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Anomalous spectral shift of transmission peaks is observed in a Fabry–Pérot cavity filled with a
chiral anisotropic medium. The effective refractive index value resides out of the interval between the
ordinary and the extraordinary refractive indices. The spectral shift is explained by contribution of
a geometric phase. The problem is solved analytically using the approximate Jones matrix method,
numerically using the accurate Berreman method and geometrically using the generalized Mauguin–
Poincaré rolling cone method. The o-mode blue shift is measured for a 4-methoxybenzylidene-4’-n-
butylaniline twisted–nematic layer inside the Fabry–Pérot cavity. The twist is electrically induced
due to the homeoplanar–twisted configuration transition in an ionic-surfactant-doped liquid crystal
layer. Experimental evidence confirms the validity of the theoretical model.

PACS numbers: 42.70.Df, 61.30.Gd, 42.79.Ci, 42.60.Da, 42.87.Bg

I. INTRODUCTION

Optics of liquid crystals (LCs) is well known for fruit-
fulness in applications and a remarkable variety of con-
nections between observable physical phenomena [1]. A
fascinating connection can be traced between the con-
cept of geometric phase (GP) [2], also known as a topo-
logical phase, and a number of phenomena in quantum,
relativistic, classical physics [3], and, in particular, in
optics [4–6]. Today photonics is at the apogee of topo-
logical ideas [7, 8]. On the one hand, it originates from
the condensed-matter graphene idea and the concept of
topological insulators [9]. On the other hand, it arises
from the optical technology advance. For instance, re-
cently the three-dimensional structure of the field of light
polarizations with nontrivial topology has been directly
measured [10].
GP in twisted–nematic polarization phenomena [11]

has application for the design of wave fronts using
Pancharatnam–Berry phase optical elements [12, 13].
Remarkably, polarizational GP is independent of the to-
tal phase, so it is used to offset the frequency of a laser
beam by GP modulators, adding the mechanical rota-
tion frequency of a quarter–half–quarter-waveplate Pan-
charatnam device [14–16]. It permits switching by ferro-
electric LC [17].
Considerable attention is attracted to the research of

LC placed inside a Fabry–Pérot cavity (LC-FPC), com-
bining small-voltage LC manipulation and high spectral
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resolution of the Fabry–Pérot interferometer. Fundamen-
tal photonic degrees of freedom—in transmittance [18–
21], phase [22], and polarization [23]—can be efficiently
controlled. Polarization control usually uses the Mau-
guin adiabatic waveguide mode [24] in a chiral anisotropic
medium, particularly in a twisted–nematic (TN) LC layer
inside the Fabry–Pérot cavity (TN-FPC) [25].

The basic method for TN-FPC calculation is the Jones
formalism of complex vectors and matrices of dimen-
sion 2 [26]. Abele [27, 28] had introduced Chebyshev
identity for the matrix power which was successfully em-
ployed both in layered and in anisotropic media [29–
31]. To solve the problem one finds an eigenwave (op-
tical mode) which conserves its shape while propagating
through the medium. A set of eigenwaves is described by
the eigenvectors and the eigenvalues of the Jones matrix.

Another approach to find the eigenwaves is to solve
the Riccati-like ordinary differential equation system [32–
34]. Within the framework of coupled-mode theory and
modal analysis, this approach is equivalent to the matrix
one (see Appendix C in [35]).

The account of weak reflection waves arising in LC bulk
led to a generalized Berreman formalism for matrices of
dimension 4 [36–38]. This generalization is necessary in
media such as a cholesteric LC [39–42] and a TN cell
of small thickness, and other media with a sharp spatial
variation of dielectric characteristics at the wavelength
scale [43–46]. However, Jones formalism gives a good
approximation when the thickness of the TN cell is sev-
eral times larger than the wavelength and the dielectric
constant varies smoothly.

Assuming no weak reflection waves arising in the LC
bulk, the TN-FPC behavior was described at high volt-
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ages [25] as well as at low voltages [34, 47]. The connec-
tion between these two extreme cases is described in [48]
and generalized in [49]. Another approach is the substi-
tution of the multilayer medium by an effective homo-
geneous anisotropic plate [51]. The independent method
is incorporated in [24, 52] using distinct mathematical
tools: group theory and phase space. Also TN-FPC can
be considered as a one-dimensional photonic crystal [53–
56]. The photonic crystal itself can be formed by a LC
material [57, 58].
The orientation model of the LC layer is required to

determine its optical response. To the best of our knowl-
edge, in a TN under electrical voltage the general orien-
tation model cannot be derived analytically and is simu-
lated numerically, even for the one-dimensional case [59].
In contrast to in-plane-oriented nematic [60], TN pro-
duces optical mode coupling manifested as avoided cross-
ing of spectral transmission peaks [59]. A certain way to
eliminate the mode coupling using anisotropic mirrors is
suggested in [61]. The original theoretical study of the
apparent paradox of the mode number jump for mode
coupling inside a TN-FPC is proposed in [47].
This article examines the TN-FPC sample with no

electric voltage deformation that allows analytical de-
scription. The direction of the spectral shift of the trans-
mission peaks is far from obvious. That’s why a visual
connection is presented for the proposed spectral shift
and the geometric phase shift. This shift observation is
hindered by interplay of four optical waves of opposite
directions and orthogonal polarizations. Positive feed-
back condition describes the total spectral shift (SS),
assuming three types of wave coupling. The first type
of the coupling originates from LC twist which induces
a twist spectral shift (TSS). The second coupling type
is produced by cavity mirror reflection which induces a
reflection spectral shift (RSS). The third coupling type
is produced by weak reflection waves arising in the LC
bulk; in the analytical part of this research it is assumed
insignificant. Previously developed theory [34, 48] is gen-
eralized for the account of anisotropy at mirror reflection,
meaning the distinct reflection phases of e- and o-wave
components. The reflection is anisotropic even when the
mirror is made of an isotropic material while the cavity
medium itself is anisotropic.
The experimental scheme excludes significant spectral

shift impact from parasitic factors other than TSS and
RSS. The experiment confirms the theory qualitatively
and quantitatively.

II. ANALYTIC MODEL

A FPC consists of two plane mirrors (Fig. 1). The
reflecting surfaces are oriented in xy-plane. Nematic is
placed between the cavity mirrors. The LC director is
a unit vector of predominant direction of LC molecules.
Twist is the state when nematic layer is divided into thin
lamellar sublayers with the nematic director being con-

FIG. 1. (Color online) Sketch of TN-FPC, a cavity with a
chiral anisotropic medium.

stant inside every sublayer and rotating from sublayer to
sublayer. Uniform twist with no orienting external fields
is implied when the LC director rotates uniformly in the
plane of sublayers along the right screw. In Fig. 1 the
twist angle is 80 degrees, hence the analysis is valid for
an arbitrary angle. The LC director field determines the
local dielectric tensor all over the medium. The extraor-
dinary dielectric permittivity axis is collinear to the LC
director. Consider the nematic with a positive uniaxial
anisotropy. The extraordinary and ordinary refractive in-
dices (RI) correspond to waves with slow and fast phase
velocities and equal to ne,o = n± δn.
Let the average phase σ, anisotropy phase (angle) δ

and twist angle ϕ be linear functions of the coordination
z along the layer normal direction:

σ (z) = nk0 z, δ (z) = δk z, ϕ (z) = kϕ z,

where k0 = ω/c is the angular wavenumber, δk = δnk0,
kϕ = ϕ (L) /L, L is the nematic layer thickness or dis-
tance between mirrors. At z = L let function values
σ (z = L), δ (z = L), ϕ (z = L) be written simply as σ,
δ, ϕ without the function argument. Let the light im-
pinge to the TN-FPC strictly in z-direction. Electric field
strength is described by the pair of x- and y-projections:

Ex (z) exp [i (ωt− σ (z))] + c.c.,

Ey (z) exp [i (ωt− σ (z))] + c.c., (1)

where c.c. stands for the complex conjugate component.
The pair of complex amplitudes Ex,y are convenient to
be written as the Jones vector [26]:

~exy (z) =

[

Ex (z)
Ey (z)

]

.

