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Methods of the cluster analysis and artificial neural networks implemented in Schlumberger
Techlog software modules were used for processing and interpretation of data on wells from the
Verkhnechonskoe Oil and Gas Condensate Field. It was demonstrated that clusterization of data
allows for significant improvement in reliability and accuracy of lithotype determinations as well
as porosity and permeability of rocks.
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Introduction

The following assumptions shall be taken into account for justification and development of
a technique for well logging interpretation for reservoir delineation, assessment of saturation
mode, and determination of reservoir properties. Firstly, the developed technique shall allow for
the completeness, self-descriptiveness, and quality of a standard logging suite conducted in the
present field. Secondly, it is essential to know the reservoir model, i.e. the type of the reservoir,
its pore geometry, material composition, the structure of skeletal and cementing parts, variation
range of the main reservoir properties, etc. (Dobrynin et al., 2004; Latysheva et al., 1986). Such
data are obtained as a result of the lab core analysis. On the basis of these data main petrophysical
relations and boundary values of the reservoir properties are established (Vendelshtein et al., 1978;
Dobrynin et al., 2004).

Permeability index Kperm is one of the most important reservoir properties in productive
formations. It can be determined either based on a core analysis made in laboratory conditions, or as
a result of well tests. If such techniques fail to cover the depth of the productive stratum (or horizon),
then log data are used to determine the porosity index Kpor. Functional relation Kyerm = f(Kpor) is

revealed based on the available lab core analysis data.
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When a productive horizon has complex and inhomogeneous geology, it is reasonable to start
from splitting log and core data into main typical classes and establish petrophysical relations for each
individual class (Itenberg et al., 1984; Lider et al., 1986). This task can only be solved using the cluster
analysis methods (Pospelov, 1988).

One of productive terrigenous horizons of the Verkhnechonskoe Field in East Siberia was reviewed
as a target of research. This geological object has a complex structure due to severe salinization and
anhydritization of productive strata and presence of tectonic dislocations which split the geological
structure in a large number of blocks. Moreover, there is a high degree of variability in the thickness
of productive strata and presence of extensive areas of reservoir substitution with impermeable rocks.
All this lead to a number of problems related to determination of the in-place permeability by using
traditional methods of log and core data interpretation. Such problems can be basically solved by using

cluster analysis technique.

1. Preparation & Processing of Data

Preparation and preliminary processing of log data were carried out in Schlumberger Techlog
software for core and log data processing. Log data from one of the productive horizons of the
Verkhnechonskoe Field were processed pointwise. Processing included the following stages:

— uploading of log data;

— correlation of curves and 'joining' them in isolation intervals when necessary;

— entering the data stratigraphic arrangements, directional survey data, core analysis data, and

well test results in the Techlog data base;

— settingup the processing flow for the parameters of the estimated target (entering of interpretation

algorithms, petrophysical relations, criteria, etc.);

— lithological heterogeneity of the cross-section;

— removal of reference values for normalization of acoustic logging (AL), gamma-ray logging (GR),

neutron gamma-ray logging (NGL), bulk density logging (DL) and potassium concentration (P);

— identification of thickness value based on logging data (general, effective, and effective and oil

and gas saturated);

— determination of porosity and permeability based on logging data;

— comparison of acquired results with coring data.

The data on more than 100 wells that penetrated one of the productive horizons of the

Verkhnechonskoe Field were used in our investigation.

2. Classification of Rocks through Cluster Analysis

Cluster analysis is the process of splitting certain sample objects into subsets called clusters in
such a way that each cluster would consist of similar objects, whereas objects from different clusters
would be considerably different. The task of making clusters pertains to statistic data processing
(Pospelov, 1988; Jain Anil et al., 1996). Regardless of the object under study, application of cluster
analysis implies the stages as follow (Kohonen, 1982):

— selection of samples for clusterization;

— determination of range of variables that will be used for evaluation of sample objects;

— calculation of values of certain similarity between the objects;
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— splitting of the sample to a certain number of clusters;

— verification of clusterization results.

A sample set of around 10* points in 5D space with coordinates associated with AL, GR, NGL,
DL, and P was selected for study.

Requirements to input data for cluster analysis were consolidated in (Pospelov, 1988; Parsaye,
1998). First, input data must be non-dimensional and have no runouts. It can be easily achieved through
preliminary simple processing of input data. Second, sets of input data must be uncorrelated and their
distribution must comply with normal distribution law at least approximately. Checking if the data
meet these requirements has to be done in practice.

