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A reorientation of cholesteric liquid crystal with a large helix pitch induced by the electrically 

controlled ionic modification of the surface anchoring has been studied. In initial state, the 

cholesteric helix is untwisted completely owing to the normal surface anchoring specified by the 

cations adsorbed at the substrates. As a result, the homeotropic director configuration is observed 

within the cell. Under the action of dc electric field, one of the substrates becomes free from the 

layer of surface active cations, therefore, setting the planar surface anchoring. The latter, in turn, 

leads to the formation of the hybrid chiral structure. The threshold value and dynamic parameters 

have been estimated for this process as well as the range of control voltages, which do not allow 

the electrohydrodynamic instabilities. The twisted hybrid director configuration observed in the 

experiment has been analyzed by means of the simulation of polarization change of light 

propagating through the cholesteric layer with asymmetric (planar and homeotropic) surface 

anchoring on the cell substrates. 
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1. Introduction 

Cholesteric liquid crystals (CLCs) are of great interest in various applications such as 

displays, light modulators, switchable diffraction gratings, liquid-crystal lasers and others [1-5]. 

This is determined by specific optical properties resulting from the helical ordering of director 

[6]. Vast majority of the devices are operated by the Frederiks effect inducing the director 

reorientation within the CLC bulk under the electric field. In these applications, the cholesteric is 

generally placed between two flat substrates specially treated to specify a certain surface 

anchoring of liquid crystal (LC) at the interface, which stays invariable during the process of 

director reorientation inside the cell bulk. 



Besides, the LC reorientation can also be caused by the anchoring transition under the 

influence of external factors such as temperature, UV-radiation or electric field [7-13]. Study of 

the director reorientation induced by the surface anchoring modification is useful for both the 

basic investigations and application, since the LC orientational transitions, which are impossible 

under the Frederiks effect, can be realized. 

The method of electrically controlled modification of the surface anchoring by using the 

ionic surfactants has been developed for the nematic LC droplets [14-17], nematic layers [18-20] 

and cholesteric droplets [21]. For the nematic layers, the transitions from the homeotropic 

structure into the homeoplanar director configuration [18,19] and from the homeoplanar 

configuration into the twist structure [20] were found and studied. 

The ionic-surfactant method is based on the change of surface active ions concentration on 

the substrate under the action of dc electric field. The nematic is doped with the surfactant. The 

latter dissociates into ions, among which at least one is the surface active ion specifying, for 

example, the homeotropic anchoring [18]. The surface active ions are adsorbed at the substrates. 

If their concentration is enough, they form the layers which can screen the planar orienting effect 

of the substrates and stimulate the LC alignment perpendicularly to the substrates. Thus, the 

homeotropic director configuration is realized in the LC cell. Under the action of dc electric 

field, the ions dissolved in the LC shift to the appropriate electrodes. Therefore, the surface 

active ion concentration decreases at the one of substrates and the planar anchoring, proper to the 

orienting coating, is restored here. As a result, the transition into the homeoplanar director 

configuration occurs within the LC cell. 

It is obvious that the orientational transition results in the change of light transmission of the 

system consisting of the LC cell placed between the crossed polarizers. For example, in the 

initial state, the system transmission is close to zero because of the absence of birefringence in 

the LC layer with homeotropic orientational structure. However, when the director is reoriented 

into the homeoplanar configuration, the light transmission increases, in case the orientation of 

LC at the substrate with planar anchoring mismatches any polarizers. 

This paper is devoted to the development of the ionic-surfactant method to control the 

director orientation of the cholesterics with a large helix pitch. 

 

2. Materials and experimental techniques 

The experiment was carried out with sandwich-like cells. These cells consisted of two glass 

substrates with transparent ITO electrodes coated with polymer films and the cholesteric layer 

between them. The polymer films based on the polyvinyl alcohol (PVA) doped with glycerin 

compound (Gl) in the weight ratio PVA : Gl = 1 : 0.383 were used as orienting coatings. The 



polymer films were deposited by spin coating and rubbed. The cell gap thickness d was set using 

teflon spacers and measured by means of the interference method [22] with the spectrometer. 