The Jones matrix for untwisted nematic at ϕ = 0 is diag-
onal when the nematic director is collinear to the x-axis:

∆̂ (δ) =

[

e−iδ 0
0 e+iδ

]

. (2)
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Note that the extraordinary field component along the x-
axis has negative phase shift according to standard notion
(1):

~exy (L) = ∆̂~exy (0) =

[

Ex (0) e
−iδ

Ey (0) e
+iδ

]

.

The Jones matrix ∆̂ is the transfer matrix (or propaga-
tion matrix) of the layer. It transfers a polarization state
from one layer boundary to another by multiplying the
corresponding Jones vector.

A. Traveling eigenwaves for a uniformly twisted

nematic

For convenience of subsequent interpretation let us
present a direct trigonometric derivation of some general
expressions for a traveling wave in a chiral anisotropic
medium. Let us divide a TN layer into a series of equal
sublayers each with the thickness dz and the anisotropy
angle dδ = δ (dz) = δk dz. Generally, the following is
valid for finite not twisted sublayers. The twist angle
dϕ = ϕ (dz) = kϕ dz is the angle between the dielectric
permittivity main axes of neighboring sublayers. Itali-
cized form “d” is used to distinguish it from the particu-
lar case of infinitesimal differential operator.
The rotation matrix is written as

Φ̂ (ϕ) =

[

cosϕ sinϕ
− sinϕ cosϕ

]

. (3)

It rotates the reference frame about the z-axis by the
ϕ angle. The Jones matrix for the waveplate (retarder)
situated at ϕ angle is written as:

∆̂ϕ = Φ̂−1∆̂Φ̂.

In rotating frame the polarization ellipse appears to be
rotated by negative angle −ϕ. The total Jones matrix is
written as the matrix product:

Ĵ0 = Φ̂

(

−ϕ+
dϕ

2

)

∆̂ (dδ) Φ̂

(

ϕ− dϕ

2

)

...

× Φ̂

(

−3dϕ

2

)

∆̂ (dδ) Φ̂

(

3dϕ

2

)

× Φ̂

(

−dϕ

2

)

∆̂ (dδ) Φ̂

(

dϕ

2

)

= Φ̂ (−ϕ) Ĵ .

The product is supposed to be read from right to left
with increase of z, because the Jones column vector is
substituted on the right side of the matrix. In rotating
frame of the matrix Ĵ the LC director is always collinear
to the primary axis. It is the e − o-frame which is often
used in description of chiral media [34, 62].
z-axis rotations are additive,

Φ̂ (ϕ2) Φ̂ (ϕ1) = Φ̂ (ϕ2 + ϕ1) ,

so the Jones matrix is naturally decomposed into the
product of certain sublayer matrices:

Ĵ = dĴNS =

[

Φ̂

(

dϕ

2

)

∆̂ (dδ) Φ̂

(

dϕ

2

)]NS

, (4)

where NS = ϕ/dϕ is the number of sublayers. Substitu-
tion of Eqs. (2) and (3) gives:

dĴ =

[

Ja Jb
−J∗

b J∗
a

]

, (5)

where

Ja = cos (dϕ) cos (dδ)− i sin (dδ),

Jb = sin (dϕ) cos (dδ).

Eigenvectors ~eJ of the matrix dĴ describe polarization
conserved in the rotating basis, and eigenvalues gJ of the
matrix dĴ are phase factors of propagation through the
medium layer. The eigenvalue condition is:

dĴ ~eJ = gJ~eJ ,

det
(

dĴ − gJ Î
)

= 0,

det
(

dĴ
)

− tr
(

dĴ
)

gJ + g2J = 0, (6)

where Î is the identity matrix. According to Eq. (5) the
determinant of the matrix equals

det
(

dĴ
)

= 1.

Transfer matrix is unimodular when the transferred en-
ergy is conserved. The trace of the matrix is

tr
(

dĴ
)

= 2 cos (dϕ) cos (dδ) .

Let’s introduce a new twisted anisotropy angle defined as
the following:

cos (dυ) ≡ cos (dϕ) cos (dδ) . (7)

The solution of Eq. (6) can then be written as

g∓J = cos (dυ)∓ i sin (dυ) = exp (∓idυ) .

The eigenvectors take the forms:

~eJ
− = ~ete =

[

cosϑ
−i sinϑ

]

, ~eJ
+ = ~eto =

[

−i sinϑ
cosϑ

]

,

(8)
where

ϑ = Θ/2,

cosΘ ≡ sin (dδ) / sin (dυ) ,

sinΘ ≡ sin (dϕ) cos (dδ) / sin (dυ) . (9)

Trigonometrical Eqs. (8) are equivalent to algebraic
Eqs. (4.3-31,32) in [31].
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In the literature the pair of eigenwaves described by (8)
has several names [31, 34, 63–65]. As usual the terminol-
ogy is chosen depending on domination of the anizotropy
angle or the twist angle. With zero twist dϕ = 0 and
ϑ = 0, the eigenwave ~eJ

− is simplified into extraordi-
nary e-wave, and ~eJ

+ is simplified into ordinary o-wave.
They are named as quasi-e- and quasi-o-waves [34], or te-
and to-waves (“twisted waves”) [31]. The latter italicized
form is appropriate here. However elliptically polarized
te-wave may be confused with linearly polarized TE-wave
(transverse electric mode), whose electric field is perpen-
dicular to the reference plane or axis. Also this abbrevia-
tion (extraordinary/ordinary) may be confused with the
parity abbreviation (even/odd). The chirality of te-wave
is opposite to LC director chirality. The chirality of to-
wave is the same as LC director chirality. Consequently,
the wave pair use to be termed as “opposite chirality”
wave and “same chirality” wave [63]. In cholesteric LC
to-wave demonstrates the Bragg reflection, while te-wave
is non-diffractive. That is another way to distinguish the
eigenwaves [64, 65].

