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In this paper we consider continuous functions given on the boundary of a ball B of C", n > 1, and
having one-dimensional property of holomorphic extension along the families of complex lines, passing
through finite number of points of B. We prove the existence of holomorphic extension of such functions
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Introduction

This paper presents some results related to the holomorphic extension of functions f, defined
on the boundary of a ball B C C™, n > 1, in this ball. We deal with a functions with the
one-dimensional holomorphic extension property along the complex lines.

The first result related to our subject was received by M.L.Agranovsky and R.E.Valsky in [1],
who studied the functions with a one-dimensional holomorphic continuation property on the
boundary of a ball. The proof was based on the automorphism group properties of a sphere.

E.L.Stout in [2] used complex Radon transformation to generalize the Agranovsky and Valsky
theorem for an arbitrary bounded domain with a smooth boundary. An alternative proof of the
Stout theorem was obtained by A.M.Kytmanov in [3] by applying the Bochner—Martinelli inte-
gral. The idea of using the integral representations (Bochner-Martinelli, Cauchy—Fantappie,
multidimensional logarithmic residue) has been useful in the study the functions with one-
dimensional holomorphic continuation property (see review [4]).

The problem of finding the different families of complex lines, sufficient for holomorphic
extension was posed in [5]. Clearly, the family of complex lines passing through one point is not
enough. As shown in [6], the family of complex lines passing through a finite number of points
also, generally speaking, is not sufficient.

In [6] we proved that the family of complex lines crossing the germ of generic manifold +,
is sufficient for the holomorphic extension. In [7] we consider a family of complex lines passing
through the germ of a complex hypersurface. In particular, C?, it can be any real analytic curve.
Various other families are given in [8-11]. We note here the work [9,11], where it is shown that
a family of complex lines passing through somehow located a finite number of points is sufficient
for holomorphic extension. But it is approved only for real-analytic or infinitely differentiable
functions defined on the boundary. Then in C? Agranovsky and Globevnik for real-analytic
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functions defined on the boundary shown that it is enough two points lying in the closure of the
ball. The Globevnik example shows that for continuous functions on the boundary of two points
is not enough for holomorphic extension.

In [12-15] it is shown that for a class of continuous functions given on the boundary of a ball
the family of complex lines passing through finite points in the ball is sufficient. Baracco was
the first to prove this result which earlier explicitly conjectured in [9]. Globevnik [13] gave an
alternative proof, even the case when the vertices lie outside of the ball. Authors in [14,15] for
proof use the Poisson kernel and the automorphisms of a ball.

Those results it is given by completely different methods.

In this paper we give a new proof of results from [14,15] without use the automorphisms of
a ball.

1. Invariant Poisson kernel of a ball

Let B = {z € C™ : |z| < 1} be the unit ball in C", n > 1, centered at the origin and let
S = 9B be a boundary of the ball. Consider the invariant Poisson kernel [17, p. 48]

(1 - |z|2)n B (1 — <z,2>)n

P(2,0) =c T MmO =)

-0

— 1!
where ¢, = (n2 ) (2,0 =210+ + znlae
e _
If the function f(z) is M-harmonic in B and continuous on B, then we have the integral

representation

ﬂ@=éﬂomzow«x (1)

where
p R P
do(C) = i;Z(—l)k G dC[k] A dC (2)
k=1
is Lebesgue measure on S, d¢ = d(; A -+ AdC,, d([k] =d{i A+ ANdCu—1 AdCha1 A -+ AdC,.
The boundary values of function F(z) coincides with f((), i.e., F(z)’S: f(¢). Recall that

M-harmonic function satisfies the Laplace equation [17, p. 55-56]

where
N n _O?F(z
AF(2) =4(1 = |21%) Y (G0~ zjzk)az-ia(z—k)
Jk=1 !

and 4,5 is Kronecker symbol. The functions holomorphic in the ball B are M-harmonic. In
particular, the formula (1) is an integral representation for holomorphic functions.
Consider the complex line of the form

Ly={CeC":(=z+10t teC}, (3)

where z € C*, b € CP"!. Complex lines passing through two points a and c is denoted by [, ..
We will say that a function f € C(S) has the one-dimensional holomorphic extension property
along the complex line Iy, if SN, # @ and there exists a function F;,, with the following
properties:
1) Flz,b S C(Eﬂ lz,b),
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2) Iy, = f ontheset SNy,

3) function F_, is holomorphic at the interior (with respect to the topology of I. ;) points of
set BN Lsp.

