~ ~ ~

УДК 634.085:582.632+547.914

Влияние условий ацетилирования и предварительной обработки бересты коры берёзы на выход и состав тритерпеновых продуктов

С.А. Кузнецова ^{а,6}*, Б.Н. Кузнецов^{а,6}, Г.П. Скворцова^а, Е.С. Скурыдина^а, Г. С. Калачева^в

^а Институт химии и химической технологии СО РАН, Россия 660049, Красноярск, ул. К. Маркса, 42 ⁶ Сибирский федеральный университет, Россия 660041, Красноярск, пр. Свободный,79 ⁸ Институт биофизики Сибирского отделения РАН, Россия 660036, Красноярск, Академгородок ¹

Received 4.06.2010, received in revised form 11.06.2010, accepted 18.06.2010

Изучено влияние измельчения бересты коры березы и ее кратковременной обработки перегретым водяным паром на выход и состав тритерпеновых продуктов, получаемых ацетилированием бересты уксусной кислотой. Подобраны условия активации и ацетилирования бересты, позволяющие получать преимущественно бетулин либо диацетат бетулина.

Ключевые слова: береста березы, измельчение, активация паром, ацетилирование, бетулин, диацетат бетулина.

Введение

Береста березы богата экстрактивными веществами. Их можно извлекать, в зависимости от используемого растворителя, в количествах более 40 % относительно массы бересты. В экстрактах внешней коры различных видов берез преобладают пентациклические тритерпеноиды, основным из которых является биологически активный бетулин. Его содержание в бересте может достигать 35 % [1,2]. Именно бетулин представляет собой защитное вещество самой берёзы и окрашивает её ствол в белый цвет. В последние годы повысился ин-

терес ученых разных стран к бетулину и его производным в связи с доказанной их противовирусной и противоопухолевой активностью. Доступность и высокая биологическая активность ставят тритерпеновые соединения лупановой группы в ряд ценных природных источников для синтеза новых биологически активных и лекарственных веществ [3-11].

Диацетат бетулинола ($C_{34}H_{54}O_4$) — биологически активное вещество, проявляющее противоопухолевое, гепатопротекторное, гиполипидемическое, желчегонное, антиоксидантное действие и представляющее большой

^{*} Corresponding author E-mail address: ksa@icct.ru

[©] Siberian Federal University. All rights reserved

интерес для химико — фармацевтической промышленности. Известные способы получения диацетата бетулина в основном многостадийны, требуют использования дорогостоящих и токсичных химикатов — пиридина, бензола и уксусного ангидрида — и базируются на реакциях ацетилирования бетулина, выделенного из бересты [11-15].

Ранее авторами был предложен одностадийный способ получения диацетата бетулина непосредственно из бересты коры берёзы [16-17]. Для развития данного способа были поставлены задачи повышения выхода продуктов ацетилирования бересты.

Для интенсификации процессов переработки растительного сырья успешно используют различные способы активации, позволяющие облегчить экстракцию и повысить выход продуктов. Механические способы активации увеличивают степень извлечения сырья без изменения его химического состава. Благодаря мехобработке значительно возрастает поверхность контакта сырья с растворителем и ускоряются процессы диффузии при экстракции [18 -20].

Известным способом активации древесного сырья является его кратковременная обработка перегретым водяным паром с последующим резким сбросом давления (так называемый взрывной автогидролиз). В процессе автогидролиза биомассы протекают реакции диацилирования гемицеллюлоз и распада сахаров с образованием низкомолекулярных органических кислот (преимущественно уксусной и муравьиной), которые катализируют реакции гидролиза эфирных и других связей. Одновременно происходит и механическое разрыхление обрабатываемого сырья в результате резкого сброса давления пара [10, 20].

Целью настоящей работы служит изучение влияния предварительной обработки бересты берёзы и на её химический состав,

а также на выход и состав продуктов ацетилирования.