The matrix dĴ is diagonalizable using the unitary ma-
trix Û to transform basic vectors ee,o into ete,to:

Û−1 = [~ete ~eto] =

[

cosϑ
−i sinϑ

−i sinϑ
cosϑ

]

,

Û =
(

Û−1
)†

=

[

~e†te
~e†to

]

=

[

cosϑ
i sinϑ

i sinϑ
cosϑ

]

,

where the symbol “†” indicates the Hermitian conjuga-
tion.

dĴ = Û−1

[

e−idυ 0
0 e+idυ

]

Û . (10)

The diagonalization simplifies the Jones matrix (Eq. (4))
exponentiation:

Ĵ =
{

dĴ
}NS

= Û−1

[

e−iυ 0
0 e+iυ

]

Û ,

Ĵ =

[

cosυ − i sinυ cosΘ sinΘ sinυ
− sinΘ sinυ cosυ + i sin υ cosΘ

]

. (11)

The uniform twist condition was used:

NS =
ϕ

dϕ
=

δ

dδ
=

υ

dυ
=

z

dz
.

The solution (11) is valid for sublayers of finite thick-
ness and is the representation of Chebyshev identity [29].
Equation (7) for the angle dυ is the Pythagorean theorem
for the spherical right triangle.
For the smooth twist function ϕ (z) the sublayer thick-

ness dz tends to vanish. The solution can be simplified
using the Pythagorean theorem for the plane right trian-
gle:

dυ2 = dδ2 + dϕ2.

It is easy to derive it by tailoring the cosines in Eq. (7).
Multiplication by N2

S produces

υ2 = δ2 + ϕ2. (12)

The total wave phase then is written as

σ ± υ = σ ±
√

δ2 + ϕ2. (13)

Let’s name it as the Mauguin formula. The effective RI
is found by dividing both sides by k0L:

nte,to = n±
√

δn2 + (ϕ/k0L)
2. (14)

The eigenwave ellipticity parameter Θ from Eq. (9) can
be reduces as relation

tanΘ = ϕ/δ. (15)

Physically this ellipticity is the smoothness of the twist
angle growth in comparison with the anisotropy angle
growth. It is the adiabatic parameter of Mauguin’s
waveguide regime.

B. Mirror reflection matrix

The mirror reflection matrix has two multipliers: the
phase marix M̂0 and the half-turn rotation matrix R̂.
For a mirror made of metal with RI nm the reflection
originates from high RI contrast with LC (nm − n ≫
δn). In this case the phase matrix M̂0 is approximately
isotropic. However for the dielectric multilayer Bragg
mirror, the RI contrast is not high and the phase matrix
is far from isotropic.

M̂0 =

[

exp (−iµe) 0
0 exp (−iµo)

]

= exp (−iσµ)

[

exp (−iδµ) 0
0 exp (+iδµ)

]

= exp (−iσµ) M̂.

Various algorithms are used to find phases µe,o for certain
mirrors [66, 67].
Assume the half-turn rotation matrix to act on the axis

perpendicular to LC director.

R̂ =

[

−1 0
0 1

]

.

Obviously, the double reflection of R̂2 produces the iden-
tity matrix.

C. Perfect cavity eigenwave

Assume the cavity is perfect (free of losses). The whole
loop of the wave propagation through the cavity consists
of a couple of passages and a couple of reflections. The
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corresponding matrix is the square of the half-loop ma-
trix:

L̂ =
{

Ĥ exp (−iσ − iσµ)
}2

= Ĥ2 exp (−2iσ − 2iσµ) , (16)

where Ĥ = R̂M̂ Ĵ .
If the polarization matrix Ĥ is not an identity matrix,

then its eigenvectors coincide with the eigenvectors of L̂.
The eigenvalues of L̂ are expressed through the eigenval-
ues of Ĥ :

gL = g2H exp (−2iσ − 2iσµ) .

Now one can find the eigenvalues of Ĥ:

Ĥ =

[

Ha Hb

H∗
b −H∗

a

]

,

where

Ha = − exp (−iδµ) (cosυ − i sinυ cosΘ),

Hb = − exp (−iδµ) (sinΘ sinυ).

det
(

Ĥ
)

= −1,

tr
(

Ĥ
)

= 2i (cosυ sin δµ + sin υ cosΘ cos δµ) ≡ 2i cosρ0.

The eigenvalues are

gH = i (cos ρ0 ∓ i sin ρ0)

= exp (i (π/2∓ ρ0))

≡ ± exp (±iρ) ,

where the resonator phase ρ ≡ π/2− ρ0,

sin ρ = cos ρ0 = cosυ sin δµ + sin υ cosΘ cos δµ. (17)

The solution corresponds to a couple of modes resonating
inside the cavity (standing waves) and let’s denote them
as re- and ro-waves.
In the exotic case where δµ = π/2 Eq. (17) is simplified

to ρ0 = ±υ. In [61] the anisotropic mirrors are suggested
with phases µe = π, µo = 0; consequently, σµ = δµ =
π/2.

gL = exp(−2(σ + σµ ± ρ))

= exp(−2(σ ∓ ρ0) + π(1± 1))

= exp(−2(σ ± υ)).

The reflection coupling is removed and RSS is eliminated.
In the isotropic reflection case of δµ = 0 Eq. (17)

reduces to

sin ρ = sin υ cosΘ. (18)

It is equivalent to expressions presented in [34, 48].

D. Positive feedback condition

The position of transmission peaks is determined by
eigenfrequencies of perfect cavity waves (modes). They
satisfy the positive feedback condition [68] for the total
phase shift to be a multiple of 2π.

−2σ − 2σµ ∓ 2ρ = −2πN,

∓ρ = σ + σµ − πN,

where N is the cavity mode number. Using Eq. (17):

∓ sin (σ + µ− πN) = cosυ sin δµ + sin υ cosΘ cos δµ.
(19)

Here the minus sign corresponds to te-wave, whereas the
plus sign corresponds to to-wave. It is possible to solve
this trigonometric equation graphically.

E. Dispersion curves and TSS

Figure 2(a) shows dispersion curves of te- and to-waves
for ϕ = π/2 and ϕ = 0. Scales are dimensionless for
both axes. At the ordinate the o-mode number No =
(σ − δ) /2π = 2L/λo is proportional to the frequency of
the light field. At the abscissa the phase shift is the wave
number multiplied by the cavity length.
The branch of to-wave does not show the splitting by

the cholesteric stopband ([1], at p. 354), for ϕ = π/2
at σ = υ, in the point B of Fig. 2(a). The splitting is
omitted in Eq. (13).
Dashed curves for the untwisted structure correspond

to o- and e-waves: υ (ϕ = 0) = δ. Points O and T indi-
cate the TSS of mode 3 from o- to to-wave. Calculated
curves for te- and to-waves lie outside of the intervals of
o- and e-wave phases. It illustrates the fact that effective
RI lies outside of the interval determined by the ordinary
and extraordinary RI.
Let’s use Eq. (11) to determine the twist phase shift:

υ − δ =
√

δ2 + ϕ2 − δ,

assuming ϕ ≪ δ gives

υ − δ = δ

(
√

1 +
ϕ2

δ2
− 1

)

≈ δ

(

ϕ2

2δ2

)

=
ϕ2

2δ
. (20)

F. Dispersion curves and RSS

Figure 2(b) illustrates dispersion curves for re- and ro-
waves under simplification by Eq. (18):