Let I' is a set in C". Denote by £r the set of all complex lines I ; such that z € I, and
be CP" !, ie., the set of all complex lines passing through z € I'.

We will say that a function f € C(S) has the one-dimensional holomorphic extension property
along the family L£r, if it has the one-dimensional holomorphic extension property along any
complex line [, ; € £r.

We will say, that set £r is sufficient for holomorphic extension, if the function f € C(S) has
the one-dimensional holomorphic extension property along all complex lines of the family £r, and
then the function f extends holomorphically to B (i.e., f is a C'R-function on S). The different
families of sufficient sets were considered by Agranovsky, Valsky, Stout, Globevnik, Baracco and
the authors of this article.

2. Complexification of the Poisson kernel and its
applications

Consider the kernel of the form

(177 <z,w>)n '
(1 - <Z7<>)n(1 - <<’w>)"

Obviously, that P(z,{) = Q(z, z,{). We introduce the function

Q(z,w,() = ¢y

B(z,w) = /S FOQzw,¢) do(C).

This function is holomorphic in the variables (z,w) in B x B C C?", because the denominator
in the kernel (4) does not vanish, when ¢ € S and z,w € B. Note that ®(z,2) = F(z), and the
derivatives

oetBP goetB
Dz*owh ’w_zz 0220z8’ 5)
where
90+8 Hllal+18l g
9z 0wl 9z ...azgnawfl o wln
and a = (aq,...,an), B8 = (B1,...,B,) are multi-indices. We denote ||a| = a1 + -+ + ap,
18Il = b1+ - -+ .

Theorem 1. Let a function f(() € C(S) have the one-dimensional holomorphic extension prop-
erty along the family Loy, then for the integral

B(z,w) = /S F(OQzw,¢) do(C)
0P (0, w)
0z

true the properties ®(0,w) = const and the derivatives are polynomials in w of degree

not higher than | «|.
Proof. Consider the derivative
oo+ ( 1 ) Ca,gfo‘Cﬁ
0220wl \ (1= (2,0)" (1= (Cw)™ ) (1= (2,0)" 1T (1 — (¢ wp) 1T
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where (® = (.- (9, (@ = (P -+ (2, and C, 5 are some constants.
*+9Q(0,w)
0z 0w”

at |0 < n, |17 < |Y]l, and « = ', B = +". Therefore, the derivative

It is easy to show that the derivative of is the sum of terms of a form

Ca,ﬁ,'y,ﬁga_’y/cﬁ_’y//wé

(1 — (¢ w>)n+|\ﬁ\|*H’Y”||

980, w)
0z 0wh

is a linear combination of integrals

Eafv'gﬁfv”
/Sf(C) (0= (Couy) P do(C)- (6)

The form do(¢) in variables b and ¢, where ( = bt, t € C, was calculated in ( [4])

n n

do(bt) = i%|t\2"*25th <Z(—1)klbk db[k]> A (Z(_l)klak dE[k]).

k=1 k=1

1 _
Since on the sphere S the equality 1 = || = |bt| holds, then |t| = — and t = So

1
0] t[o
do(bt) = 2 1 A i(—l)k_lbk dblk] | A i(—n’“—li)k dblk] | = A(b) A dt
i t]b|2" t’
k=1 k=1
From Fubini’s theorem we obtain

ga—v'gﬁ—v”
£0) e 4o (Q) =
S/ (17 <C7w>) +IBlI=1"1l

el =y 18111

= / A(b) / f(bt)t(l_t<b’w>)n+\|ﬁll—llw\| dt =

cpr—1 SNlop

o y ABlI=I" o
N / ) / it )tnau—nv'nﬂ(l—t<b,w>)"+”ﬁ”_”””” -

Ccpr—t SNlo,»

if || 8] > [led|| (then I8 = 117"Il > llell = 17]), and the function is holomorphic in the

ot

1 —t(b,w)
1 _

closed disk || < —, such that B Nly;. Hence by virtue of (6)

