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Introduction

A great many deep and bright results are connected with groups, satisfying various min-
imal conditions, and with groups, having wide systems of complemented subgroups (see, for
instance, [1–7]).

The present paper is devoted to the Shunkov groups with the minimal condition above.
Below p and q are always primes; min−ab, min−abc, min−p and min−p′ are the minimal

conditions respectively for abelian, abelian noncomplemented, for p- and p′-subgroups. All other
notations are standard.

Remind that the group G is called Shunkov, if for any its finite subgroup K, every subgroup
of the factor group NG(K)/K, generated by two conjugate elements of prime order, is finite
(V.D. Mazurov, 1998). The class of Shunkov groups is wide and includes, for instance, binary
finite groups, 2-groups. The known Suchkova–Shunkov Theorem [8] (see also [4, Theorem 4.5.1])
asserts: The Shunkov group with min− ab is Chernikov.

Further, remind that the subgroup H of the group G is called complemented in G, if for some
subgroup K of G, G = HK and H∩K = 1; K is called a complement of H in G. The group G is
called completely factorizable, if every its subgroup is complemented in it (N. V. Chernikova [9]).
The fundamental N.V. Chernikova’s Theorem [9, 10] (see also, for instance, [1, Theorem 7.2])
gives an exhaustive description of completely factorizable groups and asserts: The group G ̸= 1

is completely factorizable iff G = AhB where A is a direct product of normal subgroups of prime
orders of G and B is a direct product of subgroups of prime orders or B = 1; in particular, the
p-group G is completely factorizable iff it is elementary abelian. The known Kargapolov [11]–
Gorchakov [12] Theorem asserts: The group is completely factorizable iff all its abelian subgroups
are complemented.
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It is natural to consider groups, having infinite abelian subgroups, in which all such sub-
groups are complemented. B. I. Mishchenko [13] has described the infinite solvable and the in-
finite radical in the sense of B. I. Plotkin groups with complemented infinite abelian subgroups
(see Theorem 1 [13] and Corollary [13, p. 158]). Since all such groups are locally finite, it is nat-
ural to consider the locally finite groups with min − abc. N. S. Chernikov [14, 15] has described
these locally finite groups (see Theorem [15] and Corollary 3.5 [15]). N. S. Chernikov [14, 16] has
established that binary finite groups with min− abc are locally finite (see Theorem 3 [16]).

1. The main result and some corollaries

The author succeeded in proving the following general theorem, which is the main result of
the present paper.

Theorem. For the Shunkov group G the following statements are equivalent:

(i) G satisfies the minimal condition for abelian noncomplemented subgroups.

(ii) G is a Chernikov group or a non-Chernikov group with complemented infinite abelian sub-
groups.

(iii) G is a Chernikov group or G is a completely factorizable group, or G = AhB where A is
infinite and A is a direct product of normal in G subgroups of prime orders, B = C ×D
is finite, C is a direct product of subgroups of prime orders or C = 1, D is cyclic ̸= 1 and
for every p ∈ π(D), p2||D|, and also for every g ∈ D \ {1}, CA(g) is finite.

(In view of O.Yu. Shmidt’s Theorem (see, for instance, [20, Theorem 1.45]), in (iii) G is locally
finite.)

Theorem is equivalent to the author’s Theorem [17].
Theorem implies the following proposition.

Proposition ([17]). The Shunkov p-group G (in particular, the 2-group G) satisfies the minimal
condition for abelian noncomplemented subgroups iff it is Chernikov or elementary abelian.

Note that Theorem [17] and Proposition [17] are exactly all results of [17].
The following new author’s assertions are the immediate consequences of Proposition.

Corollary 1. For the 2-group G the following statements are equivalent:

(i) G satisfies the minimal condition for abelian noncomplemented subgroups.

(ii) G satisfies the minimal condition for noncomplemented subgroups.

(iii) G is Chernikov or elementary abelian.