∓ arcsin (sin υ cosΘ) = σ − πN. (21)

The left hand side of Eq. (21) at σµ = 0 was shown ear-
lier in [34] as a resonance diagram. The right hand site
of Eq. (21) produces constant-slope lines. The reduced
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FIG. 2. (Color online) The dispersion curves. Abscissa axis shows the phase shift proportional to the wave vector. Ordinate
axis shows the number of modes, proportional to the frequency of the wave. Blue (dark gray) color shows o-, to-, ro-waves;
green (light gray) color shows e-, te-, re-waves. The calculation parameters are ϕ = π/2, δn/n = 0.3. (a) TSS calculated with
Eq. (13). Points O and T indicate the frequencies of mode 3 for o- and to-waves, respectively. Point B corresponds to the
zeroth mode. The splitting at the point B is not shown. (b) RSS calculated with Eq. (21). Points T and R show the frequencies
of mode 3 for to- and ro-waves, respectively. G1 and G2 are Gooch–Terry minima (22) and G3/2 is the Gooch–Terry maximum
(23).

zone with the period π corresponds to the half-loop. The
positive feedback condition (21) is fulfilled at every inter-
section of the magenta curve (strait lines) with the green
(ligth gray) or blue (dark gray) one for re- and ro-wave
frequencies corresponding to spectral transmission peaks.
Dashed dispersion curves correspond to te- and to-waves
∓ arcsin (sin υ cos (Θ = 0)) = ∓υ. These lines describe
the zeroth-order approximation, no reflection coupling.
Points T and R indicate the RSS of mode 3 from to- to
ro-wave.
Dispersion curves for te-, to-, re- and ro-waves meet at

points G1,2... where the Gooch–Terry minimum condition
is valid:

sin (υ) = 0. (22)

The condition was obtained for minimal TN cell trans-
mittance [32]. In Gooch–Terry minima both resonator
phase ρ and twisted anisotropy phase υ are multiples of
π. The Jones matrix Ĵ (Eq. (11)) is degenerated into a
unit matrix:

Ĵ = ±Î

with ±1 eigenvalues and arbitrary eigenvectors. Let the
condition

sin2 υ = 1 (23)

be the Gooch–Terry maximum condition. Note that this
simple condition describes local maxima of the TN cell
transmittance only approximately. In fact, the Gooch–
Terry transmittance is a sinc function of phase, and max-
ima of this function are slightly non-equidistant. Figure
2(b) shows that in Gooch–Terry maxima the phase ρ is

maximally distant from the phase ±υ. This difference is
given by substituting the condition (23) into Eq. (21)

υ = arcsin (1) = π/2,

ρ = arcsin (cosΘ) = π/2−Θ,

υ − ρ = Θ.

The maximum difference is described by the adiabatic
parameter Θ. Near the Gooch–Terry maximum the dif-
ference decreases according to the law:

min (π − ρ− υ, υ − ρ) =

√
1 + Θ2 tan2 υ − 1

|tan υ| . (24)

Near the Gooch–Terry maximal point G3/2, the four
dispersion curves form a typical pattern called avoided
crossing. In oscillation theory re- and ro-waves corre-
spond to normal frequencies, while te- and to-waves cor-
respond to partial frequencies [69]. In quantum mechan-
ics re- and ro-waves correspond to adiabatic states while
te- and to-waves correspond to diabatic states [70]. Both
terminologies are used in optics.

The alternation of Gooch–Terry minima and maxima
in Fig. 2(b) can be interpreted as an alternation of cross-
ings and avoided crossings of transmission peaks [47, 59].
Conditions (22) and (23) for the untwisted medium cor-
respond to the respective conditions of sin2 δ = 0 and
sin2 δ = 1. The Gooch–Terry minimum matches the
twisted analogue of a waveplate. This waveplate retardes
te-wave compared to to-wave by an integer number Nδ of
wavelengths with phase shift 2πNδ. Gooch–Terry max-
ima correspond to phase shifts of (2Nδ + 1) π.
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G. Spectral shifts

Consider the total spectral shift ∆λ of the TN com-
pared with an untwisted counterpart. Without loss of
generality we consider the o-wave. For the e-wave one
can derive symmetric formulae with the opposite sigh:
∆λe = −∆λo

Dimensionless relative shift of the vacuum wavelength
λ is:

∆λ

λ
≈ − ∆k

k0 − δk
= − ρ− δ

σ − δ
.

The average phase σ can be excluded by use of the fol-
lowing relation:

λ

σ − δ
=

λ2

2πnoL
.

And substituting ρ from Eq. (18) gives:

∆λ = − λ2

2πnoL
(arcsin (sin υ cosΘ)− δ) . (25)

Using approximations (24) and (20) one obtains:

∆λ = ∆λTSS +∆λRSS

= − λ2

2πnoL

(

ϕ2

2δ
∓

√
1 + Θ2 tan2 υ − 1

tan υ

)

. (26)

Far from the Gooch–Terry maximum condition, the sec-
ond summand ∆λRSS can be neglected:

∆λTSS = − λ

2πnoL

(

ϕ2

2δ

)

= − λ2ϕ2

2πno2L 2πδnL/λ
= − λ3

2nδn

( ϕ

2πL

)2

. (27)

For the o-wave TSS is wavelength-negative ∆λTSS <
0. And peaks are shifted in shortwave region; i.e.,
blue-shifted. However near the Gooch–Terry maximum
tan (υ) → ∞ so that

∆λ ∼ ϕ2

2δ
−

√
1 + Θ2 tan2 υ − 1

|tanυ| =
ϕ2

2δ
−Θ ≈ ϕ2 − 2ϕ

2δ
.

For example, at ϕ = π/2,

∆λ ∼ ϕ− 2 =
π − 4

2
< 0.

Thus at ϕ < 2 (in radians) the RSS component may
locally reverse the total shift direction from blue to red.

III. INTERPRETATION

Three levels of anisotropy complexity are presented in
Table I and illustrated in Fig. 3. Eigenwaves re- and ro-
have linear polarizations at mirrors of the cavity [47, 48].

TABLE I. Three levels of anisotropy complexity.

Anisotropic medium Homogeneous Twisted TN-FPC

Eigenwave o,e to,te ro,re

Eigen

polarization
Linear Elliptic

Linear

at boundaries

These polarizations are biased from the LC director and
the direction orthogonal to the LC director by the deflec-
tion angle ξ. With increasing frequency linear polariza-
tions rotate continuously passing from one of the princi-
pal axes to another. Therefore, we suggest to denote the
eigenwaves as e2o- and o2e-waves (English words “two”
and “to” are pronounced identically). At the Gooch–
Terry maximum the polarization coincides with the bi-
sectors ξ = ±45◦. Therefore, the waves are called bisec-
tor and orthogonal bisector [48]. It is convenient to treat
e2o-wave as re-wave while it is close to e-wave and to
change its name to ro-wave after it passes through the
bisector and gets close to o-wave. And vice versa for o2e-
wave. Dispersion curves in Fig. 2(b) show this renaming
by changing color at the Gooch–Terry maximum. The
curve G1RG2 for o2e-wave is blue-colored (dark gray) in
the lower part for ro-wave. And it is green-colored (light
gray) in the upper part for re-wave.

