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Methods of the cluster analysis and artificial neural networks implemented in Schlumberger 
Techlog software modules were used for processing and interpretation of data on wells from the 
Verkhnechonskoe Oil and Gas Condensate Field. It was demonstrated that clusterization of data 
allows for significant improvement in reliability and accuracy of  lithotype  determinations as well 
as porosity and permeability of rocks.
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Introduction

The following assumptions shall be taken into account for justification and development of 
a technique for well logging interpretation for reservoir delineation, assessment of saturation 
mode, and determination of reservoir properties. Firstly, the developed technique shall allow for 
the completeness, self-descriptiveness, and quality of a standard logging suite conducted in the 
present field. Secondly, it is essential to know the reservoir model, i.e. the type of the reservoir, 
its pore geometry, material composition, the structure of skeletal and cementing parts, variation 
range of the main reservoir properties, etc. (Dobrynin et al., 2004; Latysheva et al., 1986). Such 
data are obtained as a result of the lab core analysis. On the basis of these data main petrophysical 
relations and boundary values of the reservoir properties are established (Vendelshtein et al., 1978; 
Dobrynin et al., 2004).
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Introduction 

The following assumptions shall be taken into account for justification and development 

of a technique for well logging interpretation for reservoir delineation, assessment of saturation 

mode, and determination of reservoir properties. Firstly, the developed technique shall factor in 

the completeness, self-descriptiveness, and quality of a standard logging suite conducted in the 

present field. Secondly, it is essential to know the reservoir model, i.e. a type of the reservoir, its 

pore geometry, material composition, the structure of skeletal and cementing parts, variation 

range of the main reservoir properties, etc. [2, 4]. Such data are obtained as a result of lab core 

analysis based on which main petrophysical relations are established and end values of the 

reservoir properties are determined [1, 2]. 

Permeability index  is one of the most important reservoir properties in productive 

formations. It can be determined either based on a core analysis made in laboratory conditions, 

or as a result of well tests. Should such techniques fail to cover the depth of the productive 

stratum (or horizon) of interest, then log data are used to determine the porosity index . 

Functional relation  is revealed based on the available lab core analysis data. 
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When a productive horizon has complex and inhomogeneous geology, it is reasonable to start 
from splitting log and core data into main typical classes and establish petrophysical relations for each 
individual class (Itenberg et al., 1984; Lider et al., 1986). This task can only be solved using the cluster 
analysis methods (Pospelov, 1988).

One of productive terrigenous horizons of the Verkhnechonskoe Field in East Siberia was reviewed 
as a target of research. This geological object has a complex structure due to severe salinization and 
anhydritization of productive strata and presence of tectonic dislocations which split the geological 
structure in a large number of blocks. Moreover, there is a high degree of variability in the thickness 
of productive strata and presence of extensive areas of reservoir substitution with impermeable rocks. 
All this lead to a number of problems related to determination of the in-place permeability by using 
traditional methods of log and core data interpretation. Such problems can be basically solved by using 
cluster analysis technique.

1. Preparation & Processing of Data

Preparation and preliminary processing of log data were carried out in Schlumberger Techlog 
software for core and log data processing. Log data from one of the productive horizons of the 
Verkhnechonskoe Field were processed pointwise. Processing included the following stages:

–	 uploading of log data;
–	 correlation of curves and 'joining' them in isolation intervals when necessary;
–	 entering the data stratigraphic arrangements, directional survey data, core analysis data, and 

well test results in the Techlog data base;
–	 setting up the processing flow for the parameters of the estimated target (entering of interpretation 

algorithms, petrophysical relations, criteria, etc.); 
–	 lithological heterogeneity of the cross-section;
–	 removal of reference values for normalization of acoustic logging (AL), gamma-ray logging (GR), 

neutron gamma-ray logging (NGL), bulk density logging (DL) and potassium concentration (P);
–	 identification of thickness value based on logging data (general, effective, and effective and oil 

and gas saturated);
–	 determination of porosity and permeability based on logging data; 
–	 comparison of acquired results with coring data.
The data on more than 100 wells that penetrated one of the productive horizons of the 

Verkhnechonskoe Field were used in our investigation. 

