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1. Introduction and Preliminaries

The aim of this paper is twofold. One is to describe spaces of multipliers between certain
spaces of harmonic functions on the unit ball. We note that so far there are no results in
this direction in the multidimensional case, where the use of spherical harmonics is a natural
substitute for power series expansion. In fact, even the case of the unit disc has not been
extensively studied in this context. We refer the reader to [1], where multipliers between harmonic
Bergman type classes were considered, and to [2| and [3] for the case of harmonic Hardy classes.
Most of our results are present in these papers in the special case of the unit disc.

The other topic we investigate is distance estimates in spaces of harmonic functions on the
unit ball. This line of investigation can be considered as a continuation of papers [4-6].

Let B be the open unit ball in R™, S = JB is the unit sphere in R™, for z € R™ we have

n
x=rz', where r = |z| = [ > x? and z’ € S. Normalized Lebesgue measure on B is denoted by
j=1
dx = dxy . ..dx, = r"drdz’ so that fB dr = 1. We denote the space of all harmonic functions
in an open set Q by h(€2). In this paper letter C' designates a positive constant which can change
its value even in the same chain of inequalities.
For0 <p<oo,0<r<1and f € h(B) we set

= ( | f(m’)pdx’>l/p,

with the usual modification to cover the case p = co. Weighted Hardy spaces are defined, for
a>0and 0<p<oo, by HL(B) = HX = {f € h(B) : || fllp.o = sup M, (f,7)(1 —r)* < oo}. For
r<l1

a = 0 the space H? is denoted simply by H?.
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For 0 < p < 00, 0< g < ooand a>0and we consider mixed (quasi)-norms || f||.q:o defined
by

1 1/p
IIfIIp,q;a=(/0 Mq<f,r>p<1—r2>w-1r”-1dr) . fen®) W

again with the usual interpretation for p = oo, and the corresponding spaces B24(B) = B2? =
{f €hB): |fllpg:a < cc}. It is not hard to show that these spaces are complete metric spaces
and that for min(p,q) > 1 they are Banach spaces. These spaces include weighted Bergman
spaces Aj(B) = A} = B!, where 8> —1 and 0 < p < co. We set AF = By~ for 3> 0.

Note that AY = Hgopfor o> 0and B = HJ for 0 < ¢ < 00, o > 0. We also have, for
0 < po < p1 < 0o, BPot C BPLL see [7].

Next we need certain facts on spherical harmonics and Poisson kernel, see [1] for a detailed
exposition Let Yj(k) be the spherical harmonics of order k, j < 1 < dg, on S. Next, Zi’f) (y) =
Z Y(k)( )Yj(k) (y') are zonal harmonics of order k. Note that the spherical harmonics Yj(k),
]_

(k >0, 1< j <dg) form an orthonormal basis of L%(S,dz’). Every f € h(B) has an expansion

flx) = f(ra’) = 3 r¥by - YE(2'), where by, = (b},,...,00%), Y* = (Yl(k)7...,Yd(f)) and by, - Y*
k=0

di .
is interpreted in the scalar product sense: by - Y* = Y b{CY}(k). We often write, to stress

dependence on a function f € h(B), by = by (f) and bl = b).(f), in fact we have linear functionals
bl, k> 0,1<j<d on the space h(B).
We denote the Poisson kernel for the unit ball by P(x,y’), it is given by

dy 2
1 1-
Play) = Pya) = 31t Zyj(k)(y/)yj(k) (@) = x||n7 r—r €B, i €S,

nwy, |z —y'

where w,, is the volume of the unit ball in R™. We are going to use also a Bergman kernel for
Ag spaces, this is the following function

5 1 k ”/2) kk (k)1 ! /
x —ZE pZ, , T=TIT, =p 6B,;3>0. 2

For details on this kernel we refer to 7], where the following theorem can be found.

Theorem 1 ( [7]). Let p>1 and > 0. Then for every f € Ay and x € B we have

1
f(a) = /0 Qs u) ey (1= P " Ndpdy', Yy =py'.

