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This article deals with a new approach for calculation of self-consistent pressure distribution 
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solution of the 2-D Reynolds’ equation for the lubrication layer, numerical calculation of the surface 
deformations by the 3-D ANSYS package and Fourier series expansion for the compliance matrix. A 
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heavy loaded journal bearings. The compliance matrix is implemented into the iterative procedure for 
calculation of self-consistent pressure distribution and surface deflection in the contact zone. Results 
of calculations are presented for the particular journal bearing. 
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Гидродинамический подшипник скольжения:  
моделирование упругих деформаций

В.А. Ивановa, Н.В. Еркаевa,б, Д. Лангмайр в

аСибирский федеральный университет 
Россия, 660041, Красноярск, пр. Свободный, 79 
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вГерманский филиал фирмы АНСИС 
Германия, 83624, Оттерфинг, Штауденфельдвег, 12

В статье рассмотрен новый подход к вычислению самосогласованного распределения давления 
и деформации поверхности для цилиндрического подшипника скольжения. Предлагаемый 
метод основан на численном решении 2-мерного уравнения Рейнольдса для смазочного слоя, 
вычислении деформации поверхности с помощью 3-мерного пакета АНСИС с использованием 
разложения Фурье для вычисления матрицы податливости. Найдена простая аналитическая 
аппроксимация для матрицы податливости, которая может применяться для расчета тяжело 
нагруженных подшипников скольжения. Найденная матрица податливости используется в 
итеративной процедуре для расчета самосогласованного распределения давления и прогиба 
поверхности в зоне контакта. Представлены результаты расчета конкретного подшипника 
скольжения.

Ключевые слова: подшипник скольжения, упругогидродинамический контакт, матрица 
податливости.

1. Introduction
Hydrodynamic lubrication theory is a commonly used tool for calculating and designing fluid 

dynamic journal bearings, which are important parts of various mechanisms and vehicles. There 
exist many publications devoted to this subject [1 – 4]. The role of elastic deformations becomes very 
important for heavy loaded journal bearings. Therefore elastic effects were incorporated into the 
lubrication theory, and the so called elastic hydrodynamic approach was developed, which considers 
both lubricant flow and surface deformations caused by enhanced pressure in the lubricant film [5]. 
In this approach, a key problem is to find a relationship between lubricant pressure distributions and 
surface deformations. The main constructive elements of a fluid dynamic bearing are shaft (journal), 
lubricant film, sleeve and housing. Usually housing material is more rigid compared to that of a sleeve. 
This is the reason why deformations of the housing are often neglected, and the sleeve deformations 
are used to be taken into account [6]. In such simplified case, the deformations of the thin sleeve 
constrained by the rigid housing are dependent on a small parameter, which is a ratio of the sleeve 
thickness to the curvature radius. As shown in [7], in the first order approximation with respect to the 
small parameter, the sleeve deformation is proportional to the local pressure in the lubricant film. The 
coefficient of proportionality is called as “sleeve compliance”. This approximation is related to the 
hypothesis of Winkler. In case of cylindrical symmetry, the compliance coefficient can be determined 
from the analytical solution [8].

Generally, it is necessary to take into account not only sleeve deformations, but also housing 
deformations, because housing has a finite rigidity. In such a case, calculations of surface deformations 
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have to be performed self-consistently with calculations of pressure distributions along the whole 
lubrication layer. For this purpose we have to determine a generalized equation for relationship between 
the local surface deformations and the lubricant pressure distributions, taking into account different 
material properties of the sleeve and housing. The main goal of this work is to elaborate a method 
for deriving such an equation, and to apply it for self-consistent solution of the elastic hydrodynamic 
problem.

2. Satement of problem

To describe our approach we consider the journal bearing with steel shaft and bronze sleeve 
shown in Fig. 1. Here ω is the angular speed of the shaft, φ is the azimuthal angle counted clockwise 
off the maximal clearance, and η is the eccentricity of the shaft, R0 is the journal radius, R1 is the 
internal radius of the sleeve, R2 and R3 are the internal and external radii of the steel housing, L is 
the length of the bearing. We assume that the external boundary of the housing is fixed. This means 
that deformations vanish at the external boundary of the housing. The shaft and sleeve surfaces are 
assumed to be separated by a thin film of a liquid lubricant, so called the lubrication layer. We also set 
zero boundary condition for the pressure at the edges of the bearing.

