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Abstract 
 
Light scattering by a monolayer of bipolar nematic droplets encapsulated in polymer film is examined both 

experimentally and theoretically. A method for the simulation of the angular distribution of scattered light is based 

on the anomalous diffraction and interference approximations taking into account the director configuration within 

liquid crystal droplets and their bipolar axes orientation. The director configuration in nematic droplets is calculated 

using the relaxation method of the free energy minimization. The characteristics of the sample, including 

distribution of droplet sizes and shape anisometry, are measured in details. The experimental results and theoretical 

data agree closely with each other. 

 

Keywords:  Polymer-dispersed liquid crystal film, Liquid crystal droplet, Director configuration, Light scattering,  

Monolayer of droplets.  
 
 
1. Introduction  

The ensemble of optically anisotropic particles is not a trivial object for the evaluation of its light 

scattering characteristics [1]. This issue becomes even more complicated if to consider liquid crystal (LC) 

droplets [2-7], for example, polymer-dispersed liquid crystal (PDLC) films because orientation structure 

within the droplets is commonly inhomogeneous. Configuration of LC director (a unit vector n 

characterizing preferred molecular orientation for a local volume in a droplet) can be rather complicated 

[2,3,7]. Consecutive development of special simulation techniques by many research groups (see, for 

instance, the lists of some of them in [6,7]) allows now calculating adequately the light scattering pictures 

for actual LC dispersions.  

In this paper, we perform comparison of the theoretical estimations and experimental data on 

angular distribution of light scattered by a PDLC film with monolayer of bipolar nematic droplets. This 

theoretical approach takes into account distributions of droplet in size and shape anisotropy, orientation of 

droplets, and director configuration in LC droplets. The last is calculated using the relaxation method of 

the elastic energy minimization [2,3]. 



2. Materials and sample preparation 

The samples have been made based on nematic liquid crystal 4-n-pentyl-4’-cyanobiphenyl (5CB) 

dispersed in polyvinylbutyral (PVB). Weight ratio of the components was 5CB: PVB = 53 : 47. Solvent 

induced phase separation (SIPS) method using the ethyl alcohol as a common solvent was applied to 

prepare the samples. Heterogeneous films of polymer-dispersed liquid crystal were formed on the glass 

substrate in the result of solvent evaporation during 24 hours at the room temperature.  

Refractive indices of 5CB [8] measured at t = 23 ˚С and λ = 0.633 μm are n|| = 1.717, n⊥ = 1.531, 

where the symbols || and ⊥ show the mutual orientation of the electrical vector of light wave and the LC 

director. Refractive index of pure PVB is np = 1.490 at λ = 0.633 μm. However, during the phase 

separation the part of LC remains dissolved in matrix [9] matching the refractive indices n⊥ 5CB and np. To 

estimate the refractive index of polymer matrix we used the composite with the maximal LC content at 

which the phase separation has not occurred yet. In our case this requirement was satisfied for the 

composite at the weight ratio of the components being 5CB : PVB = 26 : 74. The refractive index of such 

film is np+LC = 1.522 (at t = 23 ˚C and λ = 0.633 μm). 

 

3. Experimental equipment 

Scattering intensity was measured by means of the optical set-up shown schematically in Fig. 1. 

Unpolarized beam of He-Ne laser (LASOS, λ = 0.633 μm) passed through the polarizer which can turn 

from the horizontal direction to the vertical one. Linearly-polarized light after polarizer is incident 

normally on surface of the PDLC sample under study. The intensity of scattering light was measured by 

the silicon photodetector with the amplifier PDA100A-EC (ThorLabs) arranged on the optical breadboard 

rotating in the horizontal plane. PDLC film position coincides with the rotation axis of the optical plate. 

Angular sizes of the optical diaphragm located in front of photodetector are 15 minutes in the horizontal 

direction and 45 minutes in the vertical one. Intensity of scattered light depending on the angle is 

measured with the increment 15 ± 2.5 minutes beginning with the 40´ angle relative to the symmetry axis 

to exclude the forwardly transmitted coherent radiation. The signal from photodetector is analyzed using 

the oscillograph TDS 2012B (Tektronix).  

The turn of polarizer and analyzer relative to each other as well as to the horizontal allows 

measuring the scattering intensity for the various experimental schemes. We have considered two 

variants. For the first one the polarizer and analyzer were oriented vertically (vv-component of the 

scattered light). In other case the polarizer orientation was vertical and analyzer one was horizontal (vh-

component of the scattered light). Transmittance of both polarizer and analyzer for parallel orientation is 

T|| = 0.8548. Their transmittance at the orthogonal orientation is T⊥ = 0.0016.  

Morphology of the composite film was studied by the polarizing optical microscope Axio 

Imager.A1m (Carl Zeiss) equipped with the digital camera. The obtained digital microphotographs were 

processed by means of the software AxioVision (Carl Zeiss). 



 
 

Fig. 1. Scheme of the setup to measure intensity of scattered light. 

