Thus, in Case (11.2) the
pair has the form (a(x)y, zy).

In Case (11.3) 7, =0, i.e. 7(z+y) = p(x +y) + p, where p # 0. By replacing « with px + p
and y with py we obtain r(z +y) = « +y. The condition (1) for c(a(z) 4+ b(y)) + (x + y) has the
form

3, 9 3. 9 .
a1361 C1C3 — 2&151)1 622 - a126130163 + 2(112b13622 - a1‘3620102 + a2b130162 = 0,
a13b10103 - a13b1622 — a1b130163 + a1b13622 — 20,12b26162 + 2a2b120162 =0,
a12b163 — a1b1203 — aibacy + asbics = 0.
By eliminating c3 and ca/c1, we get
2 2
(Cl1 - bl) (a1 bg — agbl ) =0.

It may vanish only because of the second factor, therefore, separating the variables we get
az/a3 = by /b3 = —m where m is a constant. Then

1
a(x) +b(y) = E(ln(mz + a) + In(my + B) + In(n)),
and three equations for c(t) are
c3 = mcg, c3c1 = cg, mcico + ci1c3 — 20% =0.

Consequently, c(t) = ve™ + 7, and the pair has the form (zy,z + y).
Case (11.4)
a12b1r2 — a12b2r1 — a1b12r2 + a2b12r1 =0. (6)

From this we get
T2 a12b2 - 02512

— B ™)

1 aiby (a1 —by)

r

(the denominator is not zero). The condition that -2 is a function of = + y, namely the equality
1

of its derivatives with respect to = and y, is

—(L14b1b3 + a14b22 + a13b12b3 — 2a13b1b22 - a12a3b13 + 2&1@22b13 + a1a3b14 - (L22b14 =0 (8)

We can decrease the order of equation (8) twice. First, putting a1 = da/(z) = A4, by =V (y) = B.
Second, introducing ag = a”(z) = P(A), ba = b'(y) = Q(B). In this notation we have ag =
a”'(x) = P'(A) P(A), bs =b"(y) = Q'(B) Q(B) and we can write (8) as

_A*B (ddBG (B)) G (B) + A* (G (B))? + A°B? <ddBG(B)> G (B) -
L2 BB (G (B))? — A2 (£4F (A)> F(A)B® +2A(F (A)? B® +

+A <£4F (A)) F(A)B*— (F(A)’B*=0.
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After the substitution f(A4) = \/F(A), g¢(B)=+/G(B) we previous equation becomes linear

_atp 4 ()+2A4g(B)+A3BQig(B)—4A3Bg(B)—

aB? dB
d d
23 3 4 _ 4 _
ABdAf(A)+4Af( )B® + AB dAf(A) 2f(A)B*=0.
From this we find diB g and write the condition of its independence from A:
d d
_A4p2 313 A2R4 32 _ 23
ABdA2 (A )+2ABdA2 (4) — BdA2 (A )+6ABdAf(A) 10ABdAf(A)+

+4AB4d—Af(A) +2A% (B) —12A?B?f (A) + 16 Af (A) B> —6 f (A) B* = 0.

Now we express g(B) and write the condition of its independence from A:

3 & A 6A22 A 18Ad A) =24 f(A) =
@()* @()Jr diAf()i f(A) =

By looking for solutions of the form f(A) = A™, we get the equation
m(m —1)(m —2) —6m(m — 1) + 18m — 24 = (m — 2)(m — 3)(m — 4).

Hence, a general solution to (9) is f(A) = l;A* + m; A3 + n; A%, By eliminating f(A) from
(9), we obtain g(B) = l3B* + maB3 + ny B2, Substituting these f(A) and g(B) in (9), we get
l1 = la, m1 = ma, n1 = ny. Finally, f(A) = 1A% +mA3+nA? ¢(B)=I1B*+mB3+nB? We
see that a(x) = d/(x) and B(y) = b/(y) satisfy the same differential equation

da

= \/Za4 + ma3 + na?, % = \/154 + mp3 + np32. 9)

Since a and b are not linear, we may assume that the constants I, m, and n are not zeros
simultaneously. Thus, if [ =n =0 and m # 0 (Case (11.4.1)), then

