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In this paper we demonstrate the possibilities of the self-similar and approzimately self-similar approaches

for studying solutions of a nonlinear mutual reaction-diffusion system. The asymptotic behavior of com-
pactly supported solutions and free boundary is studied. Based on established qualitative properties of
solutions numerical computation is carried out. The solutions are presented in visualization form, which
allows observing evolution of the studied process in time.
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Introduction

In the domain @ = {(t,az) t>0,z € RN} properties are investigated of the process of a
nonlinear diffusion-reaction with variable density described by the following system:

9(p(x)u) nomi—1 o, P—2 :
m = div (\x| v |Vul Vu) + p(z)y(t)ubr, "
p@it = div (\m|num271 |Vv\p_2 Vv) + p(z)y(t)v?2,

u(0,2) = uo (z) >0,
v(0,2) =vg (z) = 0, z € RV,

where mqy, mo, n € R, 81, B2 > 1, p > 2 are given positive numbers.
V() - grad(')7 Uo (x) » V0 ('T) P Oa HAIS RNa
plz) =lz[™", 1>0, 0<~(t) € C(0,00).

System (1) describes different physical processes in two componential inhomogeneous non-
linear media, for example, the processes of mutual reaction-diffusions, heat conductivity, the
theory of combustion, the theory of a polytrophic filtration of a liquid and a gas in the presence
of a source whose power is equal to p(z)y(t)u’t, p(x)y(t)v”2. In works [1-6] were considered
particular cases of the system (1), when v(t) = 1, n =1=10, p =2 and we investigated arising
different types of solutions depending on the parameters of system (1).

System (1) is degenerate in the domain, where u = v = 0 and may have no classical solutions.
Therefore, the weak solutions of system (1) are studied, having physical sense. Namely functions
0 < u, v e C(Q)such that |z|" v™ 1 |VulP > Vu, |z"u™ 1 |Vo|’~* Vo € C(Q) satisfying the
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integral identity in the sense of distributions [1]. For solutions of system (1) may take place the
phenomena of finite velocity of propagation and space localization of disturbance, i.e. there may
exist functions I (t), l2(t), such that u (¢,2) =0 and v (¢,z) = 0 if |z| > I1 (¢t) and |z| > l2(¢).
In the case l1(t), l2(t) < oo, for ¢ > 0 a solution to problem (1)—(2) is called a space localization
of disturbance. The surfaces |z| =l (t) and |z| = l2(t) are called a free boundary or a front.

In the present work we suggest a method of construction of self-similar equations system (1)
based of splitting of system (1), and study asymptotics of compactly support solutions and a
free boundary and asymptotics of self-similar solutions for the quick diffusion case. It is shown
that the coefficient of the main member of the asymptotics of the solution satisfies a certain
system of nonlinear algebraic system equation. Based on established qualitative properties of
the solution, using approximately self-similar solutions, numerical experiments, visualization of
processes described by reaction-diffusion system (1) with variable density were carried out.

1. Construction of a self-similar system of equations

Studying different properties of solutions to system (1) is a complicated problem, even for
particular cases of system (1) [2,6-9]. In these works for particular cases of system (1)—(2) the
effectiveness was shown of the self-similar approach for studying different properties of solutions
to problem (1)—(2). Below a new method (nonlinear splitting) of construction of a self-similar
and an approximately self-similar system is suggested. This method gives us a more simple way
of investigation of qualitative properties of solutions to problem (1)—(2).

For construction of a self-similar and an approximately self-similar system for system (1)
solutions u(t, ), v(t,x) to system of equations (1) are searched in the form

u(t, z) = u(t)w (7(t), ¢ (), @)
o(t,x) = 0(t)z (T(2), (|z])),

where 1 L
alt) = [TJr/Otfy(t)dt]ﬁll o) = {T+/Ot7(t)dt} U orso,

and functions 7, ¢ will be choosen below.
Substituting (3) in system (1) reduces it to the following system of equations

0w 1 O (et | Q] 0w 21— (p 1) g (ma 1) o

ar % op <<,0 z e 9 + ()i v (w +w"), "
02 _ 1mo 0 emtymant | 02777 02 o~ (ma—1) 582 —(p—1) 82

5 =% i <g0 w 90 % +~(t)u U (z+27),

where the functions 7, ¢ are chosen as
t t
w0 = [ oy = [ @ e 5)
0 0

p—(n+1) N -1
=——" s=p——, l+n<p.
P p—(n+1)