Cholesteric mixtures were prepared using the nematic 4-pentyl-4’-cyanobiphenyl (5CB) with 

positive dielectric anisotropy Δε and the chiral additive cholesterylacetate (ChA) in the weight 

ratios 5CB : ChA from 1 : 0.0030 to 1 : 0.0155, respectively. The nematic was preliminary doped 

with ionic surfactant cethyltrimethylammonium bromide (CTAB) in the weight ratio 

5CB : CTAB = 1 : 0.002. CTAB dissolved in liquid crystal dissociates into the positively 

charged surface active ions CTA+ and the negative ions Br-. The helical twisting power 

HTP = 6.5 m-1 of the additive ChA in the nematic 5CB was determined with the droplet method 

[23]. The used mixtures had pitch 10 ≤ p ≤ 51 m as calculated from p = 1 / (HTP × cw), where 

cw is weight concentration of the chiral agent. The confinement ratio ρ = d/p in LC cells was 

0.16 ≤ ρ ≤ 0.85. 

The optical textures of the LC layer and their transformations under the electric field were 

analyzed in the crossed polarizers by means of the polarizing optical microscope (POM). 

Electro-optical response of the LC cell placed between crossed polarizers was studied with He-

Ne laser (λ = 632.8 nm). The laser beam passed sequentially through the polarizer, the LC cell, 

the analyzer, and was detected by the photodiode. The LC cell was placed so that the angle 

between the substrates rubbing direction and the polarizer was α = 45° or 0°. The transmittance 

of the system was determined as T = (It/I0) × 100%, where I0 is light intensity after the polarizer, 

It is intensity after the analyzer. 

 

3. Results and discussion 

Figure 1 demonstrates the change of optical texture of the cholesteric layer doped with the 

ionic surfactant under the action of dc electric field. In the given LC cell, the confinement ratio ρ 

is 0.4. When the electric field is switched off, the optical texture of the LC layer in crossed 

polarizers is a uniform dark area (Figure 1a) independently of the sample rotation on the 

microscopic stage. Such an optical texture remains invariable until the U = 2.3 V. The latter was 

accompanied with the light transmission increase. In the range of control voltages 

2.3 V ≤ U ≤ 3.4 V the optical texture of the cell is a uniform bright area (Figure 1b). At that, the 

sample rotation relative to the crossed polarizers does not lead to the dark texture. The optical 

textures shown in Figures 1b, 1c prove this. Here the angle α between the rubbing direction and 

polarizer is 45° and 0°, respectively. Besides, at α = 0° (Figure 1с) the dark texture is not 

obtained either under the analyzer rotation. At the control voltage U = 3.5 V the domains began 

to form in the LC cell and they appear clearly at U = 3.7 V (Figure 1d). 



The similar changes of optical texture were observed within the LC cells with ρ = 0.16 and 

0.85 approximately under the same control voltage. The only difference of the initial texture of 

cholesteric layer with ρ = 0.85 is the presence of a small number of cholesteric bubbles [24,25]. 

However, after the application of ac voltage the cholesteric bubbles disappear and the optical 

texture of LC layer is the uniform dark area.  

The optical texture of the LC layer in the absence of electric field (Figure 1a) and its 

invariability at the sample rotation relative to the crossed polarizers indicates a complete 

untwisting of the cholesteric helix and the formation of the homeotropic director orientation 

within the cell due to the ionic surfactant CTAB added (Figure 2a). The cholesteric helix 

untwisting occurs as an effect of the normal anchoring of LC molecules with the substrates [26]. 

 

 

 

Figure 1. POM images of the optical textures of the cholesteric layer doped with the ionic surfactant made 

under different control voltages U and α angles between the rubbing direction of the bottom substrate (R1) 

and the polarizer (P): (a) U = 0 V, α = 45°; (b) U = 2.6 V, α = 45°; (c) U = 2.6 V, α = 0°; (d) U = 3.7 V, 

α = 45°. The cell gap thickness is d = 8.1 m. Confinement ratio is ρ = 0.4. A is the analyzer direction. R2 

is the rubbing direction of the top substrate.  

