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solution of the 2-D Reynolds’ equation for the lubrication layer, numerical calculation of the surface
deformations by the 3-D ANSYS package and Fourier series expansion for the compliance matrix. A
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heavy loaded journal bearings. The compliance matrix is implemented into the iterative procedure for
calculation of self-consistent pressure distribution and surface deflection in the contact zone. Results
of calculations are presented for the particular journal bearing.
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anponnHaanecKHﬁ MNOAIIMITHUK CKOJbKCHUSA:

MOJeJIMPOBAaHUe YIIPYIrux aedopmanui

B.A. UBanos?, H.B. Epkaes*®, JI. Jlanrmaiip ®
“Cubupckutl pedepanvbHulil yHUBEpCcUmem

Poccus, 660041, Kpacnospck, np. Ce0600mbitl, 79
SUncmumym sviuucaumenvro2o mooenuposanusi CO PAH
Poccus, 660036, Kpacnospck, Akademeopoook, 50/44
‘“I'epmancxuil punuan pupmer AHCUC

T'epmanus, 83624, Ommepghune, llImayoenghenvosee, 12

B cmamve paccmompen HOBbIIE HOOX00 K GbIMUCIEHUI) CAMOCO2IACOBAHHO20 PACHPEeOeleHUs OagNeHUs.
u Oegpopmayuu nosepxHocmu OnA YUIUHOPUUECKO2O NOOWUNHUKA CKoabdceHus. Ilpednacaemviii
Memoo OCHOBAH HA YUCIEHHOM peuieHuu 2-mepHo2o ypagrenus Peiinonrvdca onsa cmazounozo cios,
sviuucaeHuu depopmayuu nogepxrocmu ¢ nomowvio 3-meprozo naxema AHCHUC c ucnonvsosanuem
pasznoxcernus QPypve 014 ebluucieHUs Mampuybl nodamausocmu. Haiioena npocmas ananumuyeckas
annpoxcumayus Ona Mampuybl NOOAMIUBOCIU, KOMOPA MONCEM NPUMEHAMbCA ONIA PACYema MAXHCeN0
HAZPYHCEHHBIX NOOUWUNHUKOS CKObIcenus. Halldennas mampuya nooamaueocmu UCnoib3yemcs 6
umepamugHou npoyedype 011 paciema camoco2iaco8aHHO20 pacnpedeieHus 0asieHus u npo2uda
nogepxHocmu 6 30ne Konmaxma. IIpedcmasnenvt pe3yibmamyl pacuema KOHKPemHo20 NOOUWUNHUKA
CKOMbIHCEHUSL.

Kntouesvle cnosa: noowunHux CcKOAbJ’CEHUs, YNPY2O2UOPOOUHAMUYECKUL KOHMAKM, Mampuya
nooamaueoCcmu.

1. Introduction

Hydrodynamic lubrication theory is a commonly used tool for calculating and designing fluid
dynamic journal bearings, which are important parts of various mechanisms and vehicles. There
exist many publications devoted to this subject [1 — 4]. The role of elastic deformations becomes very
important for heavy loaded journal bearings. Therefore elastic effects were incorporated into the
lubrication theory, and the so called elastic hydrodynamic approach was developed, which considers
both lubricant flow and surface deformations caused by enhanced pressure in the lubricant film [5].
In this approach, a key problem is to find a relationship between lubricant pressure distributions and
surface deformations. The main constructive elements of a fluid dynamic bearing are shaft (journal),
lubricant film, sleeve and housing. Usually housing material is more rigid compared to that of a sleeve.
This is the reason why deformations of the housing are often neglected, and the sleeve deformations
are used to be taken into account [6]. In such simplified case, the deformations of the thin sleeve
constrained by the rigid housing are dependent on a small parameter, which is a ratio of the sleeve
thickness to the curvature radius. As shown in [7], in the first order approximation with respect to the
small parameter, the sleeve deformation is proportional to the local pressure in the lubricant film. The
coefficient of proportionality is called as “sleeve compliance”. This approximation is related to the
hypothesis of Winkler. In case of cylindrical symmetry, the compliance coefficient can be determined
from the analytical solution [8].