The pressure distribution in the lubrication layer is determined by the conventional Reynolds’ 
equation [2]
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There are many publications devoted to numerical methods for integration of the Reynolds’ 
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Here h is the thickness of the lubrication layer, μ is the viscosity coefficient, u is the mean 
velocity of the boundary surfaces, y is the coordinate along the axis of the journal bearing, φ is the 

Fig. 1. Geometrical scheme of the journal bearing: 1 is the shaft, 2 is the bronze sleeve, 3 is the steel housing
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azimuthal angle, δ is the radial deflection of the sleeve surface, which is dependent on the pressure in 
the lubrication layer.

For computational convenience we introduce normalized parameters as follows:
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Here the lower indices i, j  enumerate the grid points, and the upper index n enumerates time steps. 

Eqs. (8) are solved by a tri-diagonal matrix algorithm. A stationary pressure distribution is obtained 

as a result of time relaxation of the numerical solution. 

 

3. Results of calculations. 2-d ansys model 

For illustrating our method, we take the following input parameters of the journal bearing: 

R1 = 0.03 m, R2 = 0.035 m, R3 = 0.1 m, d = 0.00013 m, E1 = 2.1·1011 Pa, E2 = 1.08·1011 Pa, m1 = 

0.3, m2 = 0.34, μ = 0.024 Pa/s, ω = 314.16 s-1 , where E1 and E2 are the elasticity moduluses of the 

steel housing and bronze sleeve, m1 and m2 are the Poisson coefficients corresponding to the 

materials of the housing and sleeve, respectively. The length and diameter of the journal bearing are 

assumed to be equal to each other. 

Fig. 2 shows pressures in the lubrication layer as functions of the azimuthal angle. These 

pressures are obtained from the numerical solution of equation (5) for journal eccentricities η~ = 0,9 

and η~ =0,8. Further, we used these pressure distributions for calculating the elastic deformations of 

the sleeve and housing. For this purpose we applied the ANSYS package based on the finite 

element numerical method [14]. Fig. 3 shows mesh spacing of the 2-D calculation domain with 5 

elements across the bronze sleeve, 9 elements across the steel housing, and 100 elements along the 

azimuthal direction. The previously calculated pressures are applied to the grid points at the internal 

boundary of the sleeve. 

Performing 2-D ANSYS calculations for the given pressure distribution along the 

lubrication layer (Fig. 2), we obtained results presented in Fig. 4. Here the sleeve and housing 

deformations are shown by the solid and dashed lines, respectively. These numerical results can be 

compared to the approximate analytical formula [6] implying a proportional relationship between 

deformation of a thin sleeve and the corresponding local hydrodynamic pressure in the lubrication 

film 
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Here the lower indices i, j enumerate the grid points, and the upper index n enumerates time steps. 
Eqs. (8) are solved by a tri-diagonal matrix algorithm. A stationary pressure distribution is obtained as 
a result of time relaxation of the numerical solution.

3. Results of calculations. 2-d ANSYS model

For illustrating our method, we take the following input parameters of the journal bearing: 
R1 = 0.03 m, R2 = 0.035 m, R3 = 0.1 m, d = 0.00013 m, E1 = 2.1∙1011 Pa, E2 = 1.08∙1011 Pa, m1 = 0.3, 
m2 = 0.34, μ = 0.024 Pa/s, ω = 314.16 s-1 , where E1 and E2 are the elasticity moduluses of the steel 
housing and bronze sleeve, m1 and m2 are the Poisson coefficients corresponding to the materials of 
the housing and sleeve, respectively. The length and diameter of the journal bearing are assumed to be 
equal to each other.
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Fig. 2 shows pressures in the lubrication layer as functions of the azimuthal angle. These pressures 
are obtained from the numerical solution of equation (5) for journal eccentricities η~  = 0,9 and η~  =0,8. 
Further, we used these pressure distributions for calculating the elastic deformations of the sleeve 
and housing. For this purpose we applied the ANSYS package based on the finite element numerical 
method [14]. Fig. 3 shows mesh spacing of the 2-D calculation domain with 5 elements across the 
bronze sleeve, 9 elements across the steel housing, and 100 elements along the azimuthal direction. The 
previously calculated pressures are applied to the grid points at the internal boundary of the sleeve.

