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The solution to the linear problem of axisymmetric thermocapillary motion of two non-miscible vis-
cous fluids in a cylindrical tube is presented. Their common interface is fived and undeformable. This
problem is an inverse problem because pressure gradients are unknown functions. The solution of the
non-stationary problem is presented in the form of analytical expressions. They are obtained with the use
of the method of Laplace transformation. If the wall temperature is stabilized then the general solution

tends to the stationary solution as time increases. Numerical calculations confirm the theoretical results.
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1. Problem statement

The axisymmetric motion of viscous thermally conducting fluid in a cylindrical system of
coordinates is described by the Navier-Stocks equations

1 u
U1y + U1U, + V1UL, + ;pr =v (Aul - 7;) ) (1.1)
1
U1t + U1V + V1V1, + ;pz =vAuvy, (1.2)
1
Uiy + S + v, =0, (1.3)
0; + u10, + v10, = YAD, (1.4)

where wj(r, z,t),v1(r, z,t) are the projections the velocity vector on the axes r, z; p(r,z,t)
is the pressure; 60(r,z,t) is the deviation of the temperature from the equilibrium value;
A =02/0r? +r=10/0r + 02?/02?% is the Laplace operator, p, v, x are density, kinematic viscosity
and thermal diffusivity, respectively.

System of equtions (1.1)—(1.4) admits of subgroup of four-dimensional continuous transfor-
mations [1]. They are generated by the operators (0., t0, + Oy, , Op, 0g). Their invariants are t,
r, u. Therefore, partially invariant solutions of rank 2 and 3 should be sought in the form [2]

(75} :Ul('f',t), (%1 :’Ul(’f',Z,t), p:p(razvt)a 9:0(r,z,t). (15)
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In this case, it follows from the equation of conservation of mass (1.3) that v; is a linear
function of z:
vy = w(r, t)z + wq(r,t). (1.6)

Moreover, we have
rw + (uyr), = 0. (1.7)

The momentum equations (1.1), (1.2) give us the following relations

1
we + uqw, +w? =v (w” + - wT) + h(t), (1.8)

with arbitrary functions h(t) u I(t).

We use solutions (1.5)—(1.9) to describe the motion in a cylindrical tube of radius b with
the fluid-fluid interface at a < b. We assume for simplicity that wy = 0 in (1.6). If to write
down the problem in dimensionless form, then the nonlinear term will stand Marangoni number
M = =fa?/pvx. It is assumed that M < 1, that is last performed in thin layers or a very high
viscosities. As a result, we obtain the following problem

1
Wi = (wlm- + - wh-) +hi(t), 0<r<a, (1.10)
1
Wor = Vo (wgrr + - wgr> + hao(t), a<r<b, (1.11)
wi(r,0) = wio(r), w2(r,0) = wao(r), (1.12)
0o
wi(a,t) = wala,t), (pews, — prwiy)z = ~ 9 (1.13)
00, 004
01(a,z,t) = 02(a, z,1), k1 ——— — ka—— =0. 1.14
o) =taan). (WG -RGE)| (114)
Assume that the surface tension linearly depends on temperature:
o=0"—x—0), a=-const>0. (1.15)

It is obvious that for the temperature we have following representations
0;(r.z,t) = a;(r,t)2° + b;(r,t), j=1,2. (1.16)
Taking into account (1.15), the second boundary condition (1.13) can be rewritten as

powar(a,t) — prwir(a,t) = 2ea4 (a, t). (1.17)

Functions a;(r,t), b;(r,t) satisfy the following equations

1

aiy = X1 (am + - alr) , 0<r<a, (1.18)
T
1

ag = Xo2 | @2rr +—aor |, a<r<b, (1.19)
T
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1
bit = xa (bl'rr +o blr) +2x101, 0<r<a, (1.20)
1
bar = x1 <b2r7‘ +o bm) +2x2a2, a <7 <D, (1.21)
aj(r, 0) = ajo(r), bj(?“,()) = bjo(’)"). (122)