It is easy to establish that system (4) has approximately self-similar solutions of the form

w(T,¢) = f(8),

Z(TW)O) = w(g)v (6)
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where £ = @Ei} and the functions f, ¥ satisfy to the following approximately self-similar system
T

of equations

T R s AW 21— (p—1) (1 —1) b1y _
§ d£<f (0 € d§>+pdf+7(t)7-(t)u =y (f+f7) =0,
(7)
15 d s—1 ma—1 dy " dy §dy 7—(m2—1)=B2—(p—1) B2) —
£ @£ (f f dE d§> +179d7§ +(t)(t)u o727 P (4 pP2) =0,
It is easy to provej that
y(t)aPr = P=Dg=(m=Dr(t) — const, as t — oo, ®)

y(t)a— (" =Dgl=(P=Dr () — const, as t— oo

if 0 < y(t) € H, where H is Hardy’s body [2]. In this case system (1) becomes self-similar.
Therefore it is possible to say that (7) is an asymptotically self-similar system for system of
equations (1).

Let ~(t) = const. Then approximately self-similar system (7) has a self-similar form if

(B2 =1)(p— (m1 +1)) = (B1 = 1)(p— (m2 + 1)) (9)
In this case for the functions f, 1» we have the following self-similar system
B T AN} By _
$ e (5 VUG ) tpae e U IT) =0 0)
1—s d s—1 pmo—1 d1/) P2 d¢ é.dl/) B2\ _
€ d§<€ f €| de +5dfg+az(¢+w ) =0,

where
ar= (1= 1)(B2—=1)/[(Br =B — 1) = ((m1 = 1)(B1 — 1) + (p — 2)(B2 — 1))},
ag = (B1 = 1)(B2 = 1)/[(Br = D)(B2 = 1) = ((m2 = 1)(B2 — 1) + (p — 2)(B1 — 1))].

We notice that in the singular case 81 = (m1 +p —2), B2 = (mg + p — 2) positive solutions
system (10) in the case of one equation were studied in [9)].

2. Asymptotics of self-similar solutions

Now we will study asymptotics of weak compactly supported solutions (c.s.) to system (10)
when «(t) = const.

Consider system of equations (10) with the following boundary condition

f(0)=c1>0, f(b)
$(0) = c2 >0, 9(b)

0,

N (11)

where 0 < b < 400 .

The existence of a self-similar weak solution to problem (10)—(11) for one equation, in the case
v(t) =0, n=1=0, p=2 was studied in [1] and conditions for the existence of c.s. solutions
were obtained. Asymptotic behavior of a self similar c.s. solution ere established for the case
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one equation in [10] and for other system, but with other nonlinear coefficients in [3-6,11] when
p=2.

Now we will study the asymptotic of a c.s. solution system (10) in the case p +m; — 3 > 0,
p+ma—3 > 0. For this goal we will transform system (10) to the convenient form for investigation
by using the following transformations

F©) = F(&)yr(n),

— _In(a— & al/>
W©) = By, " T E) 0<E<al (12
where
FO) =(a—e)", 9 =(a—eNT, A*pfl,
~(p-Dp—(mi+1)) ~(p-Dp—(ma2+1))
q1 = q y 42 = p s

p>mi+1, p>mso+1, a>0, q:(p—Q)z—(ml—l)(mg—l).

Case (p—2)? — (m1 — 1)(ma — 1) = 0 is a singular case. In this case the asymptotic of a
solutions of the system (10) have another behavior. This case is required an additional investi-
gation.

Theorem 1. Let g1 > 0, g2 > 0. Then c.s. solutions to system (10) as n — 400 (f — al_%)
have the asymptotic

F&) =R +0(1)), (13)
»(€) = Y3y (€)(1 + (1)),
where 0 < y9 < +o0 (i = 1,2), if one of following conditions is satisfied:
1) Bi > Kl 7 1, 1=1,2, then (y?, yg) are the real roots of the following system of nonlinear
algebraic equat%ons
)™ )P =, (14)
)™ W) = e,
1 .
ci = W, 1=1,2,
i.e. - 1
)0 ( )\P‘qu_llp ) ‘ { 1 r"‘ 1
q1(\pq1) 72 Apq Aq
p—2
0= <QI(APQI)”52 ) o
AP=2q5 " p
where q;, 1 = 1,2 are the numbers defined above;
2) B = e _ 1, i = 1,2, then (y?, yg) are the real Toots of the the following system of
nonlinear algebrtzu'c equations
0\B1—1
g W)™ TP+ aﬁyiﬁ; N p)\zl)—l ’ (15)
b1 0yma—1,, 0vp—2 , 92(y3)7 1
()™ ()P + aNPgs = pAP—1°
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Proof. In order to prove Theorem 1 we use transformation (12). Transformations (12) reduces
self-similar system (10) to the following form