Методика эксперимента

В качестве исходного сырья использовали бересту коры березы *Betula pendula Roth*, измельченную до фракции менее 1 мм, 2-5 мм, 10-20 мм, и бересту, активированную перегретым водяным паром. Измельчали все до фракции менее 1 мм на роторной мельнице РМ — 120. Активацию бересты перегретым водяным паром производили на установке, описанной в работах [10, 20].

Анализ химического состава бересты был проведен по известным в химии древесины методикам по схеме, представленной на рис. 1 [21].

Синтез диацетата бетулина проводили по методике, описанной в патенте [16]. Перекристаллизацию полученного продукта проводили из этанола с применением активированного угля марки ОУ-Г

Анализ и идентификацию продуктов исследовали на газовом хроматографе 6890N (Agilent, США). Условия хроматографии были следующими: капиллярная колонка НР-5 длиной 30 м, внутренний диаметр 0,32 мм. Газ-носитель – азот; скорость потока – 1,5 мл/мин; температура ввода проб – 250 °С; начальная температура – 180 °С, подъем температуры до 320°С со скоростью 10 °С/мин, 10 мин изотермального режима. Детектор пламенно-ионизационный (ПИД). Идентификацию проводили по временам удерживания стандартов.

ИК-спектроскопическое исследование диацетата бетулина выполнено на FTIR-Фурье спектрометре Vector 22 (Bruker). Очищенные продукты прессовали с бромистым калием в специальную матрицу. Обработку спектральной информации проводили с использованием программы OPUS/Y (версия 2.2).

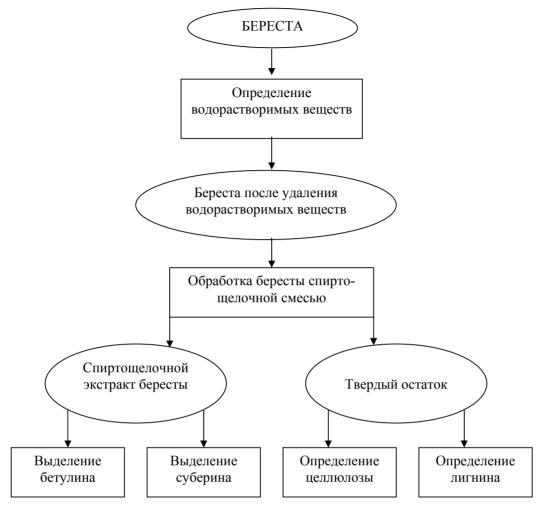


Рис. 1. Схема химического анализа бересты березы

ПМР-спектры были сняты на спектрометре Bruker DPX-200 при частоте 200 MHz = (^{1}H) , растворитель – CDCl₃.

Элементный анализ диацетата бетулина проводили с использованием элементного анализатора FLASH $^{\text{TM}}$ 1112.

Результаты и обсуждение

Как было показано ранее [17], при ацетилировании бересты коры березы уксусной кислотой одновременно с извлечением бетулина происходит реакция этерификации бетулина в диацетат бетулина по схеме:

$$\begin{array}{c} \text{CH}_3 \\ \text{CH}_2 \\ \text{CH}_3 \\ \text{CH}_4 \\ \text{CH}_5 \\ \text{CH}_5 \\ \text{CH}_5 \\ \text{CH}_6 \\ \text{CH}_7 \\$$

			Продо	олжитель	ность аце	гилирова	ния, ч		
Фракция бересты	0,5	2,0	4,0	6,0	8,0	10,0	12,0	14,0	18,0
		Вь	іход прод	уктов аце	тилирова	ния, % от	массы а.	с.б.	
>1 MM	28	22	30	28	27	26	24	32	33
2-5 мм	33	37	38	39	40	40	42	41	44
10-20 мм	20	36	39	44	43	43	45	44	45

Таблица 1. Влияние фракции бересты на выход продуктов ацетилирования уксусной кислотой при гидромодуле 1:20 и продолжительности ацетилирования от 0,5 до 18 ч

Изучено влияние степени измельчения бересты на выход продуктов ацетилирования уксусной кислотой. В табл. 1 представлены данные по влиянию степени измельчения бересты и продолжительности ацетилирования на выход продуктов.