 

The formation of homeotropic or twisted structures within the cholesteric layer with rigid normal 

anchoring depends on the confinement ratio ρ. The transition threshold ρth value is defined by the 

equation [27]: 

 2233 2/ KKth  ,      (1) 



where K33 and K22 are elastic constants of the bend and twist deformations, respectively. When 

ρ < ρth, the helix pitch is completely untwisted inside the LC cell with rigid normal anchoring. 

The twist structure is formed at ρ > ρth. The typical materials have the threshold value ρth about 1 

[28]. The samples under study have ρ < 1, which makes the helix pitch completely untwisted in 

the initial state. 

When the dc electric field is applied, the surface anchoring on the electrode-anode substrate 

is modified, and the planar anchoring proper to the polymer orienting coating is restored at this 

substrate. The modification of the boundary conditions results in the reorientation of the LC 

structure and, consequently, in the change of the optical texture of the LC cell in the crossed 

polarizers (Figure 1b). Since the considered optical texture does not get dark completely during 

the sample rotation on the microscope stage relative to the crossed polarizers (Figure 1b, c), it 

means that the twisted orientation structure is formed within the LC layer. Thus, the optical 

textures of the LC layer presented in Figure 1b,c correspond to the hybrid aligned cholesteric 

[29-33]. Its orientational structure is shown in Figure 2b. It should be emphasized that the 

observable changes of optical texture cannot be induced by the Frederiks effect because the LC 

used in our experiment has positive dielectric anisotropy. In this case, the Frederiks effect could 

result only in the stabilization of the initial homeotropic director configuration. 

 

 

 

Figure 2. Scheme of the orientational transition induced by the dc electric field inside the LC cell filled 

with the CLC doped by the ionic surfactant. (a) the homeotropically aligned LC layer under the electric 

field off. (b) the cholesteric layer with a hybrid structure formed owing to the homeotropic-planar change 

of surface anchoring on the electrode-anode substrate. 



As mentioned above, the optical texture (Figure 1c) does not become dark completely under 

the analyzer rotation when the polarization direction of incident light coincides with the substrate 

rubbing direction. It indicates that the light after passing through the layer of hybrid aligned CLC 

is no longer linearly polarized. The light polarization change for such a system has been 

simulated. Firstly, the cholesteric orientational structure within the cell was calculated by means 

of the energy minimization of elastic deformations of the director field [34] under asymmetric 

boundary conditions. The LC surface anchoring on one of the substrates was planar and on the 

other one was homeotropic. Then, applying the Berreman 4×4-matrix method [35], the light 

polarization after the LC layer transmission was simulated. The following parameters of 5CB 

were used for the calculations: the elastic constants of the splay deformation K11 = 5.7 pN, the 

twist deformation K22 = 3.5 pN and the bend deformation K33 = 7.7 pN [36]; the extraordinary 

and ordinary refractive indices ne = 1.7002, no = 1.5294 (λ = 632.8 nm), respectively [37]; the 

thickness of LC layer d = 8.1 m, the helix pitch p = 21 m, the confinement ratio ρ = 0.4. 

Figure 3 shows the calculation data for the hybrid aligned cholesteric structure. The 

simultaneous tilt and twist of the director are seen to occur inside the LC layer. The total twist 

angle of director is 98°. The Berreman method simulation has revealed that the linearly polarized 

light beam (λ = 632.8 nm) passing through such a LC orientational structure gets elliptically 

polarized. The ratio of semi-major axis to semi-minor axis of the polarization ellipse is 3.8. At 

that, the β angle between the polarization direction of incident light and the semi-major axis of 

elliptically polarized light is 68° when leaving the LC layer. 