Cluster analysis method is effective enough, since being an analytical method it has no subjective
judgement associated with visual analysis of graphic objects (Pospelov, 1988; Parsaye, 1998; Jain Anil
et al., 1996; Kohonen, 1982). Dozens of various clusterization algorithms have been proposed lately,
but all of them produce almost identical results. Hence, there is no basis for favouring certain method
(Herrick et al., 1998; Naeeni et al., 2010; Nashawi et al., 2010; Rezazadeh et al., 2010).

In the present study, classes of rocks were identified using the so-called «method of K-average»
(Pospelov, 1988) which was implemented in Ipsom module of Techlog software for core and log data
processing. Algorithm of this method implies splitting of a set of elements in vector space into a pre-
determined number K of clusters so that variability inside clusters can be minimized and distance
between clusters can be maximized.

At the first stage of algorithm, each element x; of a set is assigned random probability P;;, which

shows that this element belongs to j cluster (j = 1,2, ...K). At the second stage, centres of mass for each

1
— Q-1
l-lj - Z Pi]' Xi,

i

cluster are calculated,

where Q — factor that enhances scores of points found near the centres of mass. For our calculations we

accepted Q = 1,2. Then, re-calculation of probability was conducted from equation

1
I Q-1
rnm

where P, probability of the fact that element x, belongs to cluster number m,

Tim = [ — Umll, Tam = 1% — H |l

If calculated probabilities do not coincide with the previous ones, they are used for identification of
new centres of mass until this iterative process provides convergence.

This algorithm uses the number of clusters as an input parameter. In order to determine the
optimum number of clusters, it is required to use the information which is prior to the input data. In
our case input data were represented by vectors with coordinates that correspond to adjusted results
of AL, GR, NGL, DL and P. Prior information was represented by seven lithotypes identified upon
core tests for 4 wells of the Verkhnechonskoe Field with 100 % core recovery in the interval of horizon
under study. In 2009-2010, Specialists of Department for Core and Formation Fluid Storage and Study
of Tyumen Oil Research Institute conducted detailed sedimentological cores studies with identification

of rocks that have similar petrophysical parameters.
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Fig. 1 Error of lithotypes prediction depending on the number of clusters

There were determined normalized errors of lithotype forecast based on log data for various
numbers of clusters. The result is shown in Figure 1 that makes it obvious that when number of clusters
exceeds 19, forecast error does not decrease significantly. Using less than 19 clusters may result in
insufficient compartmentalization of a section for log data versus core data, cases when the number
of clusters exceeds 19 are likely to account technical logging features rather than geological and

geophysical properties of formation.

3. Result of Cluster Analysis and Application of Neural Network

In other wells of the Verkhnechonskoe Field that were drilled with core extraction but without
sedimentological analysis, splitting rocks into clusters based on log data was conducted using Artificial
Neural Network Unit. During the study neural network can identify complex relationships between
input data and output data as well as can make synthesis. It means that in case of successful training,
network can generate correct result on the basis of the data that were missing in the training sample
as well as incomplete and/or noisy, partially corrupted data (Herrick et al., 1998; Naeeni et al., 2010;
Nashawi et al., 2010; Rezazadeh et al., 2010).

For training and using Artificial Neural Network Unit for clusterization on the basis of logging
data, there was used module «K.mod» of Techlog software. Core and log data from four wells that
were studied in detail were taken as a training sample. Results of clusterization and core lithology are
provided in Fig. 1.

After splitting the wells’ sections into clusters based on log data, the data were aligned with
available lab test core data, well sampling data, and with log data. All of that allowed assigning certain
clusters to reservoir or non-reservoir and describing clusters in terms of argillite, salt, and gravelite
content. Finally, 19 clusters formed seven groups associated with seven lithotypes (Table 2). Groups

1-5 fall into the category of reservoir, while Groups 6-7 are non-reservoir category.

4. Determination of a Porosity Index

The main logging method for determination of the terrigenous deposits porosity is the acoustic
logging that was carried out almost in all drilled wells in the field. By the AL results the interval time

is determined At, the function of which is the porosity index K,,,. Following the results of the AL data
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Table 1. Description of lithological types of rock and corresponding to them geophysical characteristics by the
result of the cluster analysis. AJa, AJgrr, AJp, Aner, AJp, — normalized readings of acoustic log, gamma-ray log,
potassium concentration, neutron gamma-ray log and bulk density log respectively.