2. Classification of Rocks through Cluster Analysis

Cluster analysis is the process of splitting certain sample objects into subsets called clusters in 
such a way that each cluster would consist of similar objects, whereas objects from different clusters 
would be considerably different. The task of making clusters pertains to statistic data processing 
(Pospelov, 1988; Jain Anil et al., 1996). Regardless of the object under study, application of cluster 
analysis implies the stages as follow (Kohonen, 1982):

–	 selection of samples for clusterization;
–	 determination of  range of variables that will be used for evaluation of sample objects;
–	 calculation of values of certain similarity between the objects;
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–	 splitting of the sample to a certain number of clusters;
–	 verification of clusterization results.
A sample set of around 104 points in 5D space with coordinates associated with AL, GR, NGL, 

DL, and P was selected for study. 
Requirements to input data for cluster analysis were consolidated in (Pospelov, 1988; Parsaye, 

1998). First, input data must be non-dimensional and have no runouts. It can be easily achieved through 
preliminary simple processing of input data. Second, sets of input data must be uncorrelated and their 
distribution must comply with normal distribution law at least approximately. Checking if the data 
meet these requirements has to be done in practice.

Cluster analysis method is effective enough, since being an analytical method it has no subjective 
judgement associated with visual analysis of graphic objects (Pospelov, 1988; Parsaye, 1998; Jain Anil 
et al., 1996; Kohonen, 1982). Dozens of various clusterization algorithms have been proposed lately, 
but all of them produce almost identical results. Hence, there is no basis for favouring certain method 
(Herrick et al., 1998; Naeeni et al., 2010; Nashawi et al., 2010; Rezazadeh et al., 2010).

In the present study, classes of rocks were identified using the so-called «method of K-average» 
(Pospelov, 1988) which was implemented in Ipsom module of Techlog software for core and log data 
processing. Algorithm of this method implies splitting of a set of elements in vector space into a pre-
determined number K of clusters so that variability inside clusters can be minimized and distance 
between clusters can be maximized. 

At the first stage of algorithm, each element xi of a set is assigned random probability Pij, which 
shows that this element belongs to j cluster (j = 1,2, …K). At the second stage, centres of mass for each 
cluster are calculated,

2. Classification of Rocks through Cluster Analysis 
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where Q – factor that enhances scores of points found near the centres of mass. For our calculations we 
accepted Q = 1,2. Then, re-calculation of probability was conducted from equation

where  – factor that enhances scores of points found near the centres of mass. For our 

calculations we accepted  Then, re-calculation of probability was conducted from 

equation 

 

where  probability of the fact that element  belongs to cluster number  
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If calculated probabilities do not coincide with the previous ones, they are used for identification 

of new centres of mass until this iterative process provides convergence. 

This algorithm uses the number of clusters as an input parameter. In order to determine 

the optimum number of clusters, it is required to use the information which is prior to the input 

data. In our case input data were represented by vectors with coordinates that correspond to 

adjusted results of AL, GR, NGL, DL and P. Prior information was represented by seven 

lithotypes identified upon core tests for 4 wells of the Verkhnechonskoe Field with 100% core 

recovery in the interval of horizon under study. In 2009-2010, Specialists of Department for 

Core and Formation Fluid Storage and Study of Tyumen Oil Research Institute conducted 

detailed sedimentological cores studies with identification of rocks that have similar 

petrophysical parameters. 

There were determined normalized errors of lithotype forecast based on log data for 

various numbers of clusters. The result is shown in Figure 1 that makes it obvious that when 

number of clusters exceeds 19, forecast error does not decrease significantly. Using less than 19 

clusters may result in insufficient compartmentalization of a section for log data versus core data, 

cases when the number of clusters exceeds 19 are likely to account technical logging features 

rather than geological and geophysical properties of formation.  