We measured β angle depending on the control voltage value. The cell was placed between 

the crossed polarizers so that the rubbing direction of input substrate coincided with the 

polarization direction of incident He-Ne laser beam. After that, the dc voltage was applied to the 

LC cell. When the light transmission reached the saturation, which corresponds to the formation 

of the hybrid aligned CLC, the minimal light transmission of the system was found by means of 

the analyzer rotation. In this case, the direction of semi-major axis of the elliptically-polarized 

light was perpendicular to the analyzer direction. In the range 2.6 - 3.2 V of control voltages β 

angle changed from 62° to 64°, respectively. These data are in a good accordance with the 

calculated results.  

 



 

Figure 3. Calculation data of tilt angle θ and twist angle φ of the director versus the z-coordinate 

perpendicular to the cell substrates for the structure of hybrid aligned cholesteric. z = 0 and z = 8.1 m 

correspond to the substrates with planar and homeotropic surface anchoring, respectively. Thickness of 

the LC layer is d = 8.1 m. The helix pitch is p = 21 m. 

 

Figure 4 shows the oscillograms of the square-wave response of the LC cell placed between 

crossed polarizers. The pulse amplitude is 2.6 V and its duration is 10 s. The oscillogram in 

Figure 4a corresponds to the situation, when the polarization of incident light coincides with the 

rubbing direction (α = 0°), and α = 45° for Figure 4b. In the initial state, the light transmission of 

the system is close to zero because of the homeotropic director orientation. The applied electric 

pulse increases the light transmission caused by the formation of the hybrid aligned cholesteric. 

If the polarization of incident light coincides with the rubbing direction (Figure 4a), the light 

transmission saturation reaches 58%. The on-time τon defined as the interval between the rising 

edge of electric pulse and the increase of the transmittance up to 90 % from the saturation value 

was 0.31 s. The off-time τoff defined as the interval between the falling edge of electric pulse and 

the decrease of the transmittance down to 10% of the saturation value was 0.51 s. For α = 45° the 

transmittance saturation reached 51% (Figure 4b), τon = 0.13 s, τoff = 0.59 s. Under the control 

voltages 2.6 ≤ U ≤ 3.2 V, the on-time τon did not practically change. The off-time τoff in the same 

range of voltages increased up to 1.75 s. It should be noted that the change of the control pulse 

form is able to lead to a significant improvement of the dynamic characteristics of LC cell with 

electrically controlled ionic modification of the surface anchoring [20].  

 



 

Figure 4. Optical response of the LC cell filled with the ionic surfactant-doped cholesteric in crossed 

polarizers at different α angles between the polarizer and the rubbing direction: (а) α = 0°; (b) α = 45°. 

Applied voltage amplitude is 2.6 V. Confinement ratio is ρ = 0.4. 

 

4. Conclusions 

The reorientation of cholesteric LC caused by electrically controlled ionic modification of 

the surface anchoring has been studied in the present paper. The reorientation has been examined 

for the cholesteric with the large helix pitch (10 m – 51 m), and the ratio of the LC layer 

thickness to the pitch changed in the range 0.16 – 0.85. It was shown that in the LC cell the dc 

electric field induces the transition from the homeotropic director configuration into the twisted 

hybrid one. The director reorientation is found to have the threshold at 2.3 V. It proceeds without 

electrohydrodynamical instabilities under the control voltages 2.3 V ≤ U ≤ 3.4 V. On-time for the 

LC cells was tenth parts of a second and off-time was about a second. 

To verify the experimental results we simulated the orientational structure of hybrid aligned 

cholesteric and the change of linearly-polarized light after passing the LC layer. A situation 

when the polarization of incident light coincides with the director at the planar anchoring 

substrate was considered. The calculations show that the light passing through the hybrid aligned 

cholesteric layer becomes elliptically polarized, and the semi-major axis of ellipse turns relative 



to the initial polarization. The simulated rotation angle is in a good agreement with the 

experimental value. This confirms the formation of the twisted hybrid director configuration 

under the dc electric field applied to the LC cell. 

Thus, the ionic modification of surface anchoring initiates the nematic-cholesteric transition 

similar to the transition induced by the Frederiks effect inside the LC cell filled with a 

cholesteric with negative dielectric anisotropy [38].  
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