This theorem is a cornerstone for our approach to distance problems in the case of the unit
ball. The following lemma gives estimates for this kernel, see [7,8]. Note the Bergman kernel
can be also defined for all g > —1

C
Lemma 1. 1. Let 5> 0. Then, for v =ra’,y = py’ € B we have |Qs(z,y)| < —————.
o — T
2. Let 8 > —1. Then
/ |Qp(ra’ y)ldx'<7c lyl=p, 0<r<1
_— B ) X (1-7’p)1+’87 ) S .
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3. LetB>n—1,,0<r<1andy €S 1. Then

/ dx’ < C
st ! — /|8 T (1 —r)Bntl”

Lemma 2 ( [7]). Let a > —1 and A > o+ 1. Then

1
(1 _ T)a a+1—X\

Lemma 3. Let G(r), 0 < r < 1, be a positive increasing function. Then, for a > =1, § > —1,
y20and0<g<1 wehave

(1—7)» " g (L —p)pota-t
< 1.
(/ G(r 17/)7” d) C/ G(r 0= pr)m ———7r%r, 0<p< (3)

A special case of the above lemma appears in [9], for reader’s convenience we produce a proof.
Proof. We use a subdivision of I = [0,1) into subintervals I}, = [rg,7x+1), k = 0, where
rr=1-27F Since 1 — pry, < 1 — prps1, 0 < p < 1, we have

q

(1—1r)8 1—7“)5
= (/G (1—pr) ) Z 1—p7“)rdr -

k>0
< Z (/ G(r) (1 —T)B r”‘dr) < ZkaqﬁGq(rk_H) (/ rodr >q _
>0 M (L—pr) >0 n (L—pr)7
<O 27BGI(r 1) 27K (1 — priyr) T < C Y 27FPG (g )27R (L = pri) T <
k>0 E20
1 — r)Bata—1pay 1_ ﬂq+q 1
éCZGq(rkH)/ (L-r7) " C’/ G(r r) -~ r%dr.
k=0 Ik+1 (1 - p’r (]'Y 1 - pfr)(]’)’
O
Lemma 4. For§ > —1, vy >n+46 and > 0 we have
/ |Qu(, 9)| ™7 (1= |y)°dy < C(1—|a)° ", weB.
B
Proof. Using Lemma 1 and Lemma 2 we obtain:
—ly)°
Qp(x,y)| 77 (1 - |y|) / y <
/ Qs (1 =lyl)*d [pra’ —y'7 |7
' § dy’ ! s 1 5
<C’/ 1—p /7dy'dp<0/ 1—p)°(1—rp)" 7 tdp < C(1—r)"+077,
R VRS (1-7)
O

Lemma 5 ( [7]). For real s,t such that s > —1 and 2t +n > 0 we have

2T(s+1+n/24+1t)"

/1(1 —r?)sptn iy = L(s + Dl(n/2+¢)
0
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We set R = {(z,t) : # € R",t > 0} C R"*!. We usually denote the points in R*" by
z = (x,t) or w = (y,s) where z,y € R" and s,t > 0.
For 0 < p < o0 and a > —1 we consider spaces
APRYT) = AP = {f € MR : / |f(z, t)|Ptdadt < oo} .

n+1
R+

Also, for p = o0 and a > 0, we set

Ap@®y) = A ={ feh@®): sup  |f(z. 0l < o
(w,t)eRT T

These spaces have natural (quasi)-norms, for 1 < p < co they are Banach spaces and for 0 < p < 1

they are complete metric spaces.
We denote the Poisson kernel for R} "' by P(z,t), i.e

t
Pz,t)=chn—————  zeR"t>0.

NTEOE
For an integer m > 0 we introduce a Bergman kernel @Q,,(z,w), where z = (x,t) € Riﬂ and
w = (y,5) € RY™, by

(_2)m+1 8m+1

The terminology is justified by the following result from [7].

1
Theorem 2. Let 0 < p < oo and o > —1. If 0 <p <1 and m > %—(n—&—l) or
1
1<p<0 andm>i—l, then
p
f(z)= /R"“ Fw)Qu (z,w)s™dyds, fe Ag, z € IRT‘l. (4)
The following elementary estimate of this kernel is contained in [7]:
_ntm+1
Qu(zw)| <Clla—yf +6+07) ¥ so@nu=(ser. ()

2. Multipliers on Spaces of Harmonic Functions

In this section we present our results on multipliers between spaces of harmonic functions on
the unit ball. The following definitions are needed to formulate these theorems.

Definition 1. For a double indered sequence of complex numbers ¢ = {c?C k> 0,1 <
Jj < dig} and a harmonic function f(rz') = Z E rkb]( )Y(lC (z') we define (¢ x f)(ra’) =
=0j=1

J

\|M8

k
E ( )Y‘(k) (z"), ra’ € B, if the series converges in B. Similarly we define convolution

oo dy . .
of f,g € h(B) by (f*g)(rz’) = > Zk: rkbfc(f)bi(g)Yj(k) (2'), ra’ € B, it is easily seen that f x g
k=05=1

1s defined and harmonic in B.
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Definition 2. For t > 0 and a harmonic function f(x) = Z bi(f)Y*(2') on the unit ball we

define a fractional derivative of order t of f by the followmg formula

= i T(k4n/2+1)
(Aef)(@) =) _r*5

( / -
k=0 ka(f)'yk(x)’ z=rz' €B.