Наибольший выход продуктов составляет для фракции 2–5 мм 39–44 % от массы абсолютно сухой бересты и 44–45 % от массы а.с.б. для фракции 10–20 мм при продолжительности ацетилирования бересты 6,0–18 ч.

При ацетилировании в течение 30 мин выход продуктов составляет 28 % мас. для бересты фракции менее 1 мм, 33 % мас. для фракции 2–5 мм и 20 % мас. для фракции 10–20 мм.

Уменьшение выхода продуктов ацетилирования фракции бересты менее 1 мм можно объяснить особенностями строения березовой коры. Известно, что бетулин образуется в широких тонкостенных клетках наружного слоя коры березы в вегетативный период при интенсивном росте березы. В процессе роста дерева береста шелушится тонкими листочками-пластинками. При этом наружный ряд тонкостенных клеток разрывается и содержащийся в них бетулин высыпается наружу [22]. По-видимому, при измельчении бересты в роторной мельнице до фракции менее 1 мм происходит образование свободного бетулина, который частично теряется в ходе последующих технологических операций.

Активация бересты березы перегретым водяным паром

Для интенсификации процесса ацетилирования бересты кипящей уксусной кислотой и увеличения выхода продуктов была использована кратковременная активация бересты перегретым водяным паром в условиях взрывного автогидролиза. Автогидролизованная береста имеет разрыхленную структуру, что облегчает транспорт реагентов в бересту и диффузию в раствор продуктов реакции. Кроме того, как было установлено ранее, активация бересты взрывным автогидролизом интенсифицирует процесс экстракции бетулина [10].

Данные о химическом составе исходной и автогидролизованной бересты коры березы представлены в табл. 2.

На рис. 2 представлены ИК-спектры исходной и автогидролизованной бересты.

Интенсивность полос поглощения в области, соответствующей валентным колебаниям ОН-групп, для образца автогидролизованной бересты выше, чем для образца неактивированной бересты. Это связано с тем, что при активации бересты перегретым водяным паром протекают реакции гидролиза с образованием органических кислот (уксусной, муравьиной и др.). Помимо этого в спектре автогидролизованной бересты присутствуют полосы поглощения 1169, 1106 см⁻¹, соответствующие валентным колебаниям СО-групп, характерных

T. C. 0.37	•		~ ن	_
Таблина / Химич	ескии состав ис	холнои и автоги	тропизованнои бе	ресты коры березы
I domina 2. I mini	commit cocrab me	Modifoii ii abioi ii	LPOMINOODUM OC	peerbi kopbi oepesbi

Компоненты	Исходная береста	Автогидролизованная береста*			
	Содержание от массы а.с.б., %				
Бетулин	44,6	38,8			
Суберин	20,2	45,5			
Целлюлоза	1,5	3,3			
Лигнин	18,1	10,3			
Зольные вещества	0,3	0,3			
Водорастворимые вещества	0,4	1,6			

^{*}После обработки паром при температуре 180 °C, давлении 3,4 МПа, в течение 60 с.

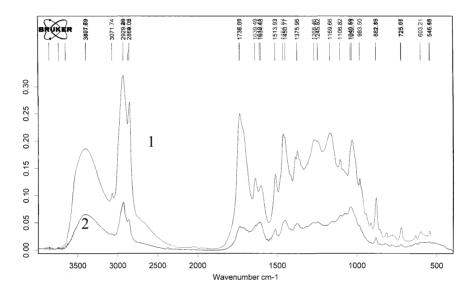


Рис. 2. ИК-спектры автогидролизованной (1) и исходной бересты (2)

для сложных эфиров (ацетатов и формиатов).

В табл. 3 приведены данные, иллюстрирующие влияние различных условий обработки бересты березы перегретым водяным паром на выход продуктов ацетилирования.