f&umsézrr AlarL AJGrL Alp AlnGL Alpr Lithology based on core
1 " Completely saline coarse-
| grained sandstone
2 1 1 i N" l Saline coarse-grained sandstone
. \ 0
3 Moderately saline coarse-
K. . _ | i Hl " grained sandstone
4 Poorly saline coarse-grained
) b | | pn sandstone
Mostly coarse-grained
5 l l ﬂ. ﬁ J h sandstone with good porosity &
A ] y i L . | | permeability properties
Coarse-grained sandstone with
6 J 1 1 ‘ M good porosity & permeability
: ¥ Il properties
7 L 1 L m IM‘ Silty argillite
i " . [ k. i
Medium-grained sandstone with
8 L l l l average porosity & permeability
L ] i e RN properties
Medium-grained sandstone with
9 I l L % J“‘ J‘ good porosity & permeability
. ' || I properties
Medium-grained sandstone with
10 l i’ h m | good porosity & permeability
! I | nd | v Lk properties
11 i L J L ‘ J Siltstone
| . .
12 k l m L ‘ Siltstone to argillite, very fine
™ , L " [ |iJ 1
13 1 h ] N ui Fine-grained sandstone
a i e B 1 anli
14 1 l ‘ h IN i Silty argillite, sandy in places
| . i . -
15 ‘ 1 Ii l | Argillite
d L " ll
16 Argillite with rare inclusions of
| H | gravel grains
17 ‘IL d d i LL h | Muddy gravelite
|
18 A l J‘ Ml Gravelite reservoir
il A, “L Rl
19 -“ l ]| |l Saline gravelite
1 dili
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Table 2. Cluster groups

# Group name Cluster Core photo Mineral composition, %
number
. . quartz: 84; feldspar: 5; halite: 3;
I S:?iit;t?ﬁist Wltrlz) g:r(i?els)orOSIty & 5,6,9,10 anhydrite: 2; calcite: 4; dolomite:
p Yy prop 2; siderite: 0; clay: 0.
quartz: 71; feldspar: 14; halite: 5;
II | Gravelites (reservoir) 18 anhydrite: 3; calcite: 2; dolomite:
5; siderite: 0; clay: 0.
Sandstones with average quartz: 92; feldspar: 5; halite: 0;
III |porosity & permeability 8 anhydrite: 0; calcite: 2; dolomite:
properties 1; siderite: 0; clay: 0.
. . quartz: 76; feldspar: 3; halite: 0;
v S:?;it;?ﬁist Wltrl:)p;)r(gerg orosity & 13 anhydrite: 2; calcite: 9; dolomite:
p y prop 0; siderite: 1; clay: 9.
quartz: 74; feldspar: 13; halite: 3;
V | Saline sandstones (reservoir) 3,4 anhydrite: 2; calcite: 3; dolomite:
S; siderite: 0; clay: 0.
. ) quartz: 72; feldspar: 11; halite:
VI rS:Sl::sOs;? dstones (non 1,2,19 11; anhydrite: 3; calcite: 1;
dolomite: 3; siderite: 0; clay: 0.
7,11, 12, quartz: 70; feldspar: 7; halite: 0;
VII | Argillites 14, 15, 16, anhydrite: 0; calcite: 2; dolomite:
17 1; siderite: 6; clay: 14.

processing, the acquired functional relations K,,, = f(At) for the reviewed cluster groups are presented
in Table 3.

It is known that the open porosity values determined using the core samples, as well as the total

porosity estimated by geophysical methods shall practically coincide for intergranular reservoirs

(Vendelshtein et al., 1978; Latysheva et al., 1986). Fig. 2 gives the results of a comparison of porosity

indexes determined by the acoustic logging data (K, o) With the use of equations of Table 3, and by the

results of measurements using the core (K, cor.) for wells of the Verkhnechonskoe field with more than

70 percent of core recovery. Correlation factor between the data of K, a1 and K, core €quals to 0.92.
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Table 3. Determination of porosity index K,,, by the AL data for different reservoir groups

Clusters
Group name number Dependence K, = f(At)
1. Sandstones with good porosity 5.6.9.10
& permeability properties >
II. Gravelites (reservoir) 18
III. Sandstones with average Ko - 1320948 — 32264 - At + 311 - At> — 1,3 - At + 0,002 - At*
porosity & permeability 8 por = 1+ 1261-At—9,8 - A2 +0,02- AP
properties
IV. Sandstones with poor
porosity & permeability 13
properties
. . 55927 — 4341 - At+ 101 - A2 — 0,7 - At + 0,001 - At
V. Saline sandstones (reservoir) 3,4 por = 5 3
141124 -At—9,5 - At° + 0,02 - At
25 ~
o (o}
&°, %?%
20 1 ®o o°

X 15 1 (g go °
& o
: §°§§°
Mﬂ 10 + 3
(o]
5 _
0 T T T T 1
0 5 10 15 20 25

V)
Kpor AL, /0

Fig. 2 Comparison of the porosity index measured using the core (K., core) With the porosity index determined by
the AL (Kpoa1)

5. Determination of a Permeability Index

The forecast of permeability as a function of porosity leads to considerable errors in its evaluation.
This is explained by the fact that one value of porosity corresponds to the wide range of permeability
change (up to 2 orders of magnitude) as the latter is controlled not only by the porosity, but above all by
the perfection of the pore space structure (coarsening of grains of the skeleton, improvement of sorting
and packing, increase of filtration channels radii, reduction of their tortuosity, etc.)