0]
9*he(0
0w _, -
Dz*dwh
at |5 > [lell.
Therefore, by the Taylor formula for the function ®(z,w) at the point (0,0) we get that
0P (0
®(0,w) = const and the derivatives % are polynomials in w of degree not higher
than ||a|. a

Corollary 1. Under the hypotheses of Theorem 1 the equality

0t F(0,0)

920957 0

holds if || 8] > |||
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Proof. Substituting in Eq. (7) w = Z and using Eq. (5), we obtain the desired result.
O

Theorem 2. Let the function f(¢) € C(S) have the one-dimensional holomorphic extension
*®(a,w)

property along the family £4y, a € B, a # 0, then ®(a,w) = const and the derivatives 550
z

are polynomials in w of degree not higher than ||«||.

Proof. Consider the function ®(z,w) and a complex line [, ;. Since

PD(z,w
T = [ 10 = o,

we calculate

o8 2, W, 0" " 1
Qa(wﬁ 2 = ouwP <<1 —{zw)" (1-<(z @) (1=4. >) ) i
1

—0 ¥ b (i) A ) -

0y<B

— ¢ Z bwclg(—l)”VHCﬁ—’Yn(n —1)-...-(n— ||’Y||)<1 . <Z,w>)n_”’y”Z’Y
0<y<p (1= (2,0)" (1 = (¢, w))" 11

7 Z g Cﬂ—’v (1 _ <<,w>)n_|h”z'7
— O & 1 PEN R
0<s (1=(20)" (1= (¢ w))
Let the multi-index 8 = (031, . .., 8n_1) such that ||| = 81+ -+ Bn—1 > 0. Using a unitary

transform, we will transfer the point a in the point (0,...,0,|a|]). Under this transform the kind
of the form do does not change (see [16, Lemma 2.7]). We get

2°Q(a,w,a + bt) (a+bt)f’—W(1 _ <a’w>)”*\|“/||ay
P = 2, i )" A=A
b 052s (1= (a,a+b0)" (1 - (a+bt,w))

at ( = a+ bt and z = a. The expression (a + bt)’?~7 means (a; + b1t)?1 =7 - .. (a, + bpt)Pr =7,
Since B N1,y is a circle

- 2
(a.5)[* _ (1= lal*)bl* + [(a.b)]
K=qteC: |t <
{ - ’ TP o[
. . (a, l_)>
with center at the point tg = — TER then we consider the restriction of the form do on the

boundary of this circle, provided that |a + bt| = 1:

n

do = 3 (~ 1) Gdl[k] A d¢ =

k=1

Z * (g + bit) " e db[k] /\dt/\z )7 1b;db[j].
k=1 j=1
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_Ha 2
Since t = M then

(a,b) +t[b]?

. (1 = [a[*)[b]* + [{a, b)[?)
1-— bt) = Z
(a,a + bt) ) b2
Therefore
9P (a,w) /f (a + 5857 (1 — (@, w))" e )
o 052 (1= (@a+b0)" (1 — (a+ bt w>)"+“ﬁ7””

x> (=) (ay, + bpt) e dblk] /\dt/\z )7 ~1b;db[j).
k=1 j=1

1 —t{(a,b) — |al?
(a,b) + t[b|?
nominator (a,b) + t|b|? goes to numerator of all fraction and it reduced with denominator of

t.
From the form of the point a we get the expression (a + bt)”?~” contains a factor ¢ in the
9P (a,w)

ow?
0°BP(z,w)

0zx0wP

Since t = is performed on the boundary of the circle K, then power of de-

positive degree. By assumption of theorem =0 and ®(a,w) = const.

= 0if || 8] > |||| and therefore the

zZ=a

Similar it is proved that the derivatives

0*®(a,w)
0z%

derivatives are polynomials on w of degree not higher than ||«a/]|.