Clearly, for f € h(B) and ¢ > 0 the function A;h is also harmonic in B.

Definition 3. Let X and Y be subspaces of h(B). We say that a double indexed sequence c is a
multiplier from X toY if cx f € Y for every f € X. The vector space of all multipliers from X
toY is denoted by My(X,Y).

Clearly every multiplier ¢ € My (X,Y) induces a linear map M, : X — Y. If, in addition,
X and Y are (quasi)-normed spaces such that all functionals b, are continuous on both spaces
X and Y, then the map M, : X — Y is continuous, as is easily seen using the Closed Graph
Theorem. We note that this holds for all spaces we consider in this paper : A?, BP¢ and HE.

Lemma 6. Let f,g € h(B) have expansions
o0 dk . o0 dk
fra'y =3 S0y, gy =0y gy
k=0 j=1 =0 i=1
Then we have
0o dy
i vk
/S (9# Py)(ra) flpa)da' =Y " r*p* S by V() yes, o<rp<l.
k=0 j=1

Moreover, for everym > —1, 9y €S and 0 < r,p < 1 we have

/(g x Py)(ra’) f(px')da' = 2/ /Am+1(g * Py)(rRa’) f(pR2")(1 — R*)™R"'dz'dR.
s o Js

Proof. The first assertion of this lemma easily follows from the orthogonality relations for

(k)

spherical harmonics Y;". Using Lemma 5 and orthogonality relations we have

= 2/ / mt1(g* Py)(rR2’) f(pRx')(1 — R*)™R" 'da'dR =

/Zrkka2k+n 1( _RQ) (k+n/2+m+1 Zb]

0 = ['(k+n/2)l
-3 YY)
k=0 j=1
which proves the second assertion. ([l

We note that (g Py)(rz’") = (g% Py )(ry’) and Ay(g* Py )(x) = (Arg * Py )(x), these easy to
prove formulae are often used in our proofs.

In this section f,, stands for the harmonic function fy, ,(z) = Qm(z,y), y € B. We often
write f, instead of fp, ;. Let us collect some norm estimates of f,.
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Lemma 7. For 0 < p < oo and m > 0 we have

Mw(fm,yv r) <O —|ylr)~ "™, (6)
My (fmy:7) < O = ylr)” "”7 (7)
| fmyllgea < C(1—|y))*~ m>a—-1, a>0, (8)
[fmyllpp= < CA—=lyp*™™™,  m>a-n, a>0, (9)
”fm,yHAl <O —[yph>, m>a> -1, (10)

[ fmyllr <CL—]yh*"™,  m>a-1, a>0. (11)

Proof. Using Lemma 1 we obtain

C
Moo (fimy: 7) = max|Qm(y, ra')| < max =C—rfyh=""

w'es |pra’ — y'|ntm
which gives (6). The estimate (7) follows from Lemma 1. The estimates (8), for finite p, and (10)
follow from Lemma 2 and (7). Similarly, for finite p (9) follows from (6) and Lemma 2. Next,
using (7),

[ fmyllmy <C sup (L=r)*(L—rp)™™ " p=y|.
0<r<1

The function ¢(r) = (1 —7)*(1 —rp)~™ ! attains its maximum on [0, 1] at
a

T0=1—(1—P)m,

as is readily seen by a simple calculus, and this suffices to establish (11) and therefore (8) for
p = oco. Finally, (9) directly follows from Lemma 1. O

In this section we are looking for sufficient and/or necessary condition for a double indexed
sequence ¢ to be in My (X,Y), for certain spaces X and Y of harmonic functions. We associate
to such a sequence ¢ a harmonic function

dy
ge(z) = g(x) = Zrk Z c,in(k)(m’), z =rz' €B, (12)

k>0  j=1

and express our conditions in terms of g.. Our main results give conditions in terms of fractional
derivatives of g., however it is possible to obtain some results on the basis of the following
formula, contained in Lemma 6:

(cx D) = [ (9% P!} ' (13)
S
Using continuous form of Minkowski’s inequality, or more generally Young’s inequality, this
formula immediately gives the following proposition.