Generally, it is necessary to take into account not only sleeve deformations, but also housing

deformations, because housing has a finite rigidity. In such a case, calculations of surface deformations
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have to be performed self-consistently with calculations of pressure distributions along the whole
lubrication layer. For this purpose we have to determine a generalized equation for relationship between
the local surface deformations and the lubricant pressure distributions, taking into account different
material properties of the sleeve and housing. The main goal of this work is to elaborate a method
for deriving such an equation, and to apply it for self-consistent solution of the elastic hydrodynamic

problem.

2. Satement of problem

To describe our approach we consider the journal bearing with steel shaft and bronze sleeve
shown in Fig. 1. Here o is the angular speed of the shaft, ¢ is the azimuthal angle counted clockwise
off the maximal clearance, and 1 is the eccentricity of the shaft, R, is the journal radius, R, is the
internal radius of the sleeve, R, and R; are the internal and external radii of the steel housing, L is
the length of the bearing. We assume that the external boundary of the housing is fixed. This means
that deformations vanish at the external boundary of the housing. The shaft and sleeve surfaces are
assumed to be separated by a thin film of a liquid lubricant, so called the lubrication layer. We also set
zero boundary condition for the pressure at the edges of the bearing.

The pressure distribution in the lubrication layer is determined by the conventional Reynolds’
equation [2]

QoK oP), oK oP)_ 1 o 0
R; oo\ 12n o9 ) oy\12udy ) R, 09’

h=R, —R,+ncos(p)+3(P), P>0; )]
G _y,  p<o. 3)
o

Here 4 is the thickness of the lubrication layer, p is the viscosity coefficient, u is the mean

velocity of the boundary surfaces, y is the coordinate along the axis of the journal bearing, ¢ is the

Fig. 1. Geometrical scheme of the journal bearing: 1 is the shaft, 2 is the bronze sleeve, 3 is the steel housing
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azimuthal angle, 6 is the radial deflection of the sleeve surface, which is dependent on the pressure in
the lubrication layer.
For computational convenience we introduce normalized parameters as follows:

6UR’®

> -

P=P

h=Hd, d=R-R,

’ @)
y=RY,, u=o0R/2, n=nd

where P is the dimensionless pressure, y is the dimensionless coordinate along the rotational axis, and
H is the dimensionless thickness of the lubrication layer. With normalizations (4) we transform the

Reynolds’ equation to the dimensionless form and add a relaxation parameter o

i H38£ +i H36£ :57H+a67P’ ®)
op op ) oy ay op ot
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There are many publications devoted to numerical methods for integration of the Reynolds’
equation [9 — 12]. In our case, numerical solution of Eq. (5) is obtained by a relaxation method based

on an implicit scheme with the finite difference approximations [13]:
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Here the lower indices i, j enumerate the grid points, and the upper index » enumerates time steps.
Egs. (8) are solved by a tri-diagonal matrix algorithm. A stationary pressure distribution is obtained as

a result of time relaxation of the numerical solution.

3. Results of calculations. 2-d ANSYS model

For illustrating our method, we take the following input parameters of the journal bearing:
R, =0.03 m, R, =0.035 m, R; = 0.1 m, d=0.00013 m, E, = 2.1-10" Pa, E, = 1.08-10" Pa, m; = 0.3,
m, = 0.34, u = 0.024 Pa/s, ® = 314.16 s , where E, and E, are the elasticity moduluses of the steel
housing and bronze sleeve, m, and m, are the Poisson coefficients corresponding to the materials of
the housing and sleeve, respectively. The length and diameter of the journal bearing are assumed to be

equal to each other.
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Fig. 2 shows pressures in the lubrication layer as functions of the azimuthal angle. These pressures
are obtained from the numerical solution of equation (5) for journal eccentricities 1 =0,9 and 1 =0,8.
Further, we used these pressure distributions for calculating the elastic deformations of the sleeve
and housing. For this purpose we applied the ANSYS package based on the finite element numerical
method [14]. Fig. 3 shows mesh spacing of the 2-D calculation domain with 5 elements across the
bronze sleeve, 9 elements across the steel housing, and 100 elements along the azimuthal direction. The
previously calculated pressures are applied to the grid points at the internal boundary of the sleeve.