Therefore
ron B 4 B 4 ~ neoN -8
Analogously,
4 4 - -8
b(x) = = by =—————+D, V(y)=—r—-—-u
(@)= B@) = g W) =~y + D V)= o
Now, from (7) we get
ry a?by — azb?

ri aibi(ar —by)’

p

and then we have r(t) = “irC1D

Computing co/c1 from any of (4) and substituting the

expression for ro / r1, we get
C2 a1by — azby

C1 B a1bl(a1 - bl)
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and
1

cla(x)+b =
(a(z) +b(y)) xiC—i_y-i-%

Thus, the pair has the form

(2 =% )
z21 = ) 22 = .
T+y T+y
If I #0 or n # 0 (Case (11.4.2)), then
/ dt -2 VP +mt+n
= arctgh | —— |,
VI +mt+n /12 4 n Vit? +n

and we get a'(z) = a(x) and b/ (y) = B(y) as inversion of the integrals, and a(z) and b(y) by one
more integration. As in the previous case, from (7) we get 7(¢) and ¢(t) from any relation of (4).

Finally, we have the theorem.

Theorem 5. Let z1(z,y) and z2(x,y) is an L-pair of complexity one, then this pair up G-action
has the form
For N(z1) =0, N(z)=1
(01.1) z1 = a(x), z2=x+y, a isarbitrary,
(01.2) 21 =z, 29 =y,
For N(z1) = N(z2) =1
(11.1) z1 = c(z +vy), z2=r(xz+vy), where c and r are arbitrary,
(11.2) z1 = a(x)y, 22 =2xy, a is arbitrary,
(11.3) z1 = xy, z2=x+Y,
11.4.1) 2 = 22
( YTty z+y’
(11.4.2) In this case there are no explicit expressions for the pair z1 = c(a(z) + b(y)), 22 =
r(z +y). The four functions (a,b,c,r) are constructed as described above. In particular, they
can be expressed by quadratures.

As shown above, all pairs in this list are L-pairs. In Cases (01.1), (01.2), (11.1), (11.2) it is
obvious. In Case (11.3) we can also see it easily: z = zy +t(z +y) = (z+1t)(y +t) — t>. In Case
(11.4.1) it is not that clear. We need to check that

Ty 1 t+ay

z = +1
Tty r+y r+y

) z22 =

€ Cly for all t.

After the change t by t2 we get

2 + Ty
z=—".
r+y
By replacing  with tz, y with ty, and z with t/z, we get
Tty
14y

Now, we replace z with th(z), y with th(y), and z with th(z) and use the addition formula

_ th(z) + th(y)
@ +Y) = T ) thiy)

to get z = x + y. Since all the transformations here do not change complexity, this proves that
the complexity of the original function is 1.

For Case (11.4.2) the author does not know a similar reasoning. The open question is what
mysterious relations are behind that fact.

The set of pairs of complexity one is certainly wider than the set of L-pairs of complexity
one. This is another open problem: to describe all pairs of complexity one.
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3. O(2)-simplicity
The standard action of the O(2) on the (z,y)-plane is
9 = (z = cos(@)x —sin(¢)y, y — sin(¢)z +cos(¢)y )
where ¢ € C. This action induces an action on functions
2(2,y) = 94(2) (@, y) = 2(cos(@)z — sin(¢)y, sin(@)x + cos(d)y).

Denote t = tg(¢/2), then we have another form for this action

N P I LS

= | T xr — x| .

9t 1+t2 t2+1y7y t2+1y 1+t2

If N(2(z,y)) = n, then N(z(Az, Ay)) = n also, therefore we can replace g;(x,y) with h(z,y) =
(1+¢%) ge(, y).

(
If N(2) < n, then N(gs(2)) < n+ 1, and for arbitrary z and ¢ there is no reason to expect
that N(ge(2)) < n. For example, let z = zy, then N(z) = 1. For §(h;(z)) we have

4P+ ) -1+ 1) (P +2t-1) (-2t -1) (2 +1)".

We see that N(hs(xy)) = 1 only for 9 values of ¢, namely ¢ = 0, +1, 44,41 + /2. The corre-
sponding functions are proportional to

wy, o -y (zxiy)’
For another values t the complexity N (h:(xy)) is equal to two.
Definition. A function z(z,y) is called O(2)-simple if N(gi(2)) <1 for all t.