Corollary 2. For the Shunkov p-group G the following statements are equivalent:

(i) G satisfies the minimal condition for abelian noncomplemented subgroups.

(ii) G satisfies the minimal condition for noncomplemented subgroups.

(iii) G is Chernikov or elementary abelian.

In connection with the results above, note that for every p > 665, there exists the non-solvable
group of exponent p containing an infinite abelian subgroup, in which every abelian subgroup
of order > p is complemented (N. S. Chernikov [18]). Thus the above requirements: "G is a
2-group" , "G is Shunkov" are essential.
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2. Proof of the main result

A. Show that (i) implies (iii).
Let (i) hold. The subsequent proof will be accomplished in a series of steps.

(1) G is periodic.
Proof. Let G have some element g of infinite order. Then some subgroup < g2

n

> of the
infinite chain < g2 >⊃< g4 >⊃ ... ⊃< g2

k

>⊃< g2
k+1

>⊃ ... has a complement D in G. But
1 < |D∩ < g > | < ∞, which is a contradiction. �

(2) If G has a normal infinite locally finite subgroup H, then the statement (iii) is valid.
Proof. First, let H be Chernikov. Now remind the following S. N.Chernikov’s Proposition

(see, for instance, [1, Proposition 1.13, p. 62]): A periodic group of automorphisms of the group,
which is a direct product of finitely many quasicyclic subgroups, is finite. Further, H contains the
characteristic subgroups R of finite index, which is such product. Since G is periodic (see (1)), in
view of the last Proposition, |G : CG(R)| < ∞. In accordance with Lemma 1.1 [15], an abelian
group with min − abc is precisely Chernikov or a direct product of groups of prime orders.
Every maximal abelian subgroup of CG(R) satisfies min − abc and is not such product and so
is Chernikov. Hence follows: G satisfies min − ab. Therefore in virtue of Suchkova–Shunkov
Theorem [8] (see above), G is Chernikov and, at the same time, (iii) is valid.

Now let H be non-Chernikov. Remind the following N. S.Chernikov’s Theorem (see [15,
Theorem]): The locally finite group with min − abc is the same as in (iii). Consequently, with
regard to N. V. Chernikova’s Theorem (see, above), H = K h L, where K is a direct product of
normal in H subgroups of prime orders, L is abelian without quasicyclic subgroups. Let F be
the Fitting subgroup of H. Then F is locally nilpotent and F = K h (F ∩ L) E G. Since H is
solvable, in view of Proposition 5.4.4 (ii) [19, (see p. 144)] , CH(F ) = Z(F ). Therefore because
of H is infinite, F is infinite too. Obviously, F is non-Chernikov. Further, every mentioned
direct multiplier of K belongs to Z(F ) (for instance, in view of Proposition 1.16 [1, (see p. 70)]).
So F is abelian. In accordance with Lemma 1.9 [15], the group, satisfying min− abc and having
a normal abelian non-Chernikov subgroup, is the same as in (iii). Thus (iii) is valid. �

(3) Either the statement (iii) is valid, or the product L of all normal locally finite subgroups
of G is finite and also G includes some normal infinite subgroup M , which does not satisfy
min− ab and has no subnormal locally finite subgroups ̸= 1.

Proof. Assume that (iii) is not valid. Then G is infinite. In consequence of O.Yu. Shmidt’s
Theorem (see, for instance, [20, Theorem 1.45]), L is locally finite. By virtue of the assertion (2),
L is finite. So |G : CG(L)| < ∞. Again by virtue of (2), CG(L) is not locally finite. Therefore,
with regard to Suchkova–Shunkov Theorem [8] (see above), CG(L) does not satisfy min−ab. So
some maximal abelian subgroup A of CG(L) is not Artinian. Clearly, L ∩ CG(L) ⊆ Z(CG(L))

and so L ∩ CG(L) ⊆ A. Further, A has some infinite descending series

A = A0 ⊃ A1 ⊃ A2 ⊃ . . . ⊇ ∩∞
n=1An ⊇ L ∩ CG(L) ⊇ 1.