A. Poincaré sphere

There is a variety of methods to make the results more
comprehensive and visually attractive. They are the
complex-number representation of polarization, Poincaré
sphere [31, 33, 71, 72], high-order and hybrid-order
Poincaré sphere [73, 74], admittance diagram method,
Volpert–Smith chart and three-dimensional (3D) Smith
chart [66, 75], and the rolling cone method [24, 76]. The
last method provides a mechanical visualization of Eqs.
(12) and (7) with a sum of orthogonal angular velocities
of a solid cone rolling on a plane. For the sublayers of
finite thickness the cone is replaced by the pyramid. The
cone is rolling in a characteristic space of light polariza-
tion ellipses. This space is usually represented as a sphere
of unit radius called the Poincaré sphere (PS).
Figure 4 shows a to-wave polarization trajectory and

a ro-wave polarization trajectory (in blue – TT′ and ma-
genta – RR′, respectively). They smoothly evolve with
the penetration depth of the TN layer under the action
of operator Ĵ0. For the right-handed to- and ro-waves
it is convenient to set the right-handed polarization in
the upper hemisphere of PS as in [33, 35], and not in the
lower one, as in [6, 31, 77]. The trajectory RR′ is the
spherical trochoid [78]. It is associated with a trajectory
of a point rigidly connected with a solid cone (Fig. 5(a))
rolling without slipping on a plane [24]. Stereographic
projection of a similar trajectory is presented in Ref [33],
p. 136, Fig. 2.24.
For further consideration it is essential that the uni-
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FIG. 3. (Color online) Representative polarizations at medium boundaries z = 0 (a) and z = L (b). Blue (dark gray) color
shows o-, to-, ro-waves; green (light gray) color shows e-, te-, re-waves. The twist angle ϕ is between o- and y-directions.
The o-deflection angle ξ is between o- and ro-directions. The e-deflection angle between e- and re-directions has the same
magnitude as ξ at both boundaries.
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FIG. 4. (Color online) Poincaré sphere (a) and a portion of
its cylindrical projection (b). Directions y, x − y, x, x + y
correspond to angles Φ = 2ϕ=0, 90, 180 and 270 degrees,
respectively. Trajectories under the action of operator Ĵ0 for
ϕ = 80◦: OO′ – linear polarizations on the PS “equator”
corresponding to o-wave, TT′ – to-wave trajectory on the
PS “parallel” with latitude Θ, RR′ – ro-wave trajectory, a
spherical trochoid. The parameters correspond to the right-
most peak in the mentioned below experimental spectrum of
Fig. 8(a), λ = 579.1 nm.

modular Jones matrix has the geometrical sense of the
PS rotation. Jones vectors correspond to PS points. Dis-
tances between points are conserved at transformations
on the spherical surface. The PS point is often regarded
either as the normalized triplet of Stokes parameters or

as the polarization ellipse traced by the terminal point of
the field vector. In both cases PS is a two-dimensional
manifold. But the Jones vector has three degrees of free-
dom. Its third phase is the temporal phase. It progresses
by 2π while the field vector passes the elliptic trajectory.
The 3-phase polarization state is the one-to-one repre-
sentation of the Jones vector. This polarization state is
regarded either as the triplet of Euler angles or as the
unit quaternion. The space of all polarization states is a
3-sphere. The Hopf fibration projects it onto PS which is
a 2-sphere [6]. The unit quaternion may be imagined as
a “flag” consisting of two arrows. The first polarization
arrow goes from the center of PS to its surface. The sec-
ond arrow of temporal phase is connected to the terminal
point of the first arrow and goes in a perpendicular direc-
tion (similar to that shown in Fig. 2 of Ref [79]). If the
polarization arrow is rotated then the entire “flag” of po-
larization state is rotated about the same axis. With the
temporal phase increase the second arrow rotates around
the first one. Remarkably, one period on the polariza-
tion ellipse corresponds to two revolutions of the “flag.”
Strictly speaking, Jones matrices form the special unitary
group SU(2). This group is the universal covering of the
rotation group SO(3). The covering is two-sheeted [80–
82].

B. Geometric phase

The parallel transport of a geometric object on a
curved surface rotates the object about its own axis. A
classic example is the Foucault pendulum with the rota-
tion of its swing plane caused by the Earth’s daily ro-
tation. Similarly, the parallel transport of the polariza-
tion state on the PS curved surface leads to the phase
shift called the geometric phase (GP). It is caused by
global geometric characteristics, such as the curvature
and the parallel transport trajectory, and independent
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of local characteristics, such as the speed of state move-
ment along the trajectory. There is a geometric formula

for closed trajectories. Applied to polarization it claims:
GP β is equal to minus half the area Ω encircled by the
trajectory on PS:

β = −Ω/2. (28)

A rigorous proof is given in [6] using Stokes’ theorem.

C. Geometric calculation of the phase shift

corresponding to TSS for traveling wave

We apply the geometric formula to find the phase shift
of the traveling wave at the trajectory TT′ in Fig. 4.
Elliptical wave expressed by Eq. (8) is a superposition
of o- and e-waves with relevant RIs. The averaged RI
should be chosen in the form that takes into account the
analogue of the Aharonov–Anandan dynamic phase (see
Ref [6], Eq. (5.19)):

n̄ = n− δn cosΘ, α = n̄k0L = σ − δ cosΘ. (29)

The minus sign corresponds to o-wave. This RI nor-
malization reduces the PS rotation to parallel transport
along the great-circle trajectory.
Let the twist angle ϕ = π. Then Φ = 2ϕ = 2π makes

one turn on the PS “parallel” with latitude Θ. The area
between the “equator” and this “parallel” is equal to the
side surface of a cylinder of unit radius and of height
equal to sinΘ (see Ref [83], Lambert cylindrical equal-
area projection on p. 260).

Ω (ϕ = π) = 2π sinΘ.

For arbitrary twist angle

Ω (ϕ) = 2ϕ sinΘ. (30)

The total phase shift γ consists of the dynamic phase α
and the geometric phase β: γ = α + β. The geometric
formula (28) and equations (29,30) give:

γ = σ − δ cosΘ− ϕ sinΘ.

Eqs. (12) and (15) produce a transformation δ = υ cosΘ,
ϕ = υ sinΘ. This transformation gives

γ = σ − υ
(

cos2 Θ+ sin2 Θ
)

= σ −
√

δ2 + ϕ2.

Indeed, the result coincides with the Mauguin formula
(13).

D. Geometric calculation of the phase shift

corresponding to RSS for cavity wave

The Mauguin–Poincaré rolling cone method is easily
expanded to the Hopf bundle of PS. In fact, the gen-
eralization is a consequence of the solid cone analogy.