Proposition 1. Let ¢ = {c{c :k>0,1<j<dg} be a double indexed sequence and let g(x) =

di .
Sk S CiY}(k) (2') be the corresponding harmonic function. If
k>0 j=1

/I(g*ny)(rw’>lpdar’<O, yes, 0<r<1,
S
then ¢ € My (H*, HP).

More generally, if 1/q+1/p =14+ 1/r, where 1 < p,q,r < o0, a+~v =0, a, 3,7 =2 0 and
b, then c € My(HZ, Hp).
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The first part of the following lemma, which gives necessary conditions for ¢ to be a multiplier,
is based on [9].

Lemma 8. Let 0 < p,g <00, 1 <s<ooandm>a—1. Assume a double indexed sequence
c= {c’ k> 0,1<j<d} is amultiplier from BE1 to Bq’ and g = g. is defined in (12).
Then the following condition is satisfied:

1/s
Nu(g) = sup sup(1— p)m+i-o+s ( / AmH(g*Pf)(py')Pd:c’) <o, (14)
0<p<1y’€S S

where the case s = 0o requires usual modification. '
Also, let 0 <p < o0, 1 <s< o0 andm>a—1. If a double indexed sequence ¢ = {cj, : k >
0,1 < j < dg} is a multiplier from B2t to HE, then the above function g satisfies condition (14)

Proof. Let ¢ € My (B2, Bg’s), and assume both p and ¢ are finite, the infinite cases require
only small modifications. We have ||Mcf\|Bg,s < C|fllgpa for fin BP:1. Set h, = M.f,, then
we have

k

) = Yot 3 it LAy ), e =l eB (1)
k20 j=1
moreover
Iyl s < Cllfyll gz (16)
This estimate and Lemma 8 give
Ilhyllpae < CA =y yeB. (17)

Note that hy(z) = Apm41(g * Py )(px), using monotonicity of M, (h,,r) we obtain:

1/q

1/s 1 _
B (/ [Am1(g * PE/)(P2y/)|de,) - (/ (1- r)ﬂq_lr”_ldr) X
s 4
! q/s 1/q
X (/ (1 — r)ﬁq—lrn—l (/ |Am+1(g % Py/)(p2$/)|sd$/> d’l") <
P S

1/q

1

<c-p ([ a-nm ) <
p

< (1= p) Py (18)

Combining (18) and (17) we obtain

1/s
(/S [Am1(g * Px/)(pr’)sda:’> <C(1—p)rh-m-1,

which is equivalent to (14). The case s = oo is treated similarly.
Next we consider ¢ € My (By', Hj), assuming 0 < p < oo. Set h, = M.hy, = g * f,. We
have, by Lemma 7,
Ifyll gz <CA—=lyh*=""",  yeB,

and, by continuity of Me, [|hy||m; < C||fyl gz.1. Therefore

lhyllmy < C(L—=]yh* ™Y, yeB.
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Setting y = py’ we have

1/s

1/s
162 = ([ Imirto Pl ) - = ([ Imiaton ptoa P’ ) - =
— Ma(hy, ) < (1~ o)y .

The last two estimates yield

1/s
(/S |Am+1<g*Px/><p2y'>|8da:’) <COM—ly)rm=1, yl=p

which is equivalent to (14). O

Theorem 3. Let 1 < p < q < oo, and m > a — 1. Then for a double indexed sequence
c={c, 1 k>0,1<j<d} the following conditions are equivalent:

1. c€ My(BEY, BYY).

dr .
2. The function g(x) = > rF > c{ch(k) (x') is harmonic in B and satisfies the following
k>0 j=1
condition
Ni(g) < 0. (19)

Proof. Since necessity of (19) is contained in Lemma 8 we prove sufficiency of condition (19).
We assume p and q are finite, the remaining cases can be treated in a similar manner. Take
f € BP! and set h = M. f. Applying the operator A,, 1 to both sides of equation (13) we obtain

Boeahlre) = [ Auvssa P @) )y (20)
Now we estimate the L! norm of the above function on |z| = r:
Mi(Apgrh,r?) < /SMI(Am+1(g * Pyr), )| f(ry')|dy’ <
<M (£r)sup [ Mo s Py)lra)lda’ <

y' €S
< Mi(f,m)Na(g)(1 = r)*=ommt, (21)

Since,
1 1
/ Mf(h,r2)(1 — T)Bp_lr"_ldr < C/ (1- r)p("L+1)Mf(Am+1h7r2)(1 — T)Bp_lr”_ldr,
0 0
see [7], we have