3. Result of Cluster Analysis and Application of Neural Network 

In other wells of the Verkhnechonskoe Field that were drilled with core extraction but 

without sedimentological analysis, splitting rocks into clusters based on log data was conducted 

using Artificial Neural Network Unit. During the study neural network can identify complex 

relationships between input data and output data as well as can make synthesis. It means that in 

case of successful training, network can generate correct result on the basis of the data that were 

missing in the training sample as well as incomplete and/or noisy, partially corrupted data [7, 10, 

11, 13]. 

For training and using Artificial Neural Network Unit for clusterization on the basis of 

logging data, there was used module "K.mod" of Techlog software. Core and log data from four 

wells that were studied in detail were taken as a training sample. Results of clusterization and 
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If calculated probabilities do not coincide with the previous ones, they are used for identification of 
new centres of mass until this iterative process provides convergence.

This algorithm uses the number of clusters as an input parameter. In order to determine the 
optimum number of clusters, it is required to use the information which is prior to the input data. In 
our case input data were represented by vectors with coordinates that correspond to adjusted results 
of AL, GR, NGL, DL and P. Prior information was represented by seven lithotypes identified upon 
core tests for 4 wells of the Verkhnechonskoe Field with 100 % core recovery in the interval of horizon 
under study. In 2009-2010, Specialists of Department for Core and Formation Fluid Storage and Study 
of Tyumen Oil Research Institute conducted detailed sedimentological cores studies with identification 
of rocks that have similar petrophysical parameters.
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There were determined normalized errors of lithotype forecast based on log data for various 
numbers of clusters. The result is shown in Figure 1 that makes it obvious that when number of clusters 
exceeds 19, forecast error does not decrease significantly. Using less than 19 clusters may result in 
insufficient compartmentalization of a section for log data versus core data, cases when the number 
of clusters exceeds 19 are likely to account technical logging features rather than geological and 
geophysical properties of formation.

3. Result of Cluster Analysis and Application of Neural Network

In other wells of the Verkhnechonskoe Field that were drilled with core extraction but without 
sedimentological analysis, splitting rocks into clusters based on log data was conducted using Artificial 
Neural Network Unit. During the study neural network can identify complex relationships between 
input data and output data as well as can make synthesis. It means that in case of successful training, 
network can generate correct result on the basis of the data that were missing in the training sample 
as well as incomplete and/or noisy, partially corrupted data (Herrick et al., 1998; Naeeni et al., 2010; 
Nashawi et al., 2010; Rezazadeh et al., 2010).

For training and using Artificial Neural Network Unit for clusterization on the basis of logging 
data, there was used module «K.mod» of Techlog software. Core and log data from four wells that 
were studied in detail were taken as a training sample. Results of clusterization and core lithology are 
provided in Fig. 1.

After splitting the wells’ sections into clusters based on log data, the data were aligned with 
available lab test core data, well sampling data, and with log data. All of that allowed assigning certain 
clusters to reservoir or non-reservoir and describing clusters in terms of argillite, salt, and gravelite 
content. Finally, 19 clusters formed seven groups associated with seven lithotypes (Table 2). Groups 
1-5 fall into the category of reservoir, while Groups 6-7 are non-reservoir category. 

4. Determination of a Porosity Index

The main logging method for determination of the terrigenous deposits porosity is the acoustic 
logging that was carried out almost in all drilled wells in the field. By the AL results the interval time 
is determined Δt, the function of which is the porosity index Kpor. Following the results of the AL data 

Fig. 1 Error of lithotypes prediction depending on the number of clusters
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Table 1. Description of lithological types of rock and corresponding to them geophysical characteristics by the 
result of the cluster analysis. ∆JAL, ∆JGRL, ∆JP, ∆JNGL, ∆JDL – normalized readings of acoustic log, gamma-ray log, 
potassium concentration, neutron gamma-ray log and bulk density log respectively.
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1; siderite: 6; clay: 14.

processing, the acquired functional relations Kpor = f(Δt) for the reviewed cluster groups are presented 
in Table 3. 