Performing 2-D ANSYS calculations for the given pressure distribution along the lubrication 
layer (Fig. 2), we obtained results presented in Fig. 4. Here the sleeve and housing deformations are 

Fig. 2. Distribution of the pressure along the lubrication layer for two eccentricities: 0.9 (curve 1) and  
0.8 (curve 2)

Fig. 3. Mesh spacing of the 2-D ANSYS model
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shown by the solid and dashed lines, respectively. These numerical results can be compared to the 
approximate analytical formula [6] implying a proportional relationship between deformation of a thin 
sleeve and the corresponding local hydrodynamic pressure in the lubrication film
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This formula implies proportionality of the pressure and deflection, and thus it neglects nonlocal 
influence of the pressure.

More general and realistic formula describing dependence of elastic deformations on pressure 
distributions can be written in the integral form:
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Fig. 4. Deformations of the sleeve (curve 1) and housing (curve 2)
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Multiplying equation (11) on the harmonic functions and integrating over the angle from 0 to 2 π, 
we obtain a linear algebraic system of equations for the unknown Fourier coefficients Mk and Nk.
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Using the known distribution of pressure in the lubrication layer and surface deformations 
calculated by ANSYS we find the solution of linear equations (12, 13)
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Here, the pressure and surface deflection as functions of the angle were determined by spline 
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Here, the accuracy of the result is dependent on a choice of the upper limit of summing n. In 

particular, a value of n=10 is quite sufficient for good accuracy of the approximation. Regarding 

formula (18), it is worth noting about an influence of a small scaled noise, which usually appears in 

the input data obtained from the numerical calculations. In order to remove effects of such noise, it 

is necessary to apply some kind of regularization. A general theory of regularizations for integral 

equations is described in monographs [15, 16]. To suppress the noisy oscillations, we introduce 

multiplication factors ( )41/1 kgk ε+=  for the Fourier coefficients (15). Here ε is a small parameter 

which has strong influence on damping of the noisy oscillations. With the regularization factors, 

equations (15) are modified as follows 
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Increase of the parameter ε leads to stronger damping of the noise, and it also causes a slight 

decrease of the kernel function peak. Fig. 5 shows the kernel function (solid line) corresponding to 

ε=0.0001. In the same figure, the dashed line is the analytical approximation given by simple 

formula 
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The obtained functions (21) and (22) determine the compliance matrix for any distribution of the 

pressure in the lubrication layer for a given geometric characteristics of the journal bearing. For 
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Here, the pressure and surface deflection as functions of the angle were determined by spline 
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Here, the accuracy of the result is dependent on a choice of the upper limit of summing n. In 

particular, a value of n=10 is quite sufficient for good accuracy of the approximation. Regarding 

formula (18), it is worth noting about an influence of a small scaled noise, which usually appears in 

the input data obtained from the numerical calculations. In order to remove effects of such noise, it 

is necessary to apply some kind of regularization. A general theory of regularizations for integral 

equations is described in monographs [15, 16]. To suppress the noisy oscillations, we introduce 

multiplication factors ( )41/1 kgk ε+=  for the Fourier coefficients (15). Here ε is a small parameter 

which has strong influence on damping of the noisy oscillations. With the regularization factors, 

equations (15) are modified as follows 
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Increase of the parameter ε leads to stronger damping of the noise, and it also causes a slight 

decrease of the kernel function peak. Fig. 5 shows the kernel function (solid line) corresponding to 