Tt is necessary to add conditions of the boundedness of wy(r,t), ai(r,t), b1 (r,t) at r = 0 and
no-slip conditions at r = b:

a b
wa(b,t) =0, / rwy (r,t) dr =0, / rwsy(r,t) dr = 0. (1.23)
0 a

The last two relations follow from equation (1.7). They allow us define the functions hy(t)
and ho(t) if function a4 (r,t) is known. So at first we find functions a;(r,t). Taking into account
(1.16) and boundary conditions (1.14), we write

Oaq(a,t) Oaz(a,t)

al(a, t) = CLQ(Q, t), kl or = k2 r . (124)

Functions by (r,t) and ba(r,t) admit similar conditions. In addition, on the solid wall » = b
the temperature is given: 02(b, 2,t) = a(t)z? + B(t), where functions «(t) and 3(t) are known.
This means that

as(b,t) = a(t), ba(b,t) = B(1). (1.25)

2. The stationary solution

Let us assume that all functions do not depend on time. Then from (1.18)—(1.20), (1.24),
(1.25) we find that a§ = a§ = const = o® and

s 1 2 2
wi () = “i’j fl(d)(2 - ;) =3 <L (2.1)
sy 2axa® 1 (1—6)2 T r?
W) = = ) [15+5ln6 ln(b)+1_b2}’ (22)
where

A0 61 (1—6)Iné

n6) =280 1o =15 2 s (23)
_ (=9 2!

f3(5>—m—25+2ﬂ5f2(5)a n=y (2.4)
hs = deevd f1(6)a® M s 8xeda® . (2.5)

apfs0) U T 2T apafs(d)

The dependence of velocity components on r is given by formulas

a’xa® [T r?
S =— -1 -— 2.6
i== (0)(-%) 25)

., d*ma® [a (1-9)2 r? | or?
YO (7’){2(1—5+51n5) [a"’ ' <a2> -
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Function b%(r) are

s ash? 5r? s

bi(r) = 1+ (1=k)dlndo——|+p°, 0<r<a, (2.8)
sp2 2 2

by(r) = 40 [1‘”; +(1k)61n<§:2)] +3°, 0<a<h, (2.9)

where k = kl/kg.

3. Solution of the problem by the method of the Laplace
transform

To solve linear adjoint problems one can use the Laplace transform [3]. It is defined as follows

a;(r,s) :/ aj(r,t)e *tdt, j=1,2. (3.1)
0
Then the problem is reduced to a boundary value problem for ordinary differential equation
. 1. s

a1pr + — @10 — — a1 = —ayo(r), 0<r<a, (3.2)

T Xl
aQTT‘ + - &27" - i C~L2 = _a20(r)7 a<r< b, (33)

r X2

0a 0a
(0 5) = e s), by OBy, 00200

or
as (b, s) = a(s).

or 7 (3.4)

General solution of equations (3.2), (3.3) can be represented in the form (the condition of
boundedness of a; at r = 0 is taken into account)

sen-calZ) [N

st = oty Z0) o (1) ¢ [ o[ i [20)-
()02 ) i @

where Ip(x), Ko(z) are modified Bessel functions of the 1st and 2nd kind. The quantities Cy,
Cy and Cj5 are determined from boundary conditions (3.4)

fi(s)  Io(2) Ko(2)
Ci=x| fl)  ~hly) Ko |,
f3(s) —vxhi(y) XKi(y)
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0 fils)  Kolz)
Co=x| b B Kol |, (3.1
FL() ) VXKi()

0 Io(2) fi(s)

03:% Io(z)  —Io(y)  fa(s) |
kI(z) —xN(y) f3(s)
0 Io(2) Ko(z)
A=| Ix) —Iy) —Ko(y) |,

kL(x) —/xL(y) xKi(y)
where x = av/s/x1, ¥ = a\/s/x2, Z=b\/8/X2; X = X1/X2, k= ki/ka,

fi(s) = /abT [IO(Z)KO <\/ZT) — Iy (\/ZT> Ko(z)] ago(T) dr + &(s),

fals) = — /0 ' {10 <\/Z T) Ko(z) — Iy(z) Ko (\/Z Tﬂ a1o(7) dr, (3.8)
fs(s) =k /OaT [Io <\/ZT> Ki(2) + I (z) Ko (\/ZTN aro(7) dr.