This generalization allows to find certain phase relations
trigonometrically. The phase integration along the tra-
jectory RR′ corresponds to the matrix multiplication of
Eq. (4). Diagonalization of Eq. (10) is a simplifying al-
gebraic transition to the rotating frame written as the
product of three matrices. Geometrically, it corresponds
to the transition from the trajectory RR′ to the chain of
three arcs: RT-TT′-T′R′ (Fig. 4(b)). Wherein the first
and the last arcs are to be chosen as geodesics. The great
circle arc RT (see Fig. 5(a)) matches the parallel trans-
port and the geometric phase corresponds to the Pan-
charatnam phase [4] without any normalizing dynamic
phase of Eq. (29).

r
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G

0G

O

T

R

(a)

(b)

FIG. 5. (Color online) The rolling cone method on the
Poincaré sphere. (a) Points O, T and R describe the po-
larizations of o-, to- and ro-waves at the boundary of the
twisted layer. The Mauguin cone contains the point T on
its axis, and the point O on its generator. Spherical triangle
OTR has a right angle 6 ROT. The cathetus RO = Ξ = 2ξ
lies on the “equator”. The cathetus TO = Θ = 2ϑ is per-
pendicular to the “equator”. Acute angles are 6 RTO = υ
and 6 ORT = ρ0. The area is equal to spherical excess
Ω (OTR) = (π/2+υ+ρ0)−π = υ−ρ. (b) Points E and Te de-
scribe polarizations of e- and te-waves. The great circle G0G
is perpendicular to the diameter TTe. The big circle TeGRT
in the Gooch–Terry minimum coincides with the great circle
TeG0OT. Distance to the Gooch–Terry minimum for the to-
wave is determined by the phase υ = 6 G0G = Ω(TG0G), and
for ro-waves it is determined by the phase ρ = Ω(G0GRO).

During the passage of the distance L ahead through the
cavity the traveling to-wave in rotating frame receives the
phase shift υ. Therefore, PS is rotated by the angle 2υ.
After the rotation the linear polarization R is returned
back to the “equator” at the point R′. It corresponds to
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reflection symmetry of triangles OTR and O′T′R′. The
mirror reflection corresponds to the triangle reflection
symmetry with respect to the RO arc (improper rota-
tion). The resultant geometric phase shift of the ro-wave
compared with that of the to-wave accounts the triangle
area four times per loop cycle 4Ω (OTR) = 2βRSS.
The rolling cone method works even when the adia-

batic condition is violated. In [49] the non-uniform LC
twist is examined, for example, under electric voltage.
However, in the symmetric case for the cone opening
angle Θ (z) = Θ (L− z) the eigenwave preserves linear
polarization on the layer boundary. For practice the lin-
ear polarization of the transmitted light is advantageous,
because of the reliable blocking of transmission [50].
The account of mirror phase shift δµ by anisotropic re-

flection is equivalent to a waveplate action. On PS this
leads to an additional rotation of the RO arc by the an-
gle of δµ off the “equator.” Pythagorean theorem (18)
for the right spherical triangle OTR transforms to the
cosine theorem (17) for the angles of the spherical trian-
gle. The point R leaves the PS “equator”. It means that
the corresponding transmission peak becomes elliptically
polarized. The superposition of opposing traveling waves
on a perfect cavity mirror remains linearly polarized at
δµ 6= 0 only when σµ = πNµ/2 with integer Nµ.

E. Connection between dispersion curve phases

and PS angles

With increasing frequency the Mauguin cone rolling
angle 2υ is increased uniformly. The to-wave corresponds
to the Mauguin cone axis on PS. The point T is fixed,
assuming constant adiabatic parameter: Θ (ω) ≈ const.
Without changing the polarization the to-wave acquires
a π phase between the adjacent Gooch–Terry minima
(see the section G1G3/2G2 of the dispersion curve at
Fig. 2(b)). The ro-wave gains the phase ρ (dispersion
curve section G1RG2) which is less than the phase υ by
the area of a spherical triangle Ω (OTR) = υ−ρ. During
the passage of the Gooch–Terry maximum this area has a
critical value Ω (OTR) = Θ in accordance with Eq. (24).
The cathetus RO=Ξ = 2ξ of the triangle OTR is given

by Napier’s rules for right spherical triangles [82]:

tanΞ = − sinΘ tanυ.

This equation determines the deflection angle ξ of the
boundary ro-wave linear polarization from the LC direc-
tor (Fig. 3). Figure 4(b) shows the arc TR rotating when
υ increases. The point R moves non-uniformly along the
PS “equator”. The movement is faster near the Gooch–
Terry maximum. In adiabatic approximation Θ ≪ π/2
the point R jumps at the Gooch–Terry maximum so that
ξ ≈ 0 for ro-wave and ξ ≈ π/2 for re-wave.
Exact correspondence between optical wave phases and

characteristic space angles provides a visual support and
a qualitative understanding of the phenomenon support-
ing the validity of the obtained solution.

F. Intermediate optical response presumption

The motivation for this study was the debate about
the direction of the transmission peak spectral shift in a
TN layer. The intermediate optical response presumption

was formulated for an anisotropic medium whose effective
RI is between the ordinary and extraordinary RI,

no < ñ < ne (31)

Here are a few abstract examples supporting the inter-
mediate optical response presumption.

1. The average RI of nematic in the isotropic phase
is [1, 76]

n2
iso =

(

n2
e + 2n2

o

)

/3.

2. In a homogeneous, uniaxially anisotropic medium,
the extraordinary light wave propagating at an
angle θ to the optical axis has the following RI
(Ref [1], Eq. (11.6)):

ne (θ) = none (0) /

√

n2
e (0) cos

2 θ + n2
o sin

2 θ.

3. The thin sublayer of the TN layer has effective RI
according to the normalization (29).

Non-additive response of a slab of sublayers leads to
the geometric phase (28). As a result, the Mauguin for-
mula (14) contradicts the intermediate optical response
presumption (31):

nte,to = n±
√

δn2 + (ϕ/k0L)
2
, nto < no < ne < nte.

The stated contradiction admits an experimental test.
With an increase in the effective RI (i.e., increase in
the optical length of the cavity), transmission peaks are
shifted to the red. For the o-wave in untwisted struc-
ture the effective RI is equal to the ordinary RI. Ac-
cording to the intermediate optical response presumption
(Eq. (31)) the twisted effective RI shifts towards the ex-
traordinary RI; in other words, the effective RI increases.
This predicts the redshift ∆λTSS > 0 for spectral peaks.
In contrast, the Mauguin formula predicts the blue shift
∆λTSS < 0 (27).

IV. EXPERIMENT

A. LC orientation

An experimental study of the shift of the o-polarized
spectral transmission peaks to shorter wavelengths was
carried out inside a LC-FPC. The Fabry–Pérot cavity
consisting of two dielectric mirrors (Fig. 6, bottom row)
is treated as a LC cell. It was filled with the nematic LC
4-methoxybenzylidene-4’-n-butylaniline (MBBA) doped
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with the cationic surfactant cethyltrimethyl ammonium
bromide (CTAB) in the weight ratio 1: 0.003. The cavity
gap is 7 µm. CTAB molecules within MBBA dissociate
into Br-anions and surface active CTA-cations. The lat-
ter are adsorbed at the surfaces of aligning layers and,
at the sufficient concentration, can form a layer spec-
ifying the homeotropic coupling condition for nematic
molecules [84, 85].