Y1 — Qi
Ap—1

Dt e) + (5600 — ) L) + o) + Sron) (v + oy ) =0,

d I
%Ll(yla y2) + (%15(77) - fh) Li(y1, y2) + %qﬁ(n) + %qﬁ(n) (yg + ¢2(n)y§2) =0,
(16)
where
ein — . R .
o(n) = Pt pi(n) = e BN =12,

Li(y1,y2) = v3" ([t — avn P2 (5 — aun),

mo—1

La(y1,92) = v1 (Jvh — @2y2)P~2(vh — q2y2),

and A, ¢;, a;, i = 1,2 are the numbers defined above.

Such transformation (12) allows us to reduce studying of the asymptotics of solutions to
system (10) as 5 — oo to studying those solutions of system (16), which in some neighborhood
of +o0o satisfy the inequalities

dy; .
df‘:—qz‘yi #0, yi(n)>0,i=1,2

First we show that solutions y1(n), y2(n) to system (16) have finite limits as n — co.
We introduce the notation

vi(n) = Li(y1,92), i=1,2.

Then system (16) may be rewritten in the form

o == (300 —a) v — AL ) = o) (w1 + el

vh == (500 = a2) v2 = LB 6(m) = Z2on) (12 + b2 (m)95?)

To analyze the solutions to this system, we introduce the auxiliary functions

01(1.m) = = (Fo0m) —ar) = DA o(n) = o) (v +er ()

02(12.m) = = (F0() = a2) 2 = 2252 6 (n) = 2(0) (2 + d2(ms?)

where p;, ¢ = 1,2, are real numbers. For each value of p; the function 6;(u;,n) preserves the
sign on some interval [1,,,4+00) C [1o, +00) (0 < 19 < 7n,,) and for all n € [n,,, +oo) takes place
one of the inequalities

01 (pism) >0, 61 (pisn) <O.
Given the theorem of Bohl [13] for the functions v;(n) there are a limit in n € (7,,,, +00):

lim v;(n) < +oo, lim v} (n)=0.

n—-~+oo n——+00
Therefore

lim y;(n) = y? < 400, lim vy, (n) =0.

n—+00 n——+00
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Then we have

lin o, = linm {—(i(b(n)—m)m—wqﬁ(n)—z;¢(77) (yl+¢1<n>yfl)} =0,

n—+oco n—+oo
im0 = 2im { = (00— 0) ua — 582000 = St (s + o) | =0
Note that as n — +oo "
0, it >l i1
JLim o(n) =0, Lim o(n)u(n) = Ve it 5 a L1,
q;

With into account the latest limits we will obtain from (17) the following system of algebraic
equations:

()™ )2 =, 18
()" L) = o, (18)
; — 1
if g; > g and
qi 0vg 1
p—1, Oymi—1,. 0vp—2 , @1(y) ™ 1
@ (y2) ()" + g pw D
0)\B2—1
p—1/ 0\yma—1/, 0\p—2 a2(y2) o 1 ,
% () (y2)" ™"+ v pw D (18")
-1
if g =32
qi
Therefore we have the asymptotical representation (13). O

In the case p = 2 or m = 1 in (10), the properties of the different solutions as computing
aspects of the system equation (10) were studied by many authors [12].

3. Fast diffusion case (¢; <0, i =1,2.)

Consider now the case of fast diffusion. In this case we will study asymptotics of the regular
solutions of self-similar system (10) as £ — +oo with the boundary condition

¥(0) = ca = 0, Y(o0) = 0.
We will replace in (10) B
f(&) = F(&)yr(n), (20)

where n =1In (a + &), f=(a+&)", ¥ = (a

above.