Из таблицы следует, что кратковременная активация бересты березы в условиях взрывного автогидролиза при температуре 180 °С приводит к увеличению выхода продуктов до 54 % от массы а.с.б., т. е. это более чем в 2 раза выше по сравнению с выходом продуктов ацетилирования из исходной бересты фракции 10–20 мм. Выход продуктов аце-

тилирования бересты снижается до 36–40 % от массы а.с.б. после активации при температуре 240 °C, поскольку в этих условиях содержащиеся в бересте суберин, лигнин и другие полимеры частично осмоляются и затрудняется выделение продуктов ацетилирования.

На рис. 3 представлены данные по выходу продуктов ацетилирования автогидролизованной бересты при различной продолжительности ее активации при температуре 180 °C.

Представленные данные свидетельствуют о том, что при выбранной температуре продолжительность активации бересты не

Таблица 3. Влияние условий взрывного	автогидролиза	и продолжительности	ацетилирования	бересты
на выход продуктов				

Продолжительность ацетилирова-ния, ч		Температура активации бересты, °С						
	Неакти- вированная береста	180			240			
		Продолжительность активации, с						
		180	240	300	180	240	300	
	В	Выход продуктов ацетилирования, % от массы а.с.б.						
0,5	20	54	53	54	40	38	43	
4	39	53	54	56	39	48	40	
8	43	60	58	58	55	41	54	
12	44	60	62	57	43	36	40	

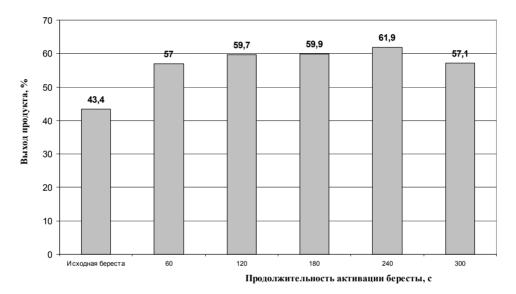


Рис. 3. Влияние продолжительности активации бересты коры березы на выход продуктов (продолжительность ацетилирования 8 ч.)

оказывает существенного влияния на выход продуктов ее ацетилирования.

Согласно результатам хромато-массспектрометрического анализа, основными компонентами ацетилирования бересты являются бетулин и диацетат бетулина, кроме того, идентифицированы в небольших количествах лупеол и ацетат лупеола [17].

В данной работе состав продуктов ацетилирования активированной бересты определяли газовой хроматографией. В табл. 4 приведены данные по влиянию продолжительности процессов активации и ацетилиро-

вания бересты на выход и состав полученных продуктов. При небольшой продолжительности ацетилирования бересты, активированной паром в течение 0,5 ч, выход продуктов вырьируется от 47 до 54 % мас. а.с.б., причем основным компонентом продуктов является бетулин, массовая доля которого составляет 82,3–87,7 % мас.

Следует отметить, что выход продукта ацетилирования неактивированной бересты (фракция 10–20 мм) в течение 0,5 ч не превышает 20 % от массы а.с.б. и содержание бетулина в нем достигает 88 % мас.

Таблица 4. Влияние продолжительности процессо	в активации и ацетилирования бересты на выход и
состав продуктов	

Продолжительность ацетилирования, ч	Продолжительность	Выход	Состав продукта, % мас.**				
	активации взрывным автогидролизом при 180°C, с	продукта, % мас.*	Диацетат бетулина	Бетулин	Лупеол	Примеси	
	60	47	5,6	87,7	5,6	1,2	
0.5	120	50	5,9	82,3	6,1	5,7	
0,5	180	54	6,7	84,9	6,5	1,9	
	240	53	6,8	85,6	5,5	2,1	
	60	50	30,5	59,5	3,5	6,5	
4	120	54	32,2	59,1	3,4	5,3	
4	180	53	63,5	31,0	1,7	3,8	
	240	54	44,8	47,6	3,8	3,8	
8	60	60	71,6	22,4	1,1	4,9	
	120	57	71,2	23,2	1,2	4,4	
	180	60	72,2	24,2	3,6	-	
	240	62	69,9	24,8	1,3	4,0	

^{*} От массы а.с. бересты, ** от массы а.с. продукта.