1
T C/o (1 — )P D MP(A B, r2) (1 — )PP~y <

Bg,l X
1
<CN{g) [ MELD(L= 1) s = ONE )y
i .
and therefore ||h|\Bg,1 < || fllgp2- Since Hh||Bg>1 < C’Hh||B§,1 the proof is complete. O

Next we consider multipliers from B2! to H 53> in the case 0 < p < 1 we obtain a characteri-
zation of the corresponding space.
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Theorem 4. Let 32> 0,0<p<1,s>1and m>a—1. Then, for a double indexed sequence
c={c:k>01<j< dk} the followmg two conditions are equivalent:
1. ce MH(Bgvl,Hg).

di .
2. The function g(x) = >, %> cchj(k)(sc') is harmonic in B and satisfies the following

k>0 j=1
condition:

N(g) < 0. (22)

Proof. The necessity of condition (22) is contained in Lemma 8. Now we turn to the sufficiency
of (22). We chose f € BE'! and set h = ¢ * f. Then, by Lemma 6:

1
h(r2a) = 2 / / Ay (g% Po)(rRa') f(rRE)(1 — R2)™R™'dedR (23)
0o Js
and this allows us to obtain the following estimate:

dR <

1
M(h,7?) < 2/ (1—-R»™R"!
0 Ls(S,dx")

/SAerl(g * Pe)(rRa’) f(rRE)dE

1
<2 [ (1= BRI rR)sup A g P (rRe') |- <
0 £es

< CNs(9) /1(1 —R)"M,(f,rR)(1 — rR)a_B_m—ldR <
0
< CNy(g9)(1 —r)7" /1 My(f,rR)(1—R)™(1—rR)* "™ 'dR.

Note that M;(f,rR) is increasing in 0 < R < 1, therefore we can combine Lemma 3 and the
above estimate to obtain:

— RYmpt+p-1
) dR <

p P — p
MP(h,1%) < CNE(g)(1 —7) /M (f;rR 1—rR)Pm ap+p

< CNP(g)(1 — 1) / MP(f, R)(1 - R)*1dR <

< ONP(g)(A — ) PP I,

Therefore Mj(h,r%) < CNs(g)(1 — r)’ﬁ||f||Bg,1, which completes the proof of the Theorem. O

3. Estimates for Distances in Harmonic Function Spaces
in the Unit Ball and Related Problems in R”™

In this section we investigate distance problems both in the case of the unit ball and in the
case of the upper half space.

Lemma 9. Let 0 < p < oo and o« > —1. Then there is a C = C} o such that for every
f e AR (B) we have

xz €B.

[f(@)] <O —|z[)”
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Proof. We use subharmonic behavior of |f|? to obtain

C
|f(z)]P < a=fzp" /}3(96712'2') |fy)[Pdy <
(1 - ‘x|)—a P a —a—n P
<ol [ g O = 0y < OO )™

O
This lemma shows that AP is continuously embedded in A%, and motivates the distance problem
D

that is investigated in Theorem 5.

Lemma 10. Let 0 < p < 0o and o > —1. Then there is C = Cp o n such that for every f € Ag
and every (z,t) € R we have
_atn41
[flz, )| < Cy™ 7 || fll 4z (24)
The above lemma states that ;1{1 is continuously embedded in A%, ., , its proof is analogous

to that of Lemma 9. '
For e > 0,t >0 and f € h(B) we set

Uet(f) =Uex ={z € B: |f(2)[(1 — |z]) > €}

Theorem 5. Let p > 1, a > -1, t = atn and 3 > max(a+n—1,a). Set, for f €
p p
AT (B):
P

tl(f) = diStA‘z’Jrn (fa Ag),

P

tz(f)=inf{e>0: / ( /U Qg(x,w(l—wn“dy) <1—|a:|>adx<oo}.

Then t1(f) < ta(f).

Proof. We begin with inequality ¢;(f) > t2(f). Assume t1(f) < t2(f). Then there are
0 <e <eand f; € AL such that [|f — fi[|ax < € and

/ ( / |Qﬁ<x,y>|<1|y|>ﬁtdy> (1 fal)da = +oc.
B \JUe,(f)

Since (1 — |z|)!|fi(z)] = (1 — |2))|f(z)] — (1 — |z|)!|f(z) — fi(z)| for every x € B we conclude
that (1 — [z)'[f1(x)] = (1 = [z)|f(z)| = (1 = [z])|f(x)| — €1 and therefore

(€ —e)xv.. (@A —lz)) 7 <[filz)],  z€B.