All linear functions are, of course, O(2)-simple. Now, we want to describe all O(2)-simple
functions. It is clear that for such functions N(z) < 1, then z = ¢(a(z) + b(y)). If one of the
functions (a, b, ¢) is constant, then N(z) = 0, and z depends on only one variable or a constant.
Any such function is O(2)-simple (Case 0). Assume that N(z) =1, i.e. a,b,c are not constant.

Statement 6. (1) z is O(2)-simple if and only if 6(g¢(2)) = 0 for all (z,y,t).
(2) c(a(x) 4+ b(y)) is O(2)-simple if and only if a(x) + b(y) is O(2)-simple. (3) z(z,y) is O(2)-
simple if and only if z(y,x) is O(2)-simple.

The proof is obvious.
Let a(z) + b(y) is O(2)-simple, then, in particular,

d
510(9¢(a(2) +b(y)))le=0 = 0, (10)
in index notation for derivatives we have
—a12a2b2 — a12b1b3 + a12b22 - a1a3b12 + a22b12 - a2b12b2 =0. (11)
We can decrease the order of equation (11) twice. First, putting a; = o’(x) = A, by = V' (y) = B.
Second, introducing P(A) = as = a”(x), Q(B) = by = b”(y). In this notation we have az =
a"'(x) = P'(A) P(A), bs =b"(y) = Q'(B) Q(B) and we can write (11) as

—QA’P — BQ1QA? + Q?A? — B2AP,P + B*P? - B?’QP =0 (12)
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By differentiating (12) wit respect to A, we get
—2QAP — QA?P, —2ABQ.Q +2Q?A+ B?P,P — B?AP,P — B2AP? — B’QP =0. (13)

The relations (12) u (13) are a system of linear equations in Q(B) and Q'(B), its determinant is
equal to

—~BPA(A*P + B*AP, —2B*P).
This determinant is identically equal to zero only if P(A) = 0 (Case 1). The solution to the
system for Q(B) is

B2(A2P,P + A2P? — 3APP, + 2 P?)

B) = —
QB) A3P, + B2AP, — 2 B?P

The condition of independence Q) from A is

—A%Py PP; + A®P,?P — 2 AP, P;®> — AB?P5 PP, +
+AB?P,?P —2AB?*P, P;* + A2P, PP, + 4 A2P,% + (14)
+2B%P; P2+ 3B?P, PP; + 2 AP, P> — 10 APP,> + 6 PP, = 0,

which splits into two relations: terms free of B and terms with the factor B2. Eliminating P"'(A)
from them, we get

P (AP; —2P) (AP P —2AP;*> +3P; P) (A’PPy + A’P,;> =3 APP, +2P?) = 0.
The case P = 0 ( Case 1) has been considered above. Now we turn to the remaining cases.

(AP; —2P) =0 (Case 2),
(AP; P —2AP;*+3P; P) =0 (Case 3),
(A’PPy + A*P,*> —3APP; +2P?) =0 (Case 4).

The solutions to the corresponding differential equations are

C1 In(A) + Cy (Case 4).

To find Q(B) corresponding to P(A)7 we substitute these solutions in (13).
In Case 1 P(A) =0, Q(B) =
In Case 2 P(A) = C’A2 Q(B ) = —C’BQ.
In Case 3 P(A) = A2/(cA2 + d) and for Q(B) we have
—A°BQQ; 3+ A°Q%*c® —3A'BQQ; ?d — A°Qc* — A*B%Qc? 4+ 3 A*Q?*Pd —
—3A%2BQQ; c¢d®* + B?A*c — 2 A*Qcd — 2 A’ B2 Qcd + 3 A%Q%cd® — (15)
—BQQ, d® — A2B%d — A2Qd* — B2Qd? + Q*d® = 0,
which is a polynomial in A? and splits into four differential equations of first order on Q(B) (the
coefficients at 1, A%, A*, A®). These equations yield d = 0, and P(A) = Q(B) = C = const.