3. Decomposition of the Poisson kernel

We represent the function ®(z,w) as a sum of homogeneous polynomials in z and w. We
decompose Q(z,w, ) by powers of (z,(), (¢, w). Since

(1_ Z n+k— 1 7

@T ch+l G w

(considered the series converge absolutely for ¢ € S, z,w € B, and uniformly on S x K, where
K is arbitrary compact set in B x B), then

Q(z,w, ) = cn (1= (z,w)" Y Y Ch oy 1 Chyiy / £z O (¢, w) da (). (8)

k=0 1=0

The integral / F(O) (2, 0% (¢, w)do(¢) is a homogeneous polynomial of degree of homogeneity k
s

in z and [ in w. Multiplying the sum of Eq. (8) by a factor of (1 — (z, w>)n and regrouping the
terms we find that

O(z,w) = Z Py (z,w), 9)
k,1=0
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where Py (2, w) are homogeneous holomorphic polynomials of degree of homogeneity of k in z
and [ in w. The double series converges absolutely in B x B and uniformly on any compact set
in B x B.

Theorem 3. Let the function f(() € C(S), the point a € B and let the function ®(z,w) satisfy

0P (0, w)

the conditions: ®(0,w) = const, ®(a,w) = const, are polynomials in w of degree not

z

higher than ||c|, then for any fized z, belonging to the complex line ly, = {z € C" : z =

PP (z,w)
ows

Proof. We represent the function ®(z,w) in the form (9):

at, |t| <1}, function ®(z,w) = const in w, i.e., =0 at |8 > 0.

o0

O(z,w) = Z Py (2, w).

k,1=0
By the hypothesis expansion of (9) takes the form

D(z,w) = Z Py (z,w),

k>1>0
0°t8®(0,0)
0z0wP

&)
We introduce the functions @y (z,w) = > P i(%, w), then
I=k

since the derivatives

=0at [|B] > [l

O(z,w) = Y Pi(z,w). (10)
k=0

Considered series converges absolutely in B x B, uniformly on compact subsets of B x B, since
double series (9) converges absolutely in B x B and uniformly on compact subsets of B x B, and
the series (10) is repeated series of series (9).

From the form of the series ®(z,w) we get that ®(tz,w) = t*®;(z,w) for every t € C. By
the hypothesis

O(0,w) = (0, w) = ZPo}l(O,w) = const (11)
1=0
and -
P(a,w) = Z Dy (a,w) = const .
k=0
Consider -
O (at, w) = Ztkq)k(a,w). (12)
k=0
We calculate
dm
dt—m@(at,w) =m®,,(a,w) + -+ Ek(k—=1)-...- (k—m+ )tF™®(a,w) +---

We calculate the derivative of the same as the derivative of a composite function
am™ 0P (at, w)
W@(at,W) = Z 87 'Cla.

el =m
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Equating the derivatives, we obtain

o0

> % =Y k(k=1) - (k—m A D) D (a,w). (13)

lal=m k=m

dm
Substituting value ¢ = 0 in Eq. (13), we get that dt—mq)(o,w) = m!®,,(a,w) is a polynomial of
degree not higher than m in w, since the left side of this equation is a polynomial of degree not
higher than m in w by hypothesis of the theorem. When m = 0 we get ®(0,w) = ®¢(a, w) = const
and from (11) we have ®(0,w) = ®g(a, w) = Po(0, w).
Substitute ¢ =1 in Eq. (12), we obtain

b(a,w) = Z Oy (a,w) = const.

k=0
o0
Since Py (a,w) = Zkal(a,w) is a polynomial in w of degree not higher than k, then
I=k

Zpk,l(a, w) = Py x(a,w). Therefore
1=k

const = ®(a,w) = Z b (a,w) = Z Py, (a, w).
k=0 k=0

Hence Py p(a,w) = 0 for k& > 0. Therefore ®y(a,w) = 0 for k& > 0, so from (12) we get
98 (at, w)

S5 = 0 at [|3] > 0. 0

®(at, w) = const and

Corollary 2. Let the function f(() € C(S) have the one-dimensional holomorphic extension

property along the family £19 43, then ®(z,w) = const for points z belonging to the complex line

IPd(z,w)
ows

Proof follows from Theorem 1 and Theorem 3. O

loa N B, i.e., =0 at ||8]| > 0.