A multilayer mirror coating consists of 6 layers of zir-
conium dioxide (ZrO2) with RI of 2.04 and a thickness
of 55 nm and 5 layers of silicon dioxide (SiO2) with RI
of 1.45 and a thickness of 102 nm, alternately deposited
on the surface of a quartz substrate. The alternating
layers produce the reflection band in the range of 420–
610 nm. Thin (∼ 150 nm) ITO-electrodes were deposited
on the upper layers of ZrO2 to apply the electric field nor-
mally to the LC-FPC mirrors. Electrodes were covered
with different polymeric alignment films by spin-coating
to implement the initial homeoplanar director orienta-
tion (Fig. 6(a), bottom row). The top substrate was
covered with a planar-orienting film of pure polyvinyl
alcohol (PVA). The bottom substrate was covered with
a PVA film doped with glycerin (Gl) compound in the
weight ratio 1: 0.61. With the utilized CTAB concen-
tration the surfactant ion molecules were adsorbed on
the PVA–Gl film. The formed layer shields the planar-
orienting effect of the polymer coating and provides the
homeotropic anchoring for MBBA. Polymer films on both
dielectric mirrors were rubbed unidirectionally to define
the axis of easy orientation. The angle between the rub-
bing directions at the top (R1) and bottom (R2) mirrors
is 90◦.

Inside the LC-FPC cell at constant voltage value U
= 4 V, the orientation transition from homeoplanar to
twist director configuration is induced by ionic modifi-
cation of surface adhesion [86]. This transition is ac-
companied by a modification in polarizing microscope
optical texture of the LC-FPC cell under the parallel-
and crossed-polarizer scheme (Fig. 6, top row and middle
row, respectively). For example, under crossed polariz-
ers the optical texture of LC-FPC cells in the initial state
is uniformly dark when the R1 direction coincides with
the transmission axis of the polarizer (Fig. 6(a), middle
row). The light transmission is increased when the volt-
age is applied and the twist-configured FPC (TN-FPC)
is formed (Fig. 6(b), middle row). However, under the
parallel-polarizer scheme the TN-FPC transmittance is
low (Fig. 6(b), upper row) due to the rotation of the
polarization plane of linearly polarized light at an angle
close to 90◦ after passing the TN layer.

The experimental scheme excludes a significant im-
pact of parasitic factors on the shift. The structure is
twisted uniformly, because every sublayer has constant
twist torque created by different rubbing orientations.
Twist-structure is under the voltage of 4 V. However,
this does not lead to any deformation of the structure.
Firstly, in the volume of the cell the voltage is partially
compensated by surface charges. Secondly, MBBA is ori-

ented transversely to electric field.

B. Cavity and its spectra

Polarized transmission spectra of LC-FPC with two
different configurations of MBBA director for normally
incident light were measured using an Ocean Optics
HR4000 spectrometer equipped with fiber-optics (Fig. 7).
The LC-FPC sample was placed inside the optical chan-
nel with planar orientant (R1 || x) at the input mirror.
A Glan prism (P) was used as a polarizing element with
the linear polarization along the y-axis (i.e., orthogonal
to the director on the input mirror). In this experimental
scheme the o-polarized transmission spectrum was mea-
sured regardless of structural transformations in the ne-
matic volume. Spectra were recorded at a fixed tempera-
ture of 23.0◦ C. Thermal stabilization error was no more
than ±0.2◦ C. The voltage was generated by a power
supply (AKTAKOM ATN-1236).

C. Comparison of experiment, simulation and

analytic formulae

Three measurements were averaged to calculate the
experimental spectral shift (Fig. 8). Experimental reso-
lution of 0.25 nm was improved by fitting spectral peaks
by Voigt contours. The confidence interval was calcu-
lated as the corrected sample standard deviation mul-
tiplied by the Student coefficient with 95% reliability:
t0.05,2= 4.3027.
The Berreman method [37, 38] was used for numerical

simulations. The method evaluates polarization vectors
and transfer matrices of dimension 4 to take into account
the weak reflection waves arising in the LC bulk (multiple
anisotropic reflections between the sublayers). The TN
layer was divided into 200 sublayers and the calculated
spectral resolution was 0.01 nm. Some parameters were
considerably tuned to match the experimental spectra.
The thicknesses and RIs of amorphous layers constituting
the dielectric mirror were taken for SiO2: 83 nm and
1.45; for ZrO2: 66 nm and 2.02; for each ITO layer:
117 nm and 1.88858 + 0.022i taking the absorption into
account; for the substrate RI: 1.45 and for the PVA RI:
1.515; two thicknesses of PVA layers: 300 and 600 nm; for
MBBA extraordinary RI: 1.737 and ordinary RI: 1.549,
both with RI imaginary part: 0.00078i. The thickness of
MBBA layer was 7980 nm; the twist angle was 80◦.
The material dispersion gave some minor changes in

the spectra and the shift. The most notable changes were
the absorption dispersion and the change in MBBA layer
thickness by 40 nm. Therefore, the spectra illustrated
in Figs. 8 and 9 were calculated assuming no material
dispersion.
Experimental transmission peaks are broadened no

more than 2 times larger than the calculated peaks
(Fig. 9). This was achieved by additional flatness tun-
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FIG. 6. (Color online) Microphotographs of optical textures of LC-FPC under the parallel-polarizer scheme (top row) and
crossed polarizers (middle row), and the respective diagrams of the LC director configurations (bottom row). (a) Homeoplanar
orientation at U = 0 V; (b) twist orientation at U = 4 V. Polarizer (P) and analyzer (A) directions are represented by the
double arrows. R1 and R2 are rubbing directions of the top and bottom mirrors, respectively.

ing of the cavity. Comparison of experimental spectra
with simulations shows the transmission peaks shift to
shorter wavelengths for the twisted configuration. The
shift is less than the half-width at half maximum of a
peak. Three peaks in the range of 480–500 nm have min-
imal intensity and maximal shift dispersion. However, all
14 points fit satisfactorily into the simulated dependence
curve.

Figure 8(b) shows by dots and circles the experimental
and calculated values of the spectral shift, respectively.
Analytical Eqs. (25) and (27) are shown by the solid
curve and the dotted curve, respectively. The reflection

phase shift leads to simultaneous displacement of all the
points along the solid curve. The latter analytic curve is
affected by the reflection phase shift only near Gooch–
Terry maxima. The experimental spectrum contains no
Gooch–Terry maxima. So in analytical equations the re-
flection anisotropy was ignored δµ = 0.

The analytic formula (25) slightly overestimates the
shift. There are several possible reasons for this dis-
tinction. Firstly, the difference of PVA layer thicknesses
on mirrors leads to some error. Secondly, weak reflec-
tion waves arising in the LC bulk produce the differ-
ence between the Berreman and the Jones spectral shifts.
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FIG. 7. (Color online) Experimental setup for measurement
of polarized transmittance spectra of LC-FPC. C – fiber col-
limator, GP – Glan prism, PD – photodetector.
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FIG. 8. (Color online) Ordinary-polarized LC-FPC spectrum
(a) and the spectral shift of transmission peaks (b). (•) – ex-
perimental shift values, (o) - calculated shift values obtained
by direct numerical simulation using the Berreman method,
solid curve – analytical shift calculated from Eq. (25) ob-
tained by the Jones method, dashed curve – the shift ∆λTSS

calculated without mirror effect from Eq. (27). The parame-
ters of the rightmost peak with λ = 579.1 nm were taken to
calculate Fig. 4.