In Case 4 we have P(A) = A y/c In(A) 4+ d and
—2QA2\/cln — B?Ac—2ABQQ; —2BZQ\/cln d+2AQ%*=0.
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The functions
Veln(A)+d, A, A%\/cln(A)+d

are linearly independent, hence Q(B) = 0 and ¢ = 0. So the answer in Case 4 coincides with the
answer in Case 1 after replacing A — B.
Now we can return to equations in a(z) and b(y) and find the answers:

In Case 1: P(A) = 0 means a”(z) = 0 and a(z) = ayx + «p, then Q(B) = CB means
V'(y) = Cb'(y) and b(y) = B1e°Y + Bo. Then we write the O(2)-simplicity condition 6(g;(z)) = 0
for a 4+ b and see that it holds only for a; 87 = 0. The same goes in Case 4.

In Case 2: P(A) = CA? means a”(z) = C(d/(2))? and a(r) = —In(aqz + ap)/C, then from
Q(B) = CB? we get b(y) = In(B1y + Bo)/C. Since

a(z) + b(y) = = In (51“50) ,

C a1 + g
it is enough to check the O(2)-simplicity condition only for
. By + Bo
or+ag

It is easy to see that the condition §(g:(z)) = 0 holds.

In Case 3: P(A) = C means a’(z) = C and a(z) = Cz? + 17 + g, then from Q(B) = C
we get b(y) = Cy? + B1y + Bo. We see that the O(2)-simplicity condition for a + b holds.

Thus, we have the theorem.

Theorem 7. The complete list of O(2)-simple functions up to transformations ( z(x,y) —
f(z(z,y)) and ( 2(z,y) = 2(y,x) ) is

L= Bly‘f'ﬁo,

a1 T+ g

z= (2" +y*) +ax+ By,
z=azx+ Py.

Corollary 8. Any O(2)-simple function is a rational function, up to a transformation ( z(z,y) —

f(z(2,9)) ).

The research was supported by the Russian Foundation for Basic Research, grants no. 14-01-
00709-a and no. 13-01-12417-ofi-m2.

References

[1] A.Ostrowski, Uber Dirichletsche Reihen und algebraische Differentialgleichungen, Math. Z,
8(1920), no. 3, 241-298.

[2] A.G.Vitushkin, Hilbert’s thirteenth problem and related questions, Russian Mathematical
Surveys, 59(2004), no. 1, 11-25.

[3] V.K.Beloshapka, Analytic Complexity of Functions of Two Variables, Russian Journal of
Mathematical Physics, 14(2007), no. 3, 243-249.

[4] V.K.Beloshapka, A seven-dimensional family of simple harmonic functions, Mathematical
Notes, 98(2015), no. 6, 867-871.

— 425 —



Valery K.Beloshapka Three Families of Functions Complexity One

[5] M.Stepanova, On Rational Functions of First-Class Complexity, Russian Journal of Math-
ematical Physics, 23(2016), no. 2, 251-256.

Tpu cemeiictBa PyHKOUI CJI0XKHOCTA OANH

Banepwmit K. Besionranka
Mexannko-maremarndeckuit paxymapbrer MI'Y
Jleanuckue roper, 1, ['CII-1, Mocksa, 119991

Poccus

B pabome onucanv, nexomopvie cemeticmea Gynkuul 08YT NEPeMerHbIr GHAAUMUYECKOT CAONCHOCTU
edunuya, obaadarousue HEKOMOPHLIMY pedkumu ceolicmeamu. Bo-nepsvix, kaaccuduyuposanv, sunetinoe
YPABHEHUA C NOCTMOAHNDIMY KOIPHUUUEHMAMU, M. 4. 6CE UL GHAAUMUYECKUE DPEULEHUS UMEIOM CAOHC-
HoCmb He evaue eduruyb (meopema 2). Bo-emopux, kaaccuduyuposarvs napve GHAAUMUECKUT HYHK-
yull, MaKuT 4mo A100aa UT AUHETHAA KOMOUHALUA UMEEN, CAOIHCHOCTID HE Bbiwe eOUHUYDL (Meopema 5).
B-mpemwvuz, dano aswoe onucanue Gynruul, m.4. ux opbumos nod deticmeuem epynno O(2) cocmoam
u3 Pynryul caoocnocmu me eviwe eduruyb, (meopema 7).

Karouesvie crosa: pez)nue cemeﬁcmea, arnasumuvecKas CAOHCHOCMD.
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