Corollary 3. Under the hypotheses of Corollary 2 the equality

0P F(2)
0zP

holds for all points z € lo,o N B and ||5|| > 0.

=0

Theorem 4. Let the function f(¢) € C(S) have the one-dimensional holomorphic extension

property along the family £¢, ¢y, a,c € B, then <I>(a+ (c— a)t,w) = const on w for [t| < 1, i.e.,

P®(a+ (c—a)t,w)
owP

Proof. From Theorem 2 we have

=0 at ||8]| > 0.

0°P(a,w) I0*®(c,w)
9z> 7 0z

®(a,w) = const, (¢, w) = const and

are polynomials of degree not higher than ||a| in w.
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Expanding the function ®(z,w) in a Taylor series at the point (a, @), we obtain

@(z,w): Z Pk,l(zfaﬂwfd% (15)
k,l=0

where Py ;(z,w) are homogeneous holomorphic polynomials of degree of homogeneity of k in
(z—a) and [ in (w—a). The series (15) converges to the function ®(z, w) in the neighborhood of
(a,a). We make the substitution z —a — z, w — @ — w. Then the point ¢ go to point ¢ = ¢ — a,
and the function ®(z,w) will pass to a function ®(z, w) holomorphic in a neighborhood U, x U,
of zero, where U, is some neighborhood of zero at z, and U, is some neighborhood of zero at w,
and the series (15) will take the form

O(z,w) = > Pra(z,w), (16)
k,l

which converges in the neighborhood U, x U,. Therefore, the conditions (14) take the form

9°®(0,w) 9B (E,w)
oz 0z%

®(0,w) = const, ®(¢ w) = const and . (17)

So they are polynomials in w of degree not higher than |||. From the conditions of the theorem
the expansion (16) will take the form

O(z,w)= > Pr(zw), (18)

k>1>0

9°t8H(0,0)

) 0z Owb
We introduce the functions

since the derivatives =0at [|B]| > ||«.

Oy (2,w) = Z Pya(z,w), (19)
1=k

then -
B(z,w) = Z@k(z,w). (20)
k=0

Considered series (19) and (20) converge absolutely in U, x U, uniformly on compact subsets
in this neighborhood, since double series (16) converges absolutely in U, x U,, and uniformly on
compact subsets in this neighborhood. Then

®(0,w) = Do(0,w) =Y _ Pou(0,w) = const.
=0

Consider the expansion of the function &)(té, w) in a series by t

o(te,w) = Y tFdL(E,w), (21)
k=0
~ O+ d(te
where @ (¢, w) = # o If we apply the expansion (20) to the point (¢, w), we obtain

Dy (2, w) = Op(E, w) (22)
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for sufficiently small |w|. We find

dm ~ - ~
dt—mq)(té,w) =m!®,, (G, w)+ ...+ k(k—=1)-...- (k—m+ DtF ™0 (¢, w) +....

We calculate this derivative of the same as the derivative of a composite function

am ~ 9*d(te, w) _,
dtﬁ@(tC,W)— Z TC

lleell=m

Equating the derivatives we obtain the equality

S P o Sy e R, (29)

[la||=m k=m

Substituting the value ¢t = 0 in Eq. (23), we get that i—mci(o, w) = m!®,, (¢ w) is a polynomial in
w of degree not higher than m, because the left side of this equation is a polynomial in w of degree
not higher than m from the condition (17). When m = 0 we obtain ®(0,w) = ®¢(¢, w) = const
and from (21) we have ®(0,w) = ®o (¢, w) = Do (0, w).

From Eqs. (19) and (22) we find that @ (¢, w) = Py (¢ w) for sufficiently small |w], ie.,
®,(¢,w) is a polynomial of degree exactly k in w. Therefore

oo
const = (¢, w) = ZPk,k(é, w).

Hence Py r(¢,w) = 0 at k > 0. Here &(¢,w) = 0 at k > 0, therefore from (21) we get that

~ "B (té
®(t¢, w) = const, i.e., 97a(t,w) =0at ||8|| > 0.
ows 0
_0%F(2)
Corollary 4. Under the hypotheses of Theorem 4 the equality ——— = 0 holds at

0zb z=a+(c—a)t

18] > 0.

