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Group properties of hydrostatic model equations of a layer motion in an ideal fluid on a function defining
the free surface and the thickness of the fluid layer under the free boundary are studied. FEzamples of
several exact solutions in Cartesian and cylindrical coordinates are given, they determine the free surface
and the pressure on it.
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1. Problem statement. Basic equations

Consider equations of motion for an ideal incompressible fluid in a gravitational field

1 1
ut+uum+vuy+wuz+;pz:0, vt+uvx+vvy+wvz+;py:0,

(1)

Wi + UWg + VWy + WW, + =D, = —¢g, Uz +Vy +w, =0.
p

Here u, v, w are components of the velocity vector; the pressure p is the function of the variables
x, y, z and of time ¢; the fluid density p is constant (we can take p = 1); g = const > 0 is the
acceleration of the force of gravity which acts in the negative direction of the z axis.

Let us assume that pressure in the fluid depends linearly on the depth

Pz = —g. (2)

This assumption is often used to describe processes in oceanography [1]. Then

p($7y7zat) :_QZ+Q(33>y7t)a (3)

where ¢(z,y, 2) is a new function. In this situation the system (1) is rewritten in the following
form
Up + Uy + VUy + WU, + @ =0, vy + uvy +vvy +wv, +qy =0,

(4)
wy + uwy + vwy +ww, =0, Uy +vy +w, =0.
Let z = n(x,y,t) be the equation of the free boundary on which the dynamic and kinematic
conditions are fulfilled

p(x,y,n(x,y,t),t) = pa(z,y,1); (5)
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ne +u(z,y,n(x, y,t), t)n + v(x,y,n(x,y,t), t)n, = w(z,y,n(x,y,t),1t), (6)

where p,(z,y,t) is the atmospheric pressure.
From formula (3) taking into consideration the condition (5) on the free surface we find that

pa(xvyvt) = —977(1’, yvt) + q(x,y,t). (7)

Equation (7) determines uniquely the free surface via the function g¢(x,y,t) that can be
derived from the system (4).
Sometimes it is convenient to solve the equations in cylindrical coordinates. Let us rewrite
the system (4) using the variables (r, 6, z)
— 72 — _ —
_ o v _ _ v o v _ o uv 1
ut+uur+;u9+wuz_ 7+Qr =0, Ut+UUr+;U0+wvz+7+;QG =0,

®)

@y + Ay + il + WD, =0, Uy + ~Tp + @ + —7 = 0.
T T T

Here (@,v,w) are the components of the radial, azimuthal, and axial velocity dependent on
(r,0, z,t); the function ¢ from formula (3) depends on (7,6, t).

Along with equations (4) an approximate model is also considered, which describes the motion
of the fluid as z — €z, w — ew. In the limit, as ¢ — 0, the system (4) assumes the following
form

U + Uy + VUy + WU + g, =0, vy + uv; + vvy +wv, +qy =0,

9)
Uy +vy +w, =0, g, =0.
We perform the group analysis for systems of equations (4) and (9), find the Lie algebra of
admissible operators of these systems and construct exact solutions.

2.  Group properties of the equations

Study the group properties of equations (4). We introduce the following index notation
ul=u, u?=v, v =w, ut=q, v'=x, 2=y, ¥3= 2, x*=t. In this notation equations (4),

being supplemented by the requirement ¢, = 0, assume the following form

ud +utul +ulud +udul +ud =0, w4+ ute? + w?ud 4+ udud +ud =0, (10)
1
uj +ulud +ulud +udud =0, ul+ud+ul=0, ui=0.