Wavelength nm( )

505 510 515 520

T
ra

n
s
m

it
ta

n
c
e

0

0.05

0.1

h-planar

twist

Wavelength nm( )

505 510 515 520

T
ra

n
s
m

it
ta

n
c
e

0

0.05

0.1

h-planar

twist

(a)

(b)

FIG. 9. (Color online) Zoomed experimental (a) and calcu-
lated (b) transmittance spectral peaks for homeoplanar (blue
- dark gray) and twisted (magenta - light gray) configurations
in LC-FPC. The twist leads to shorter wavelength shifts.

The effective Jones RI (14) is commonly used for the
TN LC where the helical pitch is much larger than the
wavelength [21]. The formula (14) has been general-
ized [62, 65, 87, 88] for cholesteric LC where the helical
pitch is of the same order with the wavelength. The wave
vector for the Berreman method:

q± = ±
√

k2ϕ + n2k20 ± k0

√

4k2ϕn
2 + (2nδn+ δn2)2 k20 .

It gives the effective Berreman RI:

n±
B = ±

√

n2
ϕ + n2 ±

√

4n2
ϕn

2 + (2nδn+ δn2)2. (32)

The Berreman RI (32) and the Jones RI (14) contrast is
evident in the graph scale despite the reasonable approx-
imation ϕ ≪ δ ≪ σ.
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V. CONCLUDING REMARKS

To the best of our knowledge, the Mauguin phase shift
formula (13) has had only implicit and indirect confirma-
tions in polarization measurements. Such measurements
are, for example, the measurement of spectral positions
of Gooch–Terry minima and the optical activity mea-
surement of cholesteric LC [76]. As usual in commer-
cial TN cells TSS does not exceed 1 nm in accordance
with Eq. (27). TSS is really hard to ascertain exper-
imentally. For example, in the experimental spectra of
TN-FPC with twist-homeotropic electric switching, the
o-polarized spectral shift, as reported in [59], was much
higher than TSS Eq. (27). The crucial factor was re-
orientation of the parietal LC sublayers. They were not
reoriented homeotropically up to the cell breakdown volt-
age.
The reported shift in TN-FPC can be observed directly

without any polarizers. And the required measurement
accuracy is achieved due to multiple interference in the
cavity. The main drawback of the presented scheme is
that untwisted structure maintains a constant RI for the
o-polarized light only. The e-polarized spectral shift may
be measured in the experimental scheme with the twist-
planar to homogeneous-planar transition, which could be
achieved using photoalignment material with reversible
intermolecular bonds [89, 90].
The avoided crossing spectral shift caused by the mir-

ror reflection mode coupling, the above-mentioned RSS,
was described analytically and experimentally in the uni-
formly twisted structure. The analytical expression (26)
for RSS near the Gooch–Terry maximum looks much
easier than the one published before [34]. A general-
ized Mauguin–Poincaré rolling cone method allowed us
to solve the problem geometrically, independently of the
Jones and Berreman matrix formalisms.
The spectral shift of transmission peaks should not be

confused with a frequency shift or a frequency conver-
sion. In the stationary linear problem the light frequency
is not converted. Also we claim that the twist spectral
shift characterizes not entirely the cavity but namely the
twisted layer itself. The cavity just facilitates the mea-
surement in that the twisted layer does not generate any
transmission peaks. So what is actually shifted while
twisting the layer? Obviously, shifted is the eigenwave
phase when going out of the twisted layer. Therefore,

the effective refractive index varies. This optical response
can be measured without a cavity. For example, a polar-
ization grating has considerable sensitivity to a minute
change in refractive index, which permits the experimen-
tal confirmation of the described phenomenon.

The intermediate optical response presumption was
formulated to determine the extreme values of the op-
tical response of the complex medium. Despite the ap-
parent evidence this presumption may be violated. A
well-known example is a composite of a few optical me-
dia with the inhomogeneity scale much smaller than the
wavelength. Its resonant optical response may exceed
maximal values for every component. This intermedi-
ate optical response violation for composites is explained
by the Clausius–Mossotti contribution of spatial bound-
aries between the components [91, 92]. Another interme-
diate optical response violation for a twisted anisotropic
medium is shown to be due to the GP contribution. This
tiny GP contribution should not be confused with the
GP of the zeroth-order adiabatic approximation. The
last one is responsible for π-phase polarization conflict in
the π-twisted LC cell [11]. A visual GP representation
is speculated as the area covered by the polarization tra-
jectory on PS. Contributions of TSS and RSS are related
to areas of spherical rectangles and triangles.

The revealed tiny spectral shift in TN-FPC exists in an
arbitrary anisotropic chiral medium, not only TN layer.
No doubt, it must be accounted for a vast class of twist-
polarization devices in high-precision engineering appli-
cations, such as multiplexers, 3D displays, optical tweez-
ers, holographic data storage, and diffractive optics.
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Phys. Rev. Lett. 113, 257401 (2014).
[9] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045



15

(2010).
[10] T. Bauer, P. Banzer, E. Karimi, S. Orlov, A. Rubano,

L. Marrucci, E. Santamato, R. W. Boyd, and G. Leuchs,
Science 347, 964 (2015).

[11] M. V Vasnetsov, V. A. Pas’ko, and D. S. Kasyanyuk,
Opt. Lett. 36, 2134 (2011).

[12] E. Hasman, G. Biener, A. Niv, and V. Kleiner, Prog.
Opt. 47, 215 (2005).

[13] S. R. Nersisyan, N. V Tabiryan, D. M. Steeves, and B.
R. Kimball, Opt. Photonics News 21, 40 (2010).

[14] S. Pancharatnam, Proc. Indian Acad. Sci. - Sect. A XLI,
137 (1955).

[15] R. Simon, H. J. Kimble, and E. C. G. Sudarshan, Phys.
Rev. Lett. 61, 19 (1988).

[16] P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld,
S. Serati, H. Xie, and E. A. Watson, Proc. IEEE 97, 1078
(2009).

[17] P. Hariharan, Prog. Opt. 48, 149 (2005).
[18] S. Isaacs, F. Placido, and I. Abdulhalim, Appl. Opt. 53,

H91 (2014).
[19] V. Y. Zyryanov, V. A. Gunyakov, S. A. Myslivets, V. G.

Arkhipkin, and V. F. Shabanov, Mol. Cryst. Liq. Cryst.
488, 118 (2008).

[20] V. A. Gunyakov, M. N. Krakhalev, V. Y. Zyryanov, and
V. F. Shabanov, Tech. Phys. Lett. 41, 86 (2015).

[21] Y.-C. Hsiao, C.-Y. Wu, C.-H. Chen, V. Y. Zyryanov, and
W. Lee, Opt. Lett. 36, 2632 (2011).

[22] A. Vargas, M. del Mar Sánchez-López, P. Garćıa-
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