When t — 0 we have In(t) ~ 1 +t2/4, Ko(t) ~ —1In(t/2), L1(t) ~ t/2 +t3/16, K;i(t) ~
1/t +tIn(¢/2)/2 and

A(S)N;{k;ym (Z)\/X{lwtyjln(Z)erzIZQ]}. (3.9)

Therefore from (3.6)—(3.8) we obtain

lim sa;(s) = lim s&(s) = a® = const. (3.10)
s—0 s—0
This means that function a;(r,t) tends to constant value as time increases [3].
Let us turn to the definition of the functions @;(r,t). The motion arises only under the action
of thermocapillary forces, that is, initial conditions (1.12) are zero: wjo(r) =0, j = 1,2. Then
for the image w;(r, s) we have the following boundary value problem

1 h
'lI]l'r-'y- + 771717- — i 1D1 = — 1(3) s 0<r< a, (311)
T %1 11
1 h
Woyy + — Way — iﬁ@ = — 2(8) , a<r< b, (312)
r 170} Vg
'lI)l(CL,S) = @2(a75)7 (313)
poWar(a, 8) — priy(a, s) = 2eedi(a, s), (3.14)
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a b
wa (b, s) =0, / rwy(r,s)dr =0, / riwg(r, s)dr = 0. (3.15)
0 a

Here, the function a;(a, s) is already known from equation (3.5) and |w1(0, s)| < oco.
The solution of equations (3.11), (3.12) can be represented as

1D1 = DIIO ( Sr) + hl(S) 5

%41 S

@ = Dsly <\/ZT’>+D3K0 (\/ZO*hZ)S(S) (3.16)

The boundary conditions (3.13), (3.14) and the first condition (3.15) allow us to find the
values of Dy, Dy and Ds:

—ho 10(21) Ko(Zl)
b L ha — hy —Io(yn) —Ko(y1)
1 9
SAl
28, /195 _
~SV2G(es) ~hiy)  Kai(y)
H2
0 *}NLQ Ko(21)
Dy = L IO(J;I) hay — hy _Ko(yl) ; (317)
SAl
1 28e,/125 _
— I (z ———aq(a,s K
NG 1(z1) s 1(a, s) 1(y1)
0 10(21) —ilg
D — 1 Io(x1) —1Io(y1) hy — hy
3 — T A )
SAl
2:,/12S _
K he) ~h) -2 0,s)
2
0 Io(Zl) KQ(Zl)
Ay =| Jol@)  —Dh(y) —Koly) |

L Li(z) —-L(y1) Ki(y)

N
where x1 = av/s/v1; y1 = a\/8/va; 21 = b\/$/ Va5 = p1/pa; v = v1/va. Since [4]

[ (o) ar=yen (),
/ab rlp (\/Zr> dr = % (2101 (21) — ya La (1), (3.18)
/ab rKo (\/Z”") dr = % [ K1 (1) — 21 K1 (21)].
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Then taking into account (3.16), (3.18) and the second and third relations (3.15), we find

D — ahy (s)
t= 2\/V18[1(1'1)7

Dslz111(z1) — i L1 (y1)]+Ds[yn K1 (1) — 21K (21))=—

) (3.19)
ha(s)(b* — a®) '

21/2
Substitution of Dy, Dy, D3 from (3.17) into (3.19) allows us to define hy(s) and ha(s):

7 _ F1By — Ayby ~ AR -FB

hy(s) = 12122 =127 11 2
1(8) AlBQ _ AQBl ’ 2(8) AlBQ _ AQBl ) (3 0)
where
JflAl

A= gy T EE W) + Kolz) hn).