Some An has a complement D in G. Put M =< (D ∩ A)G >. In view of Chunikhin’s Lemma
(see, for instance, [21, Lemma 1.36]), M ⊆ D. Also M ⊆ CG(L) and D ∩ L ∩ CG(L) = 1. So
M ∩ L ⊆ (D ∩ CG(L)) ∩ L = 1. In consequence of Theorem 1.1 in §2 of Chapter 5 [22] (see
[22, p. 345]), every subnormal locally finite subgroup of M belongs to L. Consequently, M has
no subnormal locally nontrivial subgroups. Also with regard to Suchkova–Shunkov Theorem, M
does not satisfy min− ab. �
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(4) If G is a p-group, then (iii) is valid and, at the same time, G is Chernikov or elementary
abelian.

Proof. Let G be a p-group. It is easy to see, with regard to N. V.Chernikova’s Theorem
above: G is Chernikov or elementary abelian iff (iii) is valid.

Assume that (iii) is not valid. Now define the finite subgroup H of G in the following way.
First, if G has an element g of order p2, then put H =< g >.
Suppose that G is of exponent p. Then G is non-abelian. If for some g, h ∈ G, [g, gh] ̸= 1,

then we put H =< g, gh >. Since G is Shunkov, H is finite. Further, assume that also for every
g ∈ G and h ∈ G, [g, gh] = 1. Take a, b ∈ G such that [a, b] ̸= 1. Since < ah : h ∈ G > and
< bh : h ∈ G > are normal abelian subgroups of G, the subgroup < ah : h ∈ G >< bh : h ∈ G >is
metabelian and non-abelian. Further, the known S. N.Chernikov’s Theorem (see, for instance,
[1, Proposition 1.1]) asserts: Periodic locally solvable groups are locally finite. Then < a, b > is
finite non-abelian. Now put H =< a, b >.

Let A be any abelian subgroup of CG(H). Then AH is a nilpotent non-(elementary abelian)
group with min − abc. In accordance with Lemmas 2.2 [15] and 1.1 [15]: Every non-Chernikov
locally nilpotent p-group with min − abc is elementary abelian. Thus, AH is Chernikov. So
CG(H) satisfies min− ab. Now remind Shunkov’s Theorem [23]: The 2-group with min− ab is
Chernikov. Remind An. Ostilovskiy’s Theorem [24] (see also [4, Theorem 4.4.1]): The Shunkov
2′-group with min− ab is Chernikov. In view of these theorems, CG(H) is Chernikov.

Let F be a subgroup of maximal order among all X ▹ H, for which CG(X) is non-Chernikov.
Take u ∈ H \ F such that up ∈ F and also uF ∈ Z(H/F ). Since < u > F E H and also
| < u > F | > |F |, the CG(< u > F ) is Chernikov.

Put T =< u > CG(F ). If | < u > | = p, then up = 1 ∈ Z(T ). If | < u > | ̸= p, then H and, at
the same time, F are cyclic. Therefore in this case we have: up ∈ F ⊆ Z(CG(F )). Consequently,
[up, T ] = [up, < u > CG(F )] = 1, i.e. up ∈ Z(T ).

In view of S.N. Chernikov’s Lemma (see, for instance, [1, Lemma 3.7, p. 151]), CT (u) =< u >

(CT (u) ∩ CG(F )). Then |CT (u) : CT (u) ∩ CG(F )| < ∞. Since CT (u) ∩ CG(F ) ⊆ CG(< u > F )

and CG(< u > F ) is Chernikov (see above), the subgroup CT (u) ∩ CG(F ) is Chernikov too.
Therefore CT (u) is also Chernikov.