EN%" a>0, 7, q, go are the numbers defined

Theorem 2. Let ¢ < 0, g2 < 0, 8; > 1, i = 1,2. Then solutions of system (10) have the
asymptotics

FEO=9f©)1+o0(1)),

: (21)
P (&) =3¢ (&) (1+0(1))
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as n — oo when one of the following conditions is satisfied:

I (N =) [(mi = 1) (g = ) = (0= 27| = (0= n =) (p = m; = 1) > 0
and
a; > p—(mi+1) i=1,2
(mi —1) (m3—i —1) — (p—2)* o
IT. (N =1) (mi—l)(mg,i—l)—(p—2)2} —p=-n-0pmE-m;—-1)<0
and
a; < p—(mi+1) i=1,2,

(mi — 1) (ma—; — 1) — (p— 2)*’

numbers y9, yS are the roots of the following nonlinear algebraic equations

-2 S 1 a
(s +Aaq1) (lanwd )"~ ()™ " + V= ql)\ﬁ =0, )
(s 4 A\g2) (|q2y8\)p_2 (yym2—t 4 92

e
Proof. After replacement (20) system (10) take the following form

d S 1 dy;
—Li (y1,y2) + <X¢1 (n) + Qi) Li (y1,y2) + W% (n) (dﬁ + Qiyi) +

dn
Fon ) (e () =0,

where )
1| dyi P72 dy;
L; = y5ti | o iy “+aqiyi )
(Y1,y2) = y3"'; a + gy (dn + qiy
e’ ng; (Bi—1) ;
¢1(n) = prampt pa(n) = e"ViT e (), i=1,2.

Such studying of solutions of a system (10) as 7 — o0 is reduced to studying of those
solutions of system (10), each of which in some neighborhood of co satisfies to inequalities

dy;
dn

Passing in (23) to the limit at n — 400 we obtain necessary conditions and system of algebraic
equations (22). Rest of a proving is similar to above mentioned manner. |

4. Case 1 = [ = 1.

Now consider the Cauchy problem for system

W = div (|:c|" ™l | VyP? Vu) + p(x)71 ()u,
9 (pla)v) ) (24
=T = div (lal" w2 |90~ Vo) + p(a)a(t)e.

We will prove a condition of localization of the problem (24),(2).
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Introduce the notation

R T ol k)

o(z)) = — P, py 0,

2] = r(t)= [ o a2 (n)dy = / ™= ()oP~2 ()i

0 0

7.L+(t,$€) :ﬁ(t)f(g), —lzl/Ir 1/p

e wge, €= e (25)

where
F€) = Ala—€)", §(€) = Bla—)%,
Y P (=D —(mi +1), o= — 2= D= (m2+1)

=1 T p-27— (i —(me— 1)’
a >0, A and B are positive constants.

We notice that functions uy(t,z),v(t,z) are Zeldovich-Barenblatt type solutions to sys-
tem (24). Here it constructed for the system (24) at the first.

It is hold the following

(p—2)% = (m1 —1)(mg — 1)’

t
Theorem 3. Letp >n+1, N > 1, exp </ fyi(u)d,u> < 4o00,i=1,2, 7(t) < +o0 for Vt >0
0

and
up(x) < ug(0,3), vo(x) <vy(0,z), zeRY.

Then the solution of the system (1) is specially localized.

Proof. In order to prove Theorem 3 we use the following change of variables in system (1)
u(t, x) = u(t)w (7(t), ¢(|z])),
vt x) = v(t)z (r(t), ¢ (|z])-

Then the system reduces to the form

p—2
Lyfw,2) = — 9% gt=o 0 (rmtpmr QU200 o
ar dy Oy dy (26)
Ly(w Z)_—%-‘r R P 9217 0 =0
4’_379085090 dp oo | 7
N —
whereszpp_(nj_l),p>n+l.
Set in (26)
w(r,z) = f(§), akd
= 27
dr) =), T 0
Then we have from (26) the self similar system equation
cod (ot [AFPTRAFY  Edf
L , _ ¢l—s 7 s—=1,/ mi—1 | - _’_77:0’
() =€ (5 v % ) s
o d (et g | dOPTR AR | EdY
_ ¢l—s 7 s—1 pmo—1 |2V - > 7
La(f) =€ 5 (e el G ) e =
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Notice the functions f(€), 1(¢) have properties

0< fle), elgm % %:—Ap*lel*l(Ml)p’lfsf(E) € C(0,00),
0<P(e), et % %:—Bp*lAmrl(sz)P*s%z(s) € 0(0, ).

To complete proof of the Theorem 3 it is sufficient to check conditions

Ls(f,) <0, La(f,9) <0, in |¢] < aP~D/P

according to a comparison principle [11].
In fact, since

_ df P2 d
nglw’ﬂnfl dg dé — AP~ le1 1(>\'y )p 1£Nf(€)

[P dy
gLt dqé“} d? = —BPTAT T PR (9),

(=D =1+ (m1—1)y2 =, (M2 — )71 + (p — 1)72 = 72, we have

d _ df P2 df
&N <€N‘1wm1‘1 d—é d§> = —APTIB™I T (A )P (N+€d§>
s
gl—N% <§N_1f_m2_1 % Z?) _ _Bp—lAmz—l()\,yQ) (N—l—qué))

Therefore

L3(f,¢) = —%fé 0, Ly(f,¢) = —%J; <0, if]é] < a®D/r

if numbers A, B are the roots of the system of algebraic equations
APTIB™M T )P = 1/p,
BPT A2 (Ao )Pt = 1/p.