При ацетилировании активированной бересты в течение 4 ч повышается выход диацетата бетулина до 63,5 % мас. и снижается массовая доля бетулина в продукте до 59,5—31,0 %.

Наиболее высокое содержание диацетата бетулина в продукте достигается при продолжительности ацетилирования активированной бересты 8 ч и составляет 72,2 %, при этом общий выход продуктов -60 % мас.

Выделенный и перекристаллизованный из этилового спирта диацетат бетулина [3β ,28-ди-О-ацетил-луп-20(29)-лупен] светлокремового цвета, чистотой 95 %, имеет температуру плавления 222 °C.

На основании данных элементного анализа перекристаллизованного диацетата бетулина найдено, %: (С) 77,9; (Н) 10,2; (О) 11,9. Вычислено, %: (С) 77,6; (Н) 10,3; (О) 12,1.

В ИК-спектре диацетата бетулина присутствуют следующие характеристические полосы поглощения (ν ,см $^{-1}$): 3070,90 (=C-H); 1739,93 (C=O); 1649,86 (C=C); 1246,14; 1085,78 (С-O-C).

ПМР-спектр диацетата бетулина совпадает с данными, представленными в работе [11].

Заключение

Проведено сопоставление выхода и состава продуктов ацетилирования кипящей уксусной кислотой образцов исходной и активированной в условиях взрывного автогидролиза бересты коры березы.

Показано, что наибольший выход продуктов ацетилирования исходной бересты достигается при продолжительности обработки 6,0–18,0 ч и составляет 39–44 % от массы а.с. бересты для фракции 2–5 мм и 44–45 % для фракции 10–20 мм.

Установлено, что кратковременная активация бересты водяным паром при 180 °C позволяет сократить продолжительность ацетилирования до 30 мин. При этом выход продуктов варьируется от 47 до 54 % мас., а основным компонентом является бетулин, массовая доля которого достигает 88 %.

При продолжительности ацетилирования активированной бересты 8 часов выход продукта составляет 60 % мас. и в нем содержится до 72,2 % мас. диацетата бетулина.

Таким образом, путем вариации условий активации и ацетилирования бересты можно получать преимущественно бетулин или диацетат бетулина.

Список литературы

- 1. Кислицын А. Н. Экстрактивные вещества бересты: выделение, состав, свойства, применение //Химия древесины. 1994. №3. С. 3 28.
- 2. Похило Н. Д., Махнев А. К., Деменкова Л. И., Уварова Н. И. Состав тритерпеноидной фракции экстрактов внешней коры Betula pendula и Betula pubescens //Химия древесины. 1990. № 6. С. 74 77.
- 3. Похило Н.Д., Уварова Н.И. Изопреноиды различных видов рода Betulla //Химия природных соединений. 1988. № 3. С. 325 341.
- 4. Толстиков Г.А.. Флехтер О.Б. Шульц Э.Э., Балтина Л.А., Толстиков А.Г. Бетулин и его производные. Химия и биологическая активность// Химия в интересах устойчивого развития. 2005. № 13. С. 1 30.
- 5. Василенко Ю.К., Семенченко В.Ф., Фролова Л.М. и др. Фармакологические свойства тритерпеноидов коры березы// Эксперим. и клин. фармакол. 1993. Т. 56. № 4. С. 53–55.
- 6. Флехтер О.Б., Бореко Е.И., Нигматуллина Л.Р. и др. Синтез и фармакологическая активность ацилированных оксимов бетулоновой кислоты и 28-оксо-аллобетулона //Химикофармацевтический журнал. 2004. Т.38. № 3. С. 31-34.
 - 7. Marian Hajduch, Jan Sarek Patent// US 7041701. Triterpenoid derivatives. 09.04.2006.
- 8. Hisashi Matsuda, Atsushi Ishikado, Norihisa Nishida et al. Hepatoprotective, superoxide scavenging and antioxidantive activities of aromatic constituents from the bark of betula platyphylla var. japonica// Bioorganic \$ Medicinal Chemistry Letters.1998. V. 8. P. 2939-2944.
- 9. Флехтер О.Б., Бореко Е.И., Нигматуллина Л.Р. и др. Синтез и противовирусные свойства производных лупановых тритерпеноидов // Химико-фармацевтический журнал. 2004. Т. 38. № 7. С. 10 – 14.
- 10. Кузнецов Б.Н., Левданский В.А., Еськин А.П., Полежаева Н.И. Выделение бетулина и суберина из коры березы, активированной в условиях «взрывного автогидролиза» // Химия растительного сырья. 1998. №1. С. 5-9.
- 11. Сымон А.В, Веселова Н.Н., Каплун А.П. и др. Синтез циклопропановых производных бетулиновой и бетулоновой кислот и их противоопухолевая активность // Биоорганическая химия. 2005. Т. 31. №3. С.320-325
- 12. Кислицын А.Н., Трофимов А.Н.. Патент 2150473 РФ. Способ получения диацетата бетулинола. Опубликован 10.06.2000.
- 13. US Patent 20090318719. Method of preparation and isolation of betulin diacetate from birch bark from paper mills and its optional processing to betulin.
 - 14. JP Patent 2001288222 A. Polymer obtained from betulin and its production method.
- 15. Трофимов А.Н., Кислицын А. Н., Чупрова В.А., Рябова Е.Н., Иоффе Г.А. Кинетика переэтерификации бутилацетата бетулинолом // Химия растительного сырья. 2001. №1. С.69-73.