Performing 2-D ANSYS calculations for the given pressure distribution along the lubrication

layer (Fig. 2), we obtained results presented in Fig. 4. Here the sleeve and housing deformations are

101

P [Pa]

Fig. 2. Distribution of the pressure along the lubrication layer for two eccentricities: 0.9 (curve 1) and
0.8 (curve 2)

Fig. 3. Mesh spacing of the 2-D ANSYS model
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Fig. 4. Deformations of the sleeve (curve 1) and housing (curve 2)

shown by the solid and dashed lines, respectively. These numerical results can be compared to the
approximate analytical formula [6] implying a proportional relationship between deformation of a thin

sleeve and the corresponding local hydrodynamic pressure in the lubrication film

(Rz _Rl)(l+m2)(l_2m2)
E, (l=m,) ©

This formula implies proportionality of the pressure and deflection, and thus it neglects nonlocal

6=DP, D=

influence of the pressure.
More general and realistic formula describing dependence of elastic deformations on pressure

distributions can be written in the integral form:

3(9) = 2fP(tp')K (0-0')do', (10)

where & and P are the surface deflection and pressure as functions of the azimuthal angle, K(p-¢') is
the kernel function, which determines a compliance matrix. This function does not depend on the
pressure distribution, but it depends on the geometric characteristics of the journal bearing. It can be
determined based on the numerical results described above. For this purpose we apply Fourier series
expansion:
K(p)= i [M, cos(ko)+ N, sin(ko)]. (11)
k=0
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Multiplying equation (11) on the harmonic functions and integrating over the angle from 0 to 2 =,

we obtain a linear algebraic system of equations for the unknown Fourier coefficients M, and N,.

M, .[P ")sin(k¢')do'+ N, J.P "Yeos(ko')de' =

127[ (12)
=—IS((p')Siﬂ(k(p')-d(p', k=1,2,3...

n 0

M, IP "Yeos(ko')de'- N, IP sin(ke')do'=

(13)
:_I eos(ko')-do', k=1,2,3...
2n 1 2n
M, [ Plo)de' = [8(¢')dy (14)
0 0

Using the known distribution of pressure in the lubrication layer and surface deformations
calculated by ANSYS we find the solution of linear equations (12, 13)

1 X.C,+Y.D 1Y,C,-X.D
M, =———2 L, =t bk, k=1,2,3... (15)
n X, +Y; n X, +Y;
D
M,=——">, (16)
2nY,
where
21 2n
X, = .[P(cp')sin(k(p')-d(p', Y, = J.P((p’)cos(k(p’)-d(p',
0 0
21 27 (17)
C, = JS((p')Siﬂ(k(p’)-d(p‘ , D, = J.S((p')cos(k(p')-d(p’,
0 0

Here, the pressure and surface deflection as functions of the angle were determined by spline
approximation of the grid values P; and J; . Substituting Fourier coefficients M, and N, (15, 16) in Eq.
(11) we find
D, 1&X,C +YD

= 2 2
2nY, nid X, +Y,

K(p-9)= £ cos(k(o - ¢)+

1&2v.C,-X,D 18

$— Y Sk DTk gin(k(o— ).