Hence

L3(fa 1][}) < 07 L4(fa 7/}) < 07
in D= (t,x):t > 0,|x| <I(t), I(t) = aP~V/P[r()]V/ P=l=n),
Applying comparison principle [11] we have for solution of the problem (24), (2)

u(t,x) < ug(t,x), v(t,z) <vg(t,x), in Q.
We notice that the functions w(r,z), z(7,x) have the properties
w(T,x) = z(1,x) =0, when |z| > aP~V/P[r(t)]}/P=t=n),
In this case for the free boundary we have an estimate
2(t)| < a®PD/P[r()]Y P for > 0.

Therefore if 7(t) < oo for all ¢ > 0, then there place a space localization of a solution of the
system (1) according condition of the theorem (3). Theorem 3 is proved. a

We notice that in the case
w(t,z) = z(1,x) =0, when |z| > aP~D/P[r(t))V/ P=l=1),

and 7(t) — oo when ¢t — oo there is a finite speed of perturbation.
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5. Results of numerical experiments and visualization
of solutions.

For numerical solution of the problem the equation in two dimensions was used method
Alternating Direction Implicit (ADI) in a combination to the method of balance. Iterative
processes were constructed on the method, with Picard, Newton and a special method. In special
linearization the members u”*, v%2 in system (1) are presented as u'(,jl = ufl__lluk, v,fz = vfz__llvk,

where ug, v, the solutions of the system of ordinary differential equation

du, dv
=0 :ugl, ] :v§2.
dt dt

Results of computational experiments show, that all listed iterative methods are effective
for solving nonlinear problems and lead to nonlinear effects if we use as initial approximation
the solutions of self-similar equations constructed by the method of nonlinear splitting and by
the method of standard equation [1,5,6]. As it was expected, for obtaining some fixed accu-
racy the method of Newton requires smaller number of iterations, than the methods of Picard
and the special method due to a good choice of an initial approximation. We observe that in
each of the considered cases Newton’s method has the best convergence due to the good initial
approximation.

Below numerical results for one of solutions to problem (1)—(2) in the two-dimensional cases
(Fig.1). The results of the numerical experiment gives the effect of a finite speed of perturbation
of a solution, and localization of a solution depending on the values of numerical parameters.
The computational experiments were carried out for a slow and a quick diffusion cases.

parameters t=20
m=02_.m=02 p=238

B,=5 1=2
B:=7? [:=3

BB, >1
m;+p—-3=0

eps =107

m =02 .m =07 p=21

B,=5, [[=2
B.=7 1, =3
BB >1
m;+p—3<0
eps =107
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m=14.m,=14p=25

B,=5, [ =2

B =5. I,=3

BB >1

m;+p—3>0

eps =1073

Fig. 1.
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YHucieHHOEe McciieJIoOBaHNEe PelleHuii CuCTeMbI
peakiun-auddy3un ¢ nepeMeHHO MJIOTHOCTHIO

MTaxgo A. CaxysuiaeBa

B cmamve moL nokasicem 803MOHCHOCTIU GEMOMOOCALHO20 U NPUDBAUHCEHHO-AEMOMOIEALHO20 NOOTOIG
K UCCAEJ08AHUIO 83AUMHOT cucmemv, pearyuu-ouddysuu nHeasuneldnnr ypashenut. Usyuwaromes acumn-
MOMUNECKUE NOBEIEHUSA KOMNAKIMHO PACHPOCNPAHEHHLT peweHul u ceobodnvie eparuuv. Ha ochose
NOAYHEHHDIT KAYECTNEEHHBIT CE0UCME NPOSEIeHbL YuCieHHble packembt. IIpu amom pewerus npedcmas-
AAOMCA 6 BUSYANOHOT POPME NO BPEMEHU.

Karouesvie caosa: 080UHaAA HEAUHETHOCMD, CUCTMEMA PEAKUUU-OUPGPHY3UL, AEMOMOJEALHOE YPAEHEHUE,
ACUMNMOMUKG PeUuLerutl, YUCAEHHOE PEWeHUE.
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