Further, it is easy to see: the statement (iii) of Theorem with T in the character of G is not
valid. Therefore in view of the assertion (3), T contains some normal subgroup M that does not
satisfy min− ab and has no normal locally finite subgroups ̸= 1.

Let K be a normal subgroup of T , having some abelian non-Chernikov subgroup B. In view
of Lemma 1.2 [15], K contains some subgroup L ▹ T with infinite B/L ∩ B and non-Chernikov
L ∩B. Taking this into account it is easy to see: M has some infinite descending series

M = M0 ⊃ M1 ⊃ M2 ⊃ . . . ⊃ Mα ⊃ Mα+1 ⊃ . . . ⊃ Mγ = ∩α<γMα ⊇ 1

of normal subgroups of T such that all Mα, α < γ, do not satisfy min − ab and Mγ satisfies
min − ab. In view of mentioned Shunkov’s and An. Ostilovskiy’s Theorems, Mγ is Chernikov.
So Mγ = 1. Further, since CM (u) is Chernikov, for some β such that 0 < β < γ, we have:
CMβ

(u) = 1. Take v ∈ Mβ \ {1}. Then, because of up ∈ Z(T ), we have: u, v ∈ CG(u
p) and

< u > ∩ < uv >=< up >. Since G is Shunkov, << u >,< uv >> is a finite p-group. So
<< u >,< uv >> ∩Mβ has some element ̸= 1 centralizing u, which is a contradiction.

Thus (iii) is valid. �
(5) If for some element g ∈ G of prime order and for some infinite normal subgroup H of G

we have: H ∩ CG(g) = 1, then (iii) is valid.
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Proof. First, give the following Popov–Sozutov–Shunkov Theorem (see Lemmas 2.7, 5.24 [25],
Theorem 5.11 [25], Lemma 5.20 [25]): Let X = Uh < v > be an infinite group with | < v > | = p,
CX(v) =< v > and | < v, vu > | < ∞, u ∈ U . Then: X is periodic; all divisible abelian subgroups
of U belongs to Z(U); every finite subgroup of U , normalized by v belongs to some infinite locally
finite subgroup of U , normalized by v. Further, if for some u ∈ U , all subgroups U∩ < u, fv >

with f ∈ U are abelian, then the normal closure < uX > of u in X is abelian.
Now give some comments. Since < v > is obviously a Sylow p-subgroup of < v, vu > and

< v, vu >= (U∩ < v, vu >) < v >, for some w ∈ U∩ < v, vu > we have: < v >u=< v >w,
i.e. u = w and u ∈ U∩ < v, vu >. Obviously, for some a ∈< uv > and x ∈ U∩ < v, vu >,
| < a > | = p and < a >=< v >x. So < uv >=< v >x. Thus, (X \ U) ∪ {1} = ∪u∈U < vu >.
Hence follows: for y, z ∈ X \ U , | < y, z > | < ∞.

Now return directly to the present assertion (5). Since G is Shunkov, for any x, y ∈ G, we
have: | < gx, gy > | < ∞.

If H contains a quasicyclic subgroup, then in view of Popov–Sozutov–Shunkov Theorem
above, Z(H) contains all such subgroups. Then every maximal abelian subgroup of H contains a
quasicyclic subgroup. Consequently in view of Lemma 1.1 [15], all maximal abelian subgroups of
H are Chernikov and so H satisfies min− ab. Therefore in view of Suchkova–Shunkov Theorem
mentioned above, H is Chernikov. So in accordance with the assertion (2), the statement (iii)
is valid.