) N (ke - ")
Here, the accuracy of the result is dependent on a choice of the upper limit of summing n.
In particular, a value of n=10 is quite sufficient for good accuracy of the approximation. Regarding
formula (18), it is worth noting about an influence of a small scaled noise, which usually appears in
the input data obtained from the numerical calculations. In order to remove effects of such noise, it is
necessary to apply some kind of regularization. A general theory of regularizations for integral equations

is described in monographs [15, 16]. To suppress the noisy oscillations, we introduce multiplication
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factors g, =1/ (1 + 8k4) for the Fourier coefficients (15). Here € is a small parameter which has strong
influence on damping of the noisy oscillations. With the regularization factors, equations (15) are

modified as follows

g X,C, +Y,D, & _& %G - XD,
=8 AuCe T Ty Lt S ot 3

M, , . k=1,2,3... 19
o xI+y? T X147} (19)

Substituting the modified Fourier coefficients (19) into formula (11) one can obtain the smoothed
kernel function:
~ D, & X,C +Y.D
Ko-9)=—"+—Y g Attt
2nY, nSt X2 +y?
< Y, k Ck -X kD

1 .
L Ko -0)).
2By sin(k(e - ")

cos(k(p— ')+
(20)

Increase of the parameter ¢ leads to stronger damping of the noise, and it also causes a slight
decrease of the kernel function peak. Fig. 5 shows the kernel function (solid line) corresponding to

€=0.0001. In the same figure, the dashed line is the analytical approximation given by simple formula

B
1
K =1.2K, , 21
un((p) 0|:1+a(pu:| ( )
wherea=5,0=17,p=14,
K() :|:(R2 _Rl)(l+ml)(l_2ml)+ (R3 _RZ)(1+m2)(1_2m2):|’ (22)
E 1-m, E, 1-m,

The obtained functions (21) and (22) determine the compliance matrix for any distribution of

the pressure in the lubrication layer for a given geometric characteristics of the journal bearing. For

o [rad]

Fig. 5. Kernel function obtained from numerical solution (curve 1) is compared to the analytical approximation
(curve 2) given by formula (21)
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Fig. 6. Curve 1 shows the sleeve deflection obtained from formula (10); and curve 2 is the sleeve deflection cal-
culated by the ANSYS package

testing formula (10) , we calculated deformations of the bearing surface related to another pressure
distribution (Fig. 2b) corresponding to larger eccentricity 1/d=0.8. These calculations were performed
with the ANSYS package. Results of the calculations are shown in Fig. 6. One can see in this figure
that formula (10) with K given by (20) yields result (solid line), which is rather close to that of the
direct ANSYS calculation (dashed line). A small difference (about 3 %) can be related to the effects of

numerical approximation of the code.

4.3-d ANSYS calculation

Next, we analyze a difference between the kernel functions determined for different cross sections
of the journal bearing. For this study we use 3-D ANSY'S calculations, taking the same parameters of the
journal bearing as described above. To determine the deformation caused by the pressure distribution
we apply the 3-D ANSYS package with the mesh spacing shown in Fig. 7. Using the finite difference
scheme described above, we calculate the hydrodynamic pressure in the lubrication layer as a function
of two coordinates in case of journal bearing with finite length. Fig. 8 shows the pressure profiles
for different cross sections (y = const) of the bearing. Using results of ANSYS calculations we find
deformations of the bearing surface in each cross section. Then we compare the 3-D ANSYS solutions
for the central cross section with the 2-D ANSYS solution. Both solutions are presented in Fig. 9. As
one can see in Fig. 9, the bearing surface deformation is larger in 2-D case than that in 3-D case. The

difference is about 28 %. Then we consider the behavior of the kernel functions which determine the
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Fig. 8. Azimuthal distributions of the pressure corresponding to the different cross sections of the journal bear-
ing. Curve 1 is for the cross sections close to the edges of the bearing: y=0.02666 m. Curves 2, 3, 4, and 5 cor-
respond to the cross sections y=0.01999 m, y=0.01333 m, y=0.00666 m and y = 0, respectively