It is known that the open porosity values determined using the core samples, as well as the total 
porosity estimated by geophysical methods shall practically coincide for intergranular reservoirs 
(Vendelshtein et al., 1978; Latysheva et al., 1986). Fig. 2 gives the results of a comparison of porosity 
indexes determined by the acoustic logging data (Kpro AL) with the use of equations of Table 3, and by the 
results of measurements using the core (Kpro core) for wells of the Verkhnechonskoe field with more than 
70 percent of core recovery. Correlation factor between the data of Kpro AL and Kpro core equals to 0.92. 
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5. Determination of a Permeability Index

The forecast of permeability as a function of porosity leads to considerable errors in its evaluation. 
This is explained by the fact that one value of porosity corresponds to the wide range of permeability 
change (up to 2 orders of magnitude) as the latter is controlled not only by the porosity, but above all by 
the perfection of the pore space structure (coarsening of grains of the skeleton, improvement of sorting 
and packing, increase of filtration channels radii, reduction of their tortuosity, etc.)

It is known that the splitting of relation Kperm = (Kpro) into individual lithological regressions 
leads to the considerable improvement of the permeability forecast Kperm. Therefore in our case for 
each of 5 selected lithotypes the individual regressions were established Kperm = (Kpro) that were used 
in future for forecasting the permeability as functions of porosity and reservoirs lithology (drawing 

Table 3. Determination of porosity index Кpro by the AL data for different reservoir groups

Group name Clusters 
number Dependence Кpro  = f(∆t)

I. Sandstones with good porosity 
& permeability properties 5, 6, 9, 10
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Fig. 2 Comparison of the porosity index measured using the core (Kpro core) with the porosity index determined by 
the AL (Kpro AL)
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3). Table 4 gives the obtained relations for various groups of reservoirs rocks. Fig. 3 demonstrates 
that permeabilities differing by 3 orders of magnitude correspond to the various lithotypes of the 
same porosity.

Conclusion

As a result of the conducted studies the following results were obtained:
–	 by means of the cluster analysis of materials of special core studies, five lithological classes of 

reservoirs were determined as well as the average values of petrophysical features corresponding 
to them;

–	 an algorithm of neural networks for identification of lithotypes on the basis of logging suite 
was adjusted; the expert evaluation and correction of adjustment results were conducted; the 
analysis of a reliability of lithological classes of rock prediction was done;

Table 4. Dependence of permeability index Кperm on porosity Кpro for different reservoir groups

Group name Clusters number Dependence Кperm  = f(Кpro)

I. Sandstones with good porosity 
& permeability properties 5, 6, 9, 10
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Fig. 3 Comparison of porosity index and permeability index with splitting rocks into classesFig
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–	 the improved methodology for evaluation of the reservoir rock permeability as a function of 
their porosity and lithology was developed.

By virtue of the conducted target-oriented core analysis, we achieved a possibility to detect 
distinctive lithofacies categories visible not only in the space of porosity and permeability but as well 
characterized by the high degree of homogeneity in terms of their petrophysical features. The acquired 
lithological information may be successfully applied for populating geological models with data on 
porosity and permeability properties of the reservoir.
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Использование кластерного анализа  
и аппарата искусственных нейронных сетей  
при интерпретации данных  
геофизических исследований скважин

А.В. Чашкова*, В.М. Киселевб

а ОАО «Верхнечонскнефтегаз»,
Россия 664050, Иркутск, ул. Байкальская, 295б

б Сибирский федеральный университет,
Россия 660041, Красноярск, пр. Свободный, 79

Методы кластерного анализа и искусственных нейронных сетей, реализованные в  модулях 
программного комплекса Techlog компании Schlumberger, использованы для обработки и 
интерпретации данных по скважинам одного из объектов Верхнечонского нефтегазового 
месторождения. Показано, что кластеризация данных позволяет заметно повысить 
надежность и достоверность определения литотипов, а также пористости и проницаемости 
пород.

Ключевые слова: кластерный анализ, искусственные нейронные сети, геофизические 
исследования скважин, литотипы, пористость, проницаемость.