The lower index is the differentiation.
We find an admissible operator for the system (9) in the form

i 0
X =bou)gs ok

Here the summation is over i, k = 1, 2, 3, 4. The operator prolongs to the first derivatives

w0 k 677k+1677k_k<a§j 15'53)

+7*(x,u)

)1( T u Si Oz’ i oul Y ozt +u18ul

From the invariance criterion [2], acting by operator X onto equations (10), we get the
1

defining equations. Passing to the manifold (10) we replace uj, u?, u3, u3, u} with the remaining
variables. Splitting the defining equations with respect to the independent variables, we obtain
the coordinates of the operator X

¢ =(C1+ Co)z' + C32® + fi(2?), € = (C1+ Co)2® — Csz' + fo(ah),
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€3 = Cox® + Cua + C5, €' = Caa® + Cs,
771 = CIU1 + CSU2 + f{(ZA), 772 = C1’LL2 - Cgul + fé( 4), 773 = (Cy,
nt =200t — 2 f] (xh) — 22 f5 (2*) + h(z?),

where C1,...,Cg are constant, fi(z?), fa(z?*), h(z*) are arbitrary functions.
Assuming successively the constants and functions to be non-zero, we find the basis of admis-
sible operators. In Cartesian coordinates the basis of operators for the system (4) is as follows

=iy a0l 0l x—al 1y 00 0
LS Py T s TV Ty T T ar TVey TR e
o8 a9 8 9 o 9 ) )
Xs ya**xaiﬁ o Yar NiTlgiTaw T e Xe=gp
P B P P p (1
X . . 1! 7 . .
1) = Fil)g + RO5 —2f 05, Xalh) = L5+ FiO5 - v O

Xo(h) = h(t)a%.

The first two operators are responsible for dilatation transformations, the third one for rotation
in the plane (x;y), the fourth and fifth operators for the Galilean transformation and translation
along the axis z, the sixth for translation along the t-axis. The last three operators contain three
arbitrary time-dependent functions and define an infinite-dimensional part of the Lie algebra of
the admissible operators.

A similar group analysis was performed for the equations with the long wave approximation
in [3]. The model equations were considered in modified variables that take into account the
depth of the fluid layer.

In cylindrical coordinates the operators (11) can be written down as follows

9 9 o _o . o o 0o
Xp=rg, tugy Y ogs M5, Xe=rg Ty g,
B o o . a0 . 0 9
Xg—%, X t87+a X5 8 Xﬁ—a, Xg—h(t)aiq,
] 0 a o B
Xa() = Fi st~ 070 2t (<10 0+ fi(0 cos0) 5

(fl()SmG f()su}@)a f ()rcos@agq,
Xs(fg)Zfz()sm€8 00598 < COSH

0
oy + 520 2o+ fy0)sind) ot
< folt )cose + fa(t )C089> 35 z(t)rsm&é%

Calculations show that the Lie algebra of the approximate model (9) is
Yi =0, Yo=y0,—x0y+v0, —udy, Ysz=—1t0, + ud, + v0,+ wdy + 2¢0y,
Yi= 20, 4 wdy Vs = f(@,y, 0. + (fou+ fiv+ F1)u
Yo = f1(t)0z + f10u — 2 f{0q, Y7 = f2(1)0y + [30, — 450y, (13)
Ys = 2h(t)0: + A/ (x0y + yOy — 220,) + (—h'u+ h'x)0, + (—h'v + h"y)0,—

2 2
x —21—3/ h”/> aq’ Yo = Sp(t)aqv

—(4h'w + 2h"2)0y, — <2h’q +
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where f(z,y,t), f1(t), f2(t), h(t), ©(t) are arbitrary functions.
In the stationary case when the functions do not depend on time the Lie algebra of admissible
operators for equations (9) has the form

Oz, Oy, Og, 20, + W0y, U0y + V0, + WOy + 290y, £0y + YOy — WOy,

14
YOr — 20y + v0y — u0y, f(x,y)0. + (fru+ f,0)0uw. (14)

3. Exact solutions

Example 1. Let us find a solution to (9) for the operators (Ys,Y7) from the basis (13) with
f = f(z,t), fo = 1. The invariants of the operators are {x,t,u,v,q,wf(x,t) — (ufl, + f))z}.
Hence an invariant solution should be of the form

(w,v,w,q) = (U(@, 1), V(z,t), W(z,t) + (U(z, ) £/ f + [{/ )z Q(=, 1))
The system of equations (9) transforms into the factor system

/ /
Ui+ UU, +Qp =0, V,+UV, =0, %+U?+%=O (15)

The last equation is integrated to give

o=t [0

with an arbitrary function ¢(¢). The functions V(x,¢) and Q(z,t) are determined from the first
two equations of the system (15).