 

4. Results of measurements 

Prepared PDLC film contains the bipolar nematic droplets with the average diameter 13.5 μm 

(Fig. 2). The observation of the cross section of the film under study has shown that the average film 

thickness is 4.3 μm, and ratio of the minor to the major spheroid axes is varied in the range of 0.7 ÷ 0.2 

for the droplets with diameters of 6 - 20 μm in the film plane.  

Relatively small dispersion of the droplet sizes is observed (Fig. 3). Fraction of droplets in the range 

of 13.5 ± 2.5 μm is 73 %. The filling factor η  of the layer is calculated as the ratio of sum of areas 

occupied with all droplets within the observable part of the sample to the square of this part. For the film 

shown in Fig. 2 the filling factor η = 0.23. 

 

100 �m

 
 

Fig. 2. Microphotograph of the film in the crossed polarizers. The size of the area is 700×520 μm. 

Polarizers (they are not shown) are oriented along the photo edges. 



 
Fig. 3. Distribution of droplet diameters in the film plane. The data over the bars are the values of the 

ratio of the minor to major droplet axes. 

 

The photographs scattering patterns of the linearly polarized light by the sample under study are 

shown in Fig. 4. They were obtained by means of the above described set-up. The photodetector and the 

camera objective were close to the sample. Observations in the schemes of parallel and crossed polarizers 

show that the part of scattered light has polarization which is perpendicular to the incident light 

polarization. When the polarization direction of incident light is turned round at the definite angle the 

scattering pattern entirely turns at the same angle.  

The scattering diagrams of the polarized light measured for the parallel and crossed polarizers are 

presented in Fig. 5. Only 31 % of the incident light passed in the straightforward direction. 

 

  
 

Fig. 4. Photographs of scattering patterns for geometry of parallel (a) and crossed (b) polarizer and 

analyzer. The laser beam passing straightforward is shaded. Exposure time for the crossed polarizers is 

more than for the parallel ones.  

 



 
 

Fig. 5. Experimental and calculated data for the Ivv and Ivh intensities of light scattered by the PDLC 

monolayer of spheroidal bipolar LC droplets versus the polar scattering angle θs  at azimuthal scattering 

angle φs=45°. η=0.23, n|| = 1.717, n⊥ = 1.531, np = 1.522, λ = 0.633 μm.  

 

 

5. Basic relations to calculate small-angle distribution of light scattered by a PDLC monolayer  

Consider a monolayer of PDLC droplets (PDLC monolayer) illuminated by a linearly polarized 

plane wave with the polarization vector Ei and wave vector ki (Fig.6). In Fg.6 the (xyz) denotes the 

laboratory frame, the x axis specifies the direction of propagation of the incident wave, the (yz) plane 

coincides with the monolayer plane, A is the part of the layer under consideration, ks is the wave vector of 

scattered wave, sθ  and sϕ are the polar and azimuthal scattering angles, respectively. Unit vector dj 

(droplet director) specifies orientation of the symmetry bipolar axis of the droplet. The vv and vh lines 

determine the directions of parallel and orthogonal components of polarization vector of the scattered 

wave with respect to polarization plane of the incident wave, respectively. The vv- and vh-components 

correspond to the geometries of parallel and crossed polarizer and analyzer, respectively.   

Let us suppose that PDLC monolayer consists of polydisperse spherical or spheroidal LC droplets 

with the minor axes normally oriented to the monolayer plane (along the x axis of the laboratory frame). 

To consider the angular distribution of light scattered by the monolayer, we use the interference 

approximation [12,13]. 

 



 
Fig. 6. Schematic presentation of the PDLC monolayer. (xyz) is the laboratory frame, (yz) is the 

monolayer plane, Ei and ki are the polarization vector and wavevector of the incident wave, respectively, 

ks is the wavevector of scattered wave, vv and vh lines determine the directions of parallel and 

perpendicular components of polarization vector of scattered wave relative to polarization plane of 

incident wave, dj is the director of individual LC droplet. A indicates the considered area of the 

monolayer, R is the radius-vector of observation point M. 

 

For the far-field observation point determined by the radius-vector R, for the vv- and vh-

components of the intensity of incoherently (diffusely) scattered light, it is possible to write: 
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Here  is the normalization factor, 22 / RAEC i= σ  is the average cross section of droplets by the 

monolayer plane, AN /ση =  is the monolayer filling factor (the ratio of the cross section area of LC 

droplets by the monolayer plane to the area where they are distributed), λπ /2 pnk = , is the refractive 

index of the binding polymer matrix, 

pn

λ  is the wavelength of the incident light, the angle brackets 〈⋅⋅⋅〉 

denote the averaging over the sizes of LC droplets and the structure and orientation of droplet directors 

dj, ),( ssvvf ϕθ  and ),( ssvhf ϕθ  are the vv- and vh-components of the vector amplitude scattering function. 

Function )( smS θ  is the structure factor of the polydisperse monolayer. It is found in the framework 

of the substitution model [14] by averaging the structure factor )( sS θ  of monodisperse monolayer over 

the sizes of LC droplets. We use the approximate analytical expression for )( sS θ  written in [15] as 

follows:   
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where c is the radius of the cross section of single droplet,  and  are the zero- and first-order 

cylindrical Bessel functions, respectively. 