- 16. Кузнецова С.А., Кузнецов Б.Н., Редькина Е.С., Соколенко В.А., Скворцова Г.П.. Патент РФ 2324700. Способ получения диацетата бетулинола. Опубликован 20.05.2008. Бюл. № 14.
- 17. Кузнецова С.А., Васильева Н.Ю., Титова Н.М., Редькина Е.С., Скворцова Г.П. Получение диацетата бетулина из бересты березы и изучение его антиоксидантной активности// Журнал Сибирского федерального университета. 2008. №1. С. 151-165.
- 18. Душкин А.В. Возможности механохимической технологии органического синтеза и получения новых материалов // Химия в интересах устойчивого развития. 2004. № 12. С. 251-274.
- 19. Микушина И.В., Троицкая А.Б., Душкин А.В. Превращения структуры древесины при механохимической обработке // Химия в интересах устойчивого развития. 2003. № 11. С. 365-373.
- 20. Кузнецова С.А., Александрова Н.Б., Кузнецов Б.Н. Состав и превращения основных компонентов автогидролизованной древесины сосны, ели и осины // Химия в интересах устойчивого развития. 2001. Т.9. №5. С. 655-665.
- 21. Оболенская А.В., Ельницкая З.П., Леонович А.А. Лабораторные работы по химии древесины и целлюлозы: Учебное пособие для вузов. М.: Экология, 1991.
- 22. Практический курс анатомии растений / Под ред. В.Л. Комарова. М.: Издательство АН СССР, 1941. С. 132-133.

Influence of Conditions a Birch Outer-Bark Acetylation and Pre-Treatment on the Yield and Composition of Triterpenes Products

Svetlana A. Kuznetsova^{a,b},
Boris N. Kuznetsova^{a,b}, Galina P. Skvortsova^a,
Evgeniya S. Skurydina^a and Galina S. Kalacheva^c

^a Institute of Chemistry and Chemical Technology SB RAS

42 K. Marx st., Krasnoyarsk, 660049 Russia

^b Siberian Federal University,

79 Svobodny, Krasnoyarsk,660041 Russia

^c Institute of Biophysics SB RAS,

Akademgorodok, Krasnoyarsk, 660036 Russia

Influence of a birch outer-bark grinding and short-time treatment by overheated steam on the yield and composition of triterpenes products, obtained by bark acetylation with acetic acid was studied. At selected conditions of birch outer-bark activation and acetylation the products, containing mainly betulin or betulin diacetate were produced.

Keywords: birch outher-bark, grinding, steam activation, acetylation, betulin, betulin diacetate.