Hence

00 = T — B-t — |z|)%dx =
+ /B</U§t(f)|@g< Wl 1y]) dy> (1 [z])d

_ XU ®) 1 80\, (4 el
_/B</B 1— [y 1Qs(, y)I(1 = [yl) dy) (1—|z|)%dx <

< Ceey /[Bg </B 1A )Qs(x, y)I(1 - Iyl)’ady)p (1= [z])%de = M,
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and we are going to prove that M is finite, arriving at a contradiction. Let ¢ be the exponent
conjugate to p. We have, using Lemma 4,

o) = ([ Inwla - |y|>ﬁ|c2ﬁ<x,y>|dy)” _

= EH9Qp ()

P
- ( L1510 = 1) @) m’é*ddy) <

n+pB—pe ntge p/q
< / AP = )7 Qs ) =55 dy ( / |Q5<x,y>|n+ﬂdy> <

n+pB—pe

<O~ [z / APA — [y)71Qs (e, v)| 25 dy

for every € > 0. Choosing ¢ > 0 such that o — pe > —1 we have, by Fubini’s theorem and
Lemma 4:

—pe n+pB—pe
M<C / () P(L— [y])?? / (1~ )| Qs e, )| “H5™ dady <

<C / A W)P(— [y])*dy < co.

In order to prove the remaining estimate t1(f) < Cta(f) we fix € > 0 such that the integral
appearing in the definition of ¢5(f) is finite and use Theorem 1, with 8 > max(t — 1,0):

f(a) = / Qo (. 9) Fu) (1L — [yf2)Pdy + / Qo) F) (1 — [yf?)*dy =
B\Ue,+(f) U,

et (f)
= fi(z) + fa2().

Since, by Lemma 4, | f1 ()| < 2° [; |Qg(z, y)|(1—|w])’~tdy < C(1—|z|)~* we have || f1]|a> < Ce.
Thus it remains to show that fo € AP and this follows from

p
P P _ 2\B—t _ a
12l <11 [ ( / RGNS dy> (1 - [z])*de < ox. O

The above theorem has a counterpart in the RTFI setting. As a preparation for this result
we need the following analogue of Lemma 4.

Lemma 11. For§ > =1, v >n+ 1+ and m € Ny we have [yni1 |Qum (2, w)| 77T O dyds <
+
Cto—rntl 5.

Proof. Using Fubini’s theorem and estimate (5) we obtain

Y > dy
I(t =/ Qm(z, w)|»Fm+1 85dyds < C/ 0 (/ ) ds =
0= Joyor [z o "\ WEF GO

= C/ 35(5 +H)" Vds = Co—rtntl O
0
For € >0, A >0 and f € h(R}™) we set: Vo \(f) = {(z,t) € R o | f(z, )|t} > €.
1 1
Theorem 6. Letp > 1, a > —1, A = %, m € Ny and m > max(OH_Z—i_—l,Z)
Set} fO’I” f S A%OJrnJrl (R1+1) Sl(f) = diStAOO+ 41 (f’ Ag)v

P

p
so(f) =infJe>0: / / Qum(z,w)s™ Mdyds | t*dedt < oo p .
Ry Veoa
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Then s1(f) < s2(f)-

The proof of this theorem closely parallels the proof of the previous one, in fact, the role of
Lemma 4 is taken by Lemma 11 and the role of Theorem 1 is taken by Theorem 2. We leave
details to the reader.

The first author was supported by Ministry of Science, Serbia, project M144010.
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Tounble TeopeMbl 0 MYJIBIIMKATOPAaX W PACCTOSHUE

B IIPOCTPAHCTBAX TapMOHMYeCKNX (DYyHKITUIA BbICHIE
pa3MepHOCTH

Mwunom ApceHoBu4
Povu @. I[TTamosin

IIpedcmasaatomes HOBblEe TOUHBLE DEZYALMAMDL, CEAZAHHBLE C MYALTLAUKAMOPAMU U OUEHKAMU PACCTNO-
AHUA 8 PABAUYHOIT NPOCNPAGHCMEAL 24PMOHUYECKUT GYHKUUT 6 edunuyrom wape u3 R™.

Karouesvie cr06a: MYALMUNAUKGMOPDL, 24PMOHUNECKUE PYHKUUY, npocmparcmsea Bepamana, npocmpan-
CMBA €O CMEWAHHOT HOPMOT, OUEHKY OUCTNAHUULU.
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