Now let H have no quasicyclic subgroups. Take u, f ∈ H. For some h ∈ H, fg = gh

(see comments above). Also H∩ < gh, ghu > is a finite subgroup, normalized by gh, and
u ∈ H∩ < gh, ghu > (see comments above). Then H∩ < u, fg >⊆ H∩ < gh, ghu >. Further,
in view of Popov–Sozutov–Shunkov Theorem above, H∩ < gh, ghu > belongs to some infinite
locally finite subgroup R of H, normalized by gh. By virtue of J. G. Thompson Theorem [26],
R is locally nilpotent. Since R has no quasicyclic subgroups, R is also non-Chernikov. Therefore
in view of Lemma 2.2 [15], R is abelian. At the same, H∩ < u, fg > is abelian. Consequently, in
view of Popov–Sozutov–Shunkov Theorem above, < uH<g> > is abelian. Thus H is the product
of normal locally finite subgroups < uH<g> > , taking by all u ∈ H. Then in consequence of
O.Yu. Shmidt’s Theorem, H is locally finite. Therefore (iii) is valid (see (2)). �

(6) If for g ∈ G of prime order the centralizer CG(g) satisfies min− ab, then (iii) is valid.
Proof. Let CG(g) satisfy min − ab. In view of Suchkova–Shunkov Theorem, CG(g) is

Chernikov. Assume that (iii) is not valid. Let M be such as in (3). Then M has some
descending series

M = M0 ⊃ M1 ⊃ M2 ⊃ . . . ⊃ Mγ = ∩α<γMα

such that Mγ ▹ G and Mγ satisfies min− ab, and for α < γ, Mα ▹ G and Mα does not satisfy
min− ab (see above the proof of the assertion (4)). In view of Suchkova–Shunkov Theorem [8],
Mγ is Chernikov. Consequently Mγ = 1. Therefore because of CG(g) is Chernikov, for some
β < γ we have: CG(g) ∩ Mβ = 1. But then, with regard to (5), (iii) is valid, which is a
contradiction. �

Remind: the group with a normal abelian subgroup of finite index is called almost abelian.
(7) If for g ∈ G of prime order the CG(g) is almost abelian, then (iii) is valid.
Proof. First, (iii) is valid, if CG(g) is Chernikov (see (6)). Let CG(g) be almost abelian

non-Chernikov and A be its abelian subgroup of finite index. Since A is non-Chernikov, it is a
direct product of groups of prime orders (see Lemma 1.1 [15]). Therefore, obviously, A has an
infinite chain A1 ⊃ A2 ⊃ . . . ⊃ An ⊃ An+1 ⊃ . . . with factors of prime orders. Since G satisfies
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min− abc, the set of all complemented in G terms of the chain is infinite. Let Dn complements
some An in G. Then A = An × (A∩Dn) (by S.N. Chernikov’s Lemma). In view of Chunikhin’s
Lemma (see, for instance, [21, Lemma 1.36]), < (A ∩ Dn)

G >⊆ Dn. Since also Dn ∩ CG(g) is
finite, < (A∩Dn)

G > ∩CG(g) is finite too. Therefore the centralizer of g in < g >< (A∩Dn)
G >

is finite. Then in view of the assertion (6), the statement (iii) with < g >< (A∩Dn)
G > in the

character of G is valid. At the same time, < (A∩Dn)
G > is locally finite. Then in consequence of

O. Yu. Shmidt’s Theorem, the product of subgroups < (A∩Dn)
G >, taken by all complemented

in G subgroups An, is an infinite normal locally finite subgroup of G. Therefore in view of
assertion (2), the statement (iii) is valid. �

(8) For g ∈ G and π = π(< g >) and H =< gG >, all π′-subgroups of CH(g) are Chernikov.
Proof. Assume that CH(g) has some non-Chernikov π′-subgroup. Then in view of Suchkova–

Shunkov Theorem (mentioned above), this subgroup has some infinite chain A ⊃ A1 ⊃ A2 ⊃
. . . ⊃ An ⊃ An+1 ⊃ . . . of abelian subgroups. Some An has a complement D in G. Then, with
regard to S.N. Chernikov’s Lemma, we have:

A× < g >= An × (D ∩A× < g >) = An × (D ∩A)× (D∩ < g >) = A× (D∩ < g >).