4. Main results

Theorem 5. Let n = 2 and the function f(¢) € C(S) have the one-dimensional holomorphic
extension property along the family £(4 ¢ 4y, points a, ¢, d € B do not lie on one complex line in

9 PP (z,w) ) ) o
C*, then ——~—5— =0 for any z € B and 18Il > 0, i.e., F(z) is holomorphic in B (then f({)

w
extends holomorphically into B).

Proof. Let Z be an arbitrary point on the line [, ., then by the Theorem 4 we have

IPd(z,w)

Soi =0 (24)

at ||3|| > 0. We connect the point Z to the point d of the line I; 4 and again apply Theorem 4
IPD(Z, w)

ows
satisfied for all points Z from some open set.

for the points 7 € I; 4, we get that =0 at ||B|| > 0. Therefore, the condition (24) is
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OF
Substituting in Eq. (24) w = z and using Eq. (5), we find that 37‘82) = 0 in an open set
oF
of the ball B. Due to the real-analytic of function F(z), it follows that 82(Z) =0 forany z € B
J
and j = 1,...,n. Since F(z)|aB: f(¢), then the function f(¢) extends holomorphically to the
ball B. O

From Theorem 5 we get that in the ball B C C? a sufficient set for a continuous function
defined on the boundary of the ball is the set £, . 4y, Where a,c,d are arbitrary points of the
ball, not lying on one complex line.

We denote A the set of points a, € B C C*, k =1,...,n+1, do not lie on complex hyperplane
in C™.

Theorem 6. Let f(¢) € C(S) have the one-dimensional holomorphic extension property along

oy

the family £4, then # =0 for any z € B, i.e., F(2) is holomorphic in B (then f(¢)
w

extends holomorphically into B).

Proof. The proof goes by induction on n. The basis of induction is Theorem 5 (n = 2).
Suppose that for all dimensions k < n theorem is true. Without loss of generality when k = n,
we assume that a,4+1; = 0.

Consider the complex plane I', passing through the points aq,...,a,, its dimension, by as-
sumption, is n — 1 and 0 ¢ I'.  The intersection of I' N B is some ball in C*~!. The function
is continuous and has the property of holomorphic extension along the family £ 4,, where
IPO(2 w)

owP

Connecting points 2z’ € T' with the point 0 we get by Theorem 3, that

Tlrns

Ay ={ay,...,a,}. By the induction assumption =0at ||| >0forall 2 €eI'NB.

P (2, w)
W =0 at
I3]] > 0 for some open set in B. Hence, as in Theorem 5, we see that F(z) is holomorphic in B.
O

. OPF(z)
Corollary 5. Under the hypotheses of Theorem 6 the equality

958 = 0 holds for any z € B
z
and ||B]| > 0 and f(¢) extends holomorphically into B.
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T'osnomopdHOE 1Tpo/10/I2KEHEe HEMPEPBIBHBIX (DYHKIUI BJI0JIb
KOHEYHBIX CEMENCTB KOMILJIEKCHBIX MPSAMbBIX B IIape

Anekcanap M. KeitTMmaHOB
Cumona I'. MeiciiuBert

B smoti cmamwve wmwe paccmampusaem Henpepuienvie dynrkyuu, 3adanmvie na epanuye wapa B e C",

n > 1, u obaadaroujue 00HOMEDHBIM CEOTUCTBOM 20A0MOPPHO20 NPOJoAIHCEHUS 600Ab CEMETUCME KOM-

NAEKCHBLL NMPAMDBLT, npoxoﬁﬂugux HEPE3 KOHEUYHOE HYUCAO MOYUEK U3 B. Mw dO’ICG,Sbl,GdeM, Ymo amo cemeti-

CMBO ABAAEMCHA OCMAMOYHBIMONSA 20A0MOPPHO20 NPOJOAAHCEHUA MAKUL GYHKUUT 6 wap B.

Karoueswie caosa: zonomopdroe npodoasicerue, sdpo Iyaccona, Komnaekcrvie npamoie.
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