Ay = i — Io(21) K1 (y1) — 11 (y1) Ko(21),

P = 2eea1 (a, s)y1
ap2

Li(z1) [1 =y li(y1) Ko(21) — yilo(z1) K (y1)],

[lo(y1)Ko(z1) — Lo(21) Ko(y1)],

- K

By NG

By = [ 1y(z1) — i () [} L) Ko(gn) + To(arn) K ()

1 1
s 11(361)K0(Z1)} + [y1 K1 (y1) — z1K1(21)] [ﬁ I (xq)Io(21)+

+ To(a) T (y1) — = 11(551)10(91)] +

7 M 2Aq,

25 /I
2eea1(a, s)
= T yilo(z1) [1 — y1Ko(21) 11 (y1) — y1 K (y1) Lo (21)] -
2
After some complicated mathematical treatment the limiting equalities
21_1)11 swj(r,s) =wi(r), j=12,

are proved. This means that the solution tends to the stationary solution as time increases.

Figs. 1, 2 show the dimensionless function w; = a?w; /vy for silicon-water system at tem-
perature of 20°C. Fig. 1 presents the case when a(7) = sin (10~27), where 7 = a®t/v; — is the
dimensionless time that is «(7) does not have limit by 7 — oo. Thus, the solution with time
growth does not converge to stationary. Fig. 2 shows the case when a(7) =1+ e 7 sin (7).

Remark 1. The problem of determination of the image I;j (r, s) is similar to problem (3.2)—(3.4).
One need to replace —a,o(r) with —bjo(r) — 2a;(r, s) and &(s) with 8(s). Thus, these functions
can be found with the use of (3.5)—(3.8).
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Fig. 1. Dimensionless function profiles w; at a(r) = sin (10727); curve 1: 7 = 200; curve 2:
7 = 400; curve 3: 7 = 700; curve 4: stationary solution. Curves 1-3 with time growth does not
converge to curve 4
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Fig. 2. Dimensionless function profiles w; at o(r) = 14+ e " sin(7); curve 1: 7 = 20; curve 2:
7 = 50; curve 3: 7 = 100; curve 4: stationary solution
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OcecumMmeTprdeckKoe TEPMOKAIIMJIJISTPHOE JIBUYKEHIE
B IIWJINHJPE NPU MaJbIX dncjax MapaHroHnm

EBrenmnii II. Maragenko

B cmamve pewena aunetinas 3a0aua 06 0CECUMMEMPUHECKOM MEPMOKGNUAAAPHOM 08UNCEHUY, 08YT
HECMEWUBAOUUTCA BAZKUL MENAONPOBOOHHIET dHcudkocmel 8 yuasundpuveckoly mpybe. Ux obusas mno-
seprHocmy pasdena dukcupyema u nHedeopmupyema. 3adava asasemes 06pammotl, max Kax 2paduenmol
dasaenutll ecmv uckomvie Pyrnryuu. B uzobpasicenusx no Janaacy pewenus narodsmes 6 eude xkeadpa-
myp. Joxazano, wmo ecau memnepamypa Ha cmenre mpybve CMabusuuUPYEemcs co epemeHem, mo pe-
WeHUe MaKdice ¢ POCNOM BPEMEHU CMPEMUMCA K CMAUUOHAPHOMY pedtcumy. [Iposedénnnvie wucaerroe
PACUEMBL TOPOWO COOTMHOCANCA C MEOPEMUMECKUMU PESYNOMATNAMU.

Karouesvie ca08a: Mepmokanuiiaprocms, obpamuasn 3adaxa, npeobpazosanue Jlanaaca, noseprrocmon
pasdena.
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