0J 1J

Components of the amplitude function (see Eqs. (1) and (2)) are defined in the terms of the 

elements Sj (j=1,2,3,4) of the amplitude scattering matrix [16,17] as follows [18]: 
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where dϕ is the azimuthal angle of the droplet director dj orientation relative to y axis.     

To determine the Sj elements we use the anomalous diffraction approximation (ADA) [16-21]. In 

this approximation the far field scattered by a droplet is considered as the result of diffraction on the 

amplitude-phase screen.  

For the amplitude scattering matrix elements in the ADA, we have: 
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Here ; Tj(ξ) are the elements of the 2×2 Jones matrix 2cπσ = T  of the equivalent amplitude-phase 

screen (j=1,2,3,4).  

The Jones matrix T  depends on the internal structure of the LC droplet [21]: 
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In Eq. (10) ( ) 222 /1 cyycxinp +−−= ε  and ( ) 222 /1 cyycxout +−+= ε are input and output 

coordinates on the LC droplet surface respectively; ε  is the anisometry parameter which is the ratio of 



the minor to major axes of droplets (for the spheres 1=ε ); P is the matrix of the local phase incursion for 

the extraordinary and ordinary waves; R(x) and RT(x) are matrices of the coordinate transformation over 

the local bases trajectories,  
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ne(x) is the local refractive index for extraordinary wave in point x=x(y,z), no is the coordinate-

independent refractive index for ordinary wave equal to the ordinary refractive index of LC, ⊥n xΔ  is the 

longitudinal (along the wavevector of incident wave) size of LC droplet elementary volume in which 

liquid crystal orientation structure is assumed as uniform and determined by only molecular order 

parameter [7,22-24], )(xϕ  is the azimuthal angle of local principal plane orientation, 

)1(/)( 2222
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( ) 21/sincos))(cos( xszsys nnnx −+=− ϕϕϕϕ ,   (15) 

( ) 21/sincos))(sin( xsyszs nnnx −−=− ϕϕϕϕ .   (16) 

In Eqs. (14)-(16),  is the extraordinary refractive index of liquid crystal, nx, ny, and nz are the Cartesian 

components of local director n(r)=(nx, ny, nz).  

||n

Eqs. (1)-(16) allow one to analyze small-angle light scattering by monolayer of polydisperse 

spherical or spheroidal LC droplets with arbitrary internal structure including the droplets with the 

inhomogeneous boundary conditions in polymer matrix [25]. Such an analysis requires the determination 

of internal structure of local director (director configuration) n(r), the calculation of vv- and vh-

components of vector amplitude scattering function, and the average over the sizes of LC droplets and 

orientations of their directors. 

In case of identical director configuration [7] inside droplets and uniform distribution of LC droplet 

bipolar axes over the angle, we can write the average components of the vector amplitude scattering 

function and their squared absolute values (see Eqs. (1) and (2)) as follows: 
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Here the overline designates averaging over azimuthal angle dϕ , the angle brackets 〈⋅⋅⋅〉 in the right 

sides designates averaging over sizes of LC droplets. 

In Eqs. (17)-(20): 
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where mϕ  is the maximum azimuthal angle of droplet bipolar axes deviation from the y axis of laboratory 

frame. When 0=mϕ  and πϕ =m  the droplet bipolar axes are oriented along the y axis and randomly, 

respectively. When 0<ϕm<π the droplet bipolar axes are partially oriented. Eqs. (21)-(27) characterizes 

the orientation structure of PDLC monolayer. They can be called the orientation factors.  

It is worth paying attention that the above equations are written for the case when vector Ei (Fig.6) 

is directed along the y axis. If they are unparalleled, the azimuthal scattering angle ϕs in the Eqs. (21)-(27) 

should be replaced by the α-ϕs, where α is the polarization angle.  



The theoretical data are shown in Fig. 5 in comparison with experiment. The calculations are 

fulfilled with using the experimental histogram of LC droplet lateral size distribution in monolayer plane 

(Fig. 3). Internal orientation structure of LC droplets was determined using the solution of the problem of 

free energy volume density minimization [2,3,11]. 

 

6.  Conclusion 

For research of specific features of light scattering by PDLC film, the sample was prepared 

applying SIPS process of LC encapsulation. As a result, a monolayer of bipolar nematic droplets of oblate 

spheroidal shape was made with the in-plane diameters and anisometry ratio varying in the ranges of 

6 - 20 μm and 0.7 - 0.2, respectively. It should be noted that the average anisometry ratio value 0.31 in 

our case is considerably less than the one for more thick PDLC film with multilayer arrangement of 

nematic droplets [10,11].  

The developed light scattering calculation method based on the anomalous diffraction and 

interference approximations is a valid tool for describing real PDLC monolayer structures and can be 

used effectively for forecasting of properties of promising optical materials based on the LC dispersions.  
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