Therefore, clearly, < g >= D∩ < g >, i.e. < g >⊆ D. Since also G = (A× < g >)D, by virtue
of Chunikhin’s Lemma (see, for instance, [21, Lemma 1.36]), H ⊆ D. But A ⊆ H and A * D,
which is a contradiction. �

(9) If G satisfies min−p′ for some p, then (iii) is valid and also G is Chernikov or contains
a normal elementary abelian p-subgroup of finite index.

Proof. Assume that (iii) is not valid. Let M be from the assertion (3). In view of the
assertion (4), every p-subgroup of G is abelian or Chernikov. Consequently, M has an element
g of prime order q ̸= p. Put H =< gM >. In view of the assertion (8), in CH(g) all q′-subgroup
are Chernikov. Consequently CH(g) satisfies min− p. Also CH(g) satisfies min− p′.

Further, every abelian subgroup of CH(g) is a direct product of a p-subgroup and a p′-
subgroup. Thus it is a direct product of two Artinian subgroups, and so it is Artinian. Thus,
CH(g) satisfies min − ab. Then in view of the assertion (6), the statement (iii) with H in
the character of G is valid. Therefore H is a normal locally finite subgroup of M , which is a
contradiction. Thus, (iii) is valid.

Now let G be non-Chernikov. Then, with regard to N. V.Chernikova’s Theorem [9, 10] (see also
Introduction), G = U hV , U and V are abelian, U is a direct product of normal in G subgroups
of prime orders and G has no quasicyclic subgroups. So U = Up × Up′ , V = Vp × Vp′ , where Up

and Vp are p-subgroups, Up′ and Vp′ are p′-subgroups. Since Up′ and Vp′ are Artinian abelian, by
Kurosh’es Theorem (see, for instance, [19, Proposition 4.2.11, p. 101]), Up′ and Vp′ are Chernikov.
Since G has no quasicyclic subgroups, Up′ and Vp′ are finite. Therefore |G : UphVp| < ∞. Since
Up is obviously a direct product of normal in G subgroups of order p, if Up ̸= 1, and Vp is
a p-subgroup, Up h Vp = Up × Vp. In consequence of Lemma 1.1 [15], Up × Vp is elementary
abelian. �

(10) The statement (iii) is necessarily valid.
Proof. Assume that (iii) is not valid. Let M be from (3). Further, let g be an element of

some prime order p of M . Put H =< gM >. Then CH(g) satisfies min− p′ (see (8)). Therefore
in view of the assertion (9) (with CH(g) instead of G), CH(g) is almost abelian. Therefore by
virtue of the assertion (7), the statement (iii) with H in the character of G is valid. At the same
time, H is locally finite, which is a contradiction. �
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B. Show that (iii) implies (ii).
Put A∗ = CG(A). In view of S. N.Chernikov’s Lemma, A∗ = A h (A∗ ∩ B). Then because

of A and A∗ ∩ B are abelian, A∗ is abelian too. Obviously, A∗ = CG(A
∗). Further, clearly,

D ∩ A∗ = 1. Since C is a direct product of groups of prime orders or C = 1, we have for some
subgroup C∗ ⊆ C: B = (A∗∩B)× (D×C∗). Then B = D× (A∗∩B)×C∗. So for B∗ = D×C∗

we have: G = A∗B = A∗ h (D × C∗) = A∗ hB∗. Therefore in view of Proposition 2 [27], every
infinite abelian subgroup of G is complemented in it.

Of course, (ii) implies (i).
Theorem is proven.
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Шунковские группы с условием минимальности
для недополняемых абелевых погрупп

Николай С.Черников

В настоящей работе мы даем полное исчерпывающее описание указанных шунковских групп.

Ключевые слова: шунковская, периодическая, локально конечная, вполне факторизуемая, черни-
ковская группа, условия минимальности, дополняемые, абелевы подгруппы.
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