Suppose that f = f(z) does not depend on time ¢, in which case we get the following solution
of equations

o' () F"(z)

u=U= oy v=VIF@ -2 w= gy 2+ W(e); "
B - wl(t) 1._1 (I)I(t) 2

with arbitrary functions ®(t), F(x) and f(x) = F'(z); functions V and W are arbitrary as well.
From equation (7) we derive the function that defines the free boundary

n(e,y,1) = ; Q. t) — pal 1)), (17)

on which the kinematic condition (6) is met

o' (H)F"(z)

Substitute the relations (16) and (17) into (18) to obtain a condition for p,(z,y, t)
@/F//
Pa, + Upam + Vpay — 73 Pa = Qi +UQz — gW. (19)

(F")

The function W (z,t) is arbitrary, this implies that we may equate the right hand side of (19) to
zero. Then the equation (19) can be integrated with respect to p, to give

pa(xay?t) = Fl(x) : P<F($) - (I)(t),y - (F(.Z') - (b(t))t)
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with an arbitrary function P of two arguments.

Example 2. Let us find a solution to the system of equations (8) for the operators <)_(3,X4>
from the basis (12). The invariants of the operators are {r, t, @, ¥, @ — z/t, ¢ }, so the invariant
solution should be of the form

(1.0,,q) = (U8 V(1) = + W), q(r,1))
The system of equations (8) transforms into the factor system

1 1
Ut+UUT—;V2+q,«:O, VH—UVH—;UV:O,

1 1 1 (20
Wi+ UW, + W =0, Uy 42 +-U=0.
The equations (20) are integrated starting from the last equation,
t 1 1
U= —2% + @, Vi=F(). W =160,
Lo 3r ¢*(t) Lo @)
/
q /(Ut -UU,+ ;V ) dr +9¥(t) = ez ¥ t)Inr — 573 +/r—2F (A)dr + (1),
where p(t), ¥(t), F(X), G(\) are arbitrary functions, A = tr? — 2 [t p(t) dt.
The kinematic condition (6) in cylindrical coordinates has the form
on  _on  _1dn
From equation (7) in cylindrical coordinates we find
pu(r,ﬁ,t) = q(’r797t) - gn(raeat) (23)

Suppose that n = n(r,t), On/08 = 0. By substituting (21) into (22), we get a solution
n(r,t) = tH(A) — G(X) with an arbitrary function H(A). From (23) we derive the external
pressure on the free surface

3r? ©*(t)

pa(r;t) = q(r,t) = gn(r,t) = =5 - ¢'(t) Inr —

s [ BE) v - otH () - G0,

Example 3. We find the solution to equation (8) for the following two operators <X LX 3> from
the basis (12). The invariants of the operators are {z, t, u/r, v/r, w, q/r?}. The invariant
solution is found in the following form

(@,0,w,q) = (rU(z,t),rV(z,t),W(z,t), —TQQ(t)) . (24)
By inserting it into equation (8), we arrive at the factor system

U +U?+WU, -V?—-2Q=0, V,+WV.+20V =0,
(25)
Wy +WW. =0, 2U0+W,=0.

From the third equation of the system (25) we find an implicit representation of the solution
W = &(z — tW) with an arbitrary function ®(u), p = z — tW. The remaining equations of the
system (25) define the functions

1 R 1 1 , 1 R \2
U— —§Wz, V— Wz, Q = _Z zt + g(Wz) - 7WWZZ - (7) ’ (26)
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where R = R(W) is an arbitrary function. The second equation follows from the third one.
Assume that the function ®(u) = ap + 3 is linear, a, 8 are constant. Then from (26) we see
that

W:az+ﬁ, Ue__ @ , V:Ro(1+oaf)7 Qzl 30 4R3(1+at)’
1+oat 2(1+ o) o' 8 [ (14 at)? a?