It is known that the splitting of relation K., = (K,,) into individual lithological regressions
leads to the considerable improvement of the permeability forecast K,..,. Therefore in our case for
each of 5 selected lithotypes the individual regressions were established K., = (K,,) that were used

in future for forecasting the permeability as functions of porosity and reservoirs lithology (drawing
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Table 4. Dependence of permeability index K., on porosity K, for different reservoir groups

Group name Clusters number Dependence Kperm = f(K,ro)
1. Sandstones with good porosity _ 1,1
& permeability properties 56,910 Kperm = 1,1 - Kpor
I1. Gravelites (reservoir) 18 Kperm = 0,25 - Kf,fr
III. Sandstones with average
porosity & permeability 8 Kperm = 0,16 - sz)'ogr
properties
IV. Sandstones with poor
porosity & permeability 13 Kperm = 0,09 - Kf;é’f
properties
V. Saline sandstones (reservoir) 3,4 Kperm = 0,12 Kéﬁf’

1
Lunrwr
A HETEE
=
£
5
S 10 -
Ny = 4 Cluster 13
< O Cluster 8
i
H = Cluster 18
& Clusters 5, 6
nod
LU S T T T T T T 1
n = in 15 A s N g
v J iy 13 FaL) LJ au )
0,
Kpon Yo

Fig. 3 Comparison of porosity index and permeability index with splitting rocks into classes

3). Table 4 gives the obtained relations for various groups of reservoirs rocks. Fig. 3 demonstrates
that permeabilities differing by 3 orders of magnitude correspond to the various lithotypes of the

same porosity.

Conclusion

As a result of the conducted studies the following results were obtained:

— by means of the cluster analysis of materials of special core studies, five lithological classes of

reservoirs were determined as well as the average values of petrophysical features corresponding

to them;

— an algorithm of neural networks for identification of lithotypes on the basis of logging suite
was adjusted; the expert evaluation and correction of adjustment results were conducted; the

analysis of a reliability of lithological classes of rock prediction was done;
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— the improved methodology for evaluation of the reservoir rock permeability as a function of

their porosity and lithology was developed.

By virtue of the conducted target-oriented core analysis, we achieved a possibility to detect
distinctive lithofacies categories visible not only in the space of porosity and permeability but as well
characterized by the high degree of homogeneity in terms of their petrophysical features. The acquired
lithological information may be successfully applied for populating geological models with data on

porosity and permeability properties of the reservoir.
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HUcnoan3oBanue KJIACTEPHOIro aHAJIn3a
U alNAapaTa UCKYCCTBEHHbIX HEMPOHHbIX ceTel
IIPH HHTECPIPETAIUH JAHHBIX
reo(pusn4ecKuX UCCJIEJOBAHUN CKBAKUH
A.B. Yamkos**, B.M. Kuce.jies®
“ OAO «Bepxneuoncxknegpmezaszy,
Poccus 664050, Hpxkymck, yn. batikanvckas, 2956

* Cubupckuil ghedepanvhviil yHusepcumemn,
Poccus 660041, Kpacnospck, np. Ce60600mbitL, 79

Memoowi kaacmepHozco aHanU3a U UCKYCCMBEHHBIX HEUPOHHLIX cemell, Peanru308anHbvlie 8 MOOYIAX
npoepammuoco xomnnexca Techlog xomnanuu Schlumberger, ucnonvzosamsr 011 obpabomxu u
UHmepnpemayuu OAHHbIX NO CKBAMCUHAM O00HO20 U3 00bekmos BepxneuoHcKozo Hedmeza3z08020
mecmopoxcoenus. Ilokasano, umo Kiacmepusayus OAHHBIX NO360IAEM 3AMENHO NOBbICUMD
HAOEHCHOCMD U OOCMOBEPHOCHb ONPeeNeHUs TUMOMUNO0S, d MAK1ce NOPUCOCIU U NPOHUYAEeMOCTU
nopoo.

Kniouesvle cnosa: Kﬂacmeprzzi anaius, UCKyccmeeHHnvle He‘ﬁpOHHble cemu, 2@04)”3”’46‘01(“6
uccie008amnus CK8AINCUH, TUMOmMunsvl, NOPpUCmMocmbsv, NPOHUYAEMOCMb.