compliance matrix for different cross sections. To obtain these functions we used the described above
Fourier method, which was applied for different cross sections of the bearing. Finally we find the
kernel functions shown in Fig. 10. This figure indicates clearly that the kernel functions are rather close
to each other for all cross sections (besides the cross sections near by the edges). Therefore one can use
the compliance matrix determined for the central cross section. The kernel function corresponding to
2-D case is about 28 % larger than that for 3-D case when the length of the bearing is of the same order

as its diameter.
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Fig. 9. Deformations of the bearing surface for the different cross sections (3-D model) and also for the 2-D
model. Curves 1, 2, 3,4 and 5 correspond to the surface deflections obtained from the 3-D ANSYS model for the
cross sections y= 0.03 m, y=0.02333 m, y=0.01666 m, y= 0.00999 m and y=0.00333 m, respectively; curve 6 is
related to the 2-D ANSYS model
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Fig. 10. Kernel functions based on the 3-D and 2-D ANSYS models respectively. Curves 1, 2, 3, 4 correspond to
the cross sections y=0.02333 m, y=0.01666 m, y= 0.00999 m and y=0.00333 m, respectively. Curve 5 is the 2-D
kernel function

5. Self-consistent solution

We apply the obtained kernel function for self-consistent calculation of the lubrication pressure.

The iterative procedure is as follows:

o (H("))3 oP"" +i (H(n))3 o' = o " +a (ﬁ(n“) ~ INJ(”)) (23)
o op | & & | o9 At ’
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2n
H(n) =1- ﬁCOS(¢)+ AJ.P(”)((P')K(([)— (Pv)d(l) , P(n) >0;
0
(n)
OHT . B <o,
g0

where 4 =6K uR’w/d’.

This dimensionless parameter A characterizes the role of the elastic surface deformations.
Numerical iterations (23) converge to self consistent distributions of the pressure and surface
deflection. Those are presented in Fig. 11 for the central cross section (y=0), for three different
eccentricities of the shaft: 1 = 0.8, 0.9, 0.95. In case 1 = 0.95, the pressure maximum is affected
quite strongly by the elastic surface deformation. In this case, the surface deformation leads to

corresponding decrease of the pressure maximum in a factor of 1.5.

6. Conclusion

An effective approach is proposed which allows one to determine the compliance matrix on the
base of preliminary calculation of the pressure in the lubrication layer (without elastic deformations)
and an ANSYS calculation of the surface deformation. Even for a long journal bearing, one has to
apply 3-D ANSYS model, rather than 2-D one, for the calculation of the surface deformations. This
is because the 2-D ANSYS model overestimates the surface deflection substantially. The compliance
matrix is determined by the kernel function which is expressed via Fourier series expansion. In
order to suppress the noisy oscillations, we modify the Fourier coefficients by multiplying them
on regularization factors, which cause smoothing of the kernel function. The compliance matrices
obtained for different cross sections of the journal bearing are very similar to each other. Therefore
it is sufficient to determine the compliance matrix for the central cross section only. The compliance
matrix depends on constructive parameters of the journal bearing, but it does not depend on a
specific pressure distribution. Therefore obtained once, the compliance matrix can be used iteratively
together with the Reynolds equation for self consistent simulations of the dynamical regimes of

the journal bearing. The proposed iterative procedure converges rather quickly and thus it is very

x 10
2.5
0.03
2
— 1.5 0.02
E =
)
A~
0.01
0.5
0 0
0 1 2 3 4 5

o [rad]

Fig. 11. Self consistent pressure and surface deflection profiles corresponding to the central cross section (y =0)
for three eccentricities: 0.95 (curve 1), 0.9 (curve 2) and 0.8 (curve 3). Here 8 is normalized to d = R1-R0
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efficient for obtaining a self-consistent surface deformations and pressure distribution in heavy

loaded journal bearings.

This work was supported by the Russian Foundation for Basic Research (project 15-05-
00879).
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