. (27)

Here o > 0, also it is taken into consideration that the function @) depends only on ¢, therefore
R = Ry is constant. Thus, we have the exact solution (@, v, w, q) of equations (8).
The kinematic condition (22) in cylindrical coordinates in the given situation has the following

form
an ra  On  rRy(l1+at)dn az+f

ot 2(1+at) or a 20  1+at’

The solution to that equation is the function

32

1+ at 2 1+ at)?
n(r0,0) = -5 4 +aF(r\/1+ozt, HTRO(““)>,
« (0%

which describes the free surface of the fluid z = n(r,6,t). The function F' depends on two
arguments and is arbitrary. The external pressure on a free surface is determined by formula

(23): pao(r,0,t) = q(r,t) — gn(r,0,t) or

r? 3a? 4R3(1 4 at)? B l+at 2rRo(1 4 at)?
= —— - —g|-= Flr/ltat, 6 — " —7 )|,
b 8 (14 at)? a? ] g [ a * a (T ta 3a? >}

If « =0 then W = 3 is constant. In this case the solution to equations W = 3 = const are the
following functions

4
r
u=0, v=rVy, w=p, gqg= ?VOQ, Vo = const.
From the kinematic conditions (22) we find the function of the free surface n = gt + F(r, 8 — Vyt)
with an arbitrary function F', and from (23) we determine the external pressure on the free

surface .
pa(r?e?t) = (J(T7 t) - 977(7"79715) = %‘/02 - g(ﬁt + F(Tv 0 — V0t>

For the system of equations (25) we introduce the Lagrangian coordinates (z,t) — (¢,t) in

such a manner that p
Z
i W(z,t), zl=0=C.

Denote
W =W((C,0),8) = W (¢, 1); V= V(=(G0),8) = V (G 1); U=U(2(¢,8),8) = U ((,8).

From the third equation of the system (25) it does follow that W (¢,t) = Wo(C), where Wy

is the value of I/(I)/ for t = 0, then z = Wyt +(, zc = 1 +tWj. From these calculations we see that
W, = W,/(1 + tW{). We find that

o w/! o 7
U= W Wy VT (1 +tW)Vo(C), W= Wo(C),
o o o o 3 4
_ 2 92_3_ Wo 0o
Q=Ur +U*=V* = 3 e ~ W (O
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where V5(¢) is the value of X?'(C,t) for ¢ = 0. Since 52 = C?)(t) does not depend on ¢, Wj = o =
const, Vy = Rg/a = const, and

3 R2(1 )2 Ry(1 t
o Rltat) o Rlta) v @ o i (28)

Q) = 8(1 + at)? 2a2 a 2(1 + at)

where « and @ are constants. The solution (28) in Lagrangian coordinates coincides with the
solution in Euler coordinates. The solution (28) shows that the system of equations (25) has no
other solutions besides (27).

The author is grateful to Professor V. K. Andreev for useful discussions.
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I'mapocraTuydeckas Moelib UJi€aJIbHON >KMJIKOCTH,
rpynmnoBble CBOCTBA yPAaBHEHUN U UX PENIEHUS

Anekcanap A.PoanonoB

Hceaedosanvl epynnosvie ceoticmea ypasheruti 2u0pocmamuneckoti Modeau d8UNCEHUS CA0A UOeasbHOT
arcudkocmu omrocumenvho Gyrkyuu, onpedesarouseti c60600HY0 NOBEPTHOCTNG U MOMUURY CAOA HCUO-
Kocmu nod c60600H0t eparuyel. JlaHvl NPUMEPDL HECKOALKUL MOYHHIT Pewerudl 6 JeKapmosuir U yu-
aundpuveckuxr koopdunamax. Onu onpedeasrom c60600HY0 MOBEPTHOCTL U 0GBAEHUE HA IMOT NOBEPT-
HOCTAL.

Karoueswie caosa: udearvhas sHcudkocms, 2udpocmamuieckas Modeab, 2pynnosoti aHaAUS, MOYHbLE Pe-
WEHUA.
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