ε=0.0001. In the same figure, the dashed line is the analytical approximation given by simple 

formula 
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The obtained functions (21) and (22) determine the compliance matrix for any distribution of the 

pressure in the lubrication layer for a given geometric characteristics of the journal bearing. For 
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Here, the pressure and surface deflection as functions of the angle were determined by spline 
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Here, the accuracy of the result is dependent on a choice of the upper limit of summing n. In 

particular, a value of n=10 is quite sufficient for good accuracy of the approximation. Regarding 

formula (18), it is worth noting about an influence of a small scaled noise, which usually appears in 

the input data obtained from the numerical calculations. In order to remove effects of such noise, it 

is necessary to apply some kind of regularization. A general theory of regularizations for integral 

equations is described in monographs [15, 16]. To suppress the noisy oscillations, we introduce 

multiplication factors ( )41/1 kgk ε+=  for the Fourier coefficients (15). Here ε is a small parameter 

which has strong influence on damping of the noisy oscillations. With the regularization factors, 

equations (15) are modified as follows 
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Substituting the modified Fourier coefficients (19) into formula (11) one can obtain the smoothed 

kernel function: 
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Increase of the parameter ε leads to stronger damping of the noise, and it also causes a slight 

decrease of the kernel function peak. Fig. 5 shows the kernel function (solid line) corresponding to 

ε=0.0001. In the same figure, the dashed line is the analytical approximation given by simple 

formula 
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The obtained functions (21) and (22) determine the compliance matrix for any distribution of the 

pressure in the lubrication layer for a given geometric characteristics of the journal bearing. For 
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Here, the pressure and surface deflection as functions of the angle were determined by spline 

approximation of the grid values Pi and δi . Substituting Fourier coefficients Mk and Nk (15, 16) in 
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Here, the accuracy of the result is dependent on a choice of the upper limit of summing n. In 

particular, a value of n=10 is quite sufficient for good accuracy of the approximation. Regarding 

formula (18), it is worth noting about an influence of a small scaled noise, which usually appears in 

the input data obtained from the numerical calculations. In order to remove effects of such noise, it 

is necessary to apply some kind of regularization. A general theory of regularizations for integral 

equations is described in monographs [15, 16]. To suppress the noisy oscillations, we introduce 

multiplication factors ( )41/1 kgk ε+=  for the Fourier coefficients (15). Here ε is a small parameter 

which has strong influence on damping of the noisy oscillations. With the regularization factors, 

equations (15) are modified as follows 
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Substituting the modified Fourier coefficients (19) into formula (11) one can obtain the smoothed 

kernel function: 
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Increase of the parameter ε leads to stronger damping of the noise, and it also causes a slight 

decrease of the kernel function peak. Fig. 5 shows the kernel function (solid line) corresponding to 

ε=0.0001. In the same figure, the dashed line is the analytical approximation given by simple 

formula 
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The obtained functions (21) and (22) determine the compliance matrix for any distribution of the 

pressure in the lubrication layer for a given geometric characteristics of the journal bearing. For 
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Here, the pressure and surface deflection as functions of the angle were determined by spline 
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Here, the accuracy of the result is dependent on a choice of the upper limit of summing n. In 

particular, a value of n=10 is quite sufficient for good accuracy of the approximation. Regarding 

formula (18), it is worth noting about an influence of a small scaled noise, which usually appears in 

the input data obtained from the numerical calculations. In order to remove effects of such noise, it 

is necessary to apply some kind of regularization. A general theory of regularizations for integral 

equations is described in monographs [15, 16]. To suppress the noisy oscillations, we introduce 

multiplication factors ( )41/1 kgk ε+=  for the Fourier coefficients (15). Here ε is a small parameter 

which has strong influence on damping of the noisy oscillations. With the regularization factors, 

equations (15) are modified as follows 
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Substituting the modified Fourier coefficients (19) into formula (11) one can obtain the smoothed 

kernel function: 
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Increase of the parameter ε leads to stronger damping of the noise, and it also causes a slight 

decrease of the kernel function peak. Fig. 5 shows the kernel function (solid line) corresponding to 

ε=0.0001. In the same figure, the dashed line is the analytical approximation given by simple 

formula 
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The obtained functions (21) and (22) determine the compliance matrix for any distribution of the 

pressure in the lubrication layer for a given geometric characteristics of the journal bearing. For 
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Substituting the modified Fourier coefficients (19) into formula (11) one can obtain the smoothed 
kernel function:
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Here, the pressure and surface deflection as functions of the angle were determined by spline 

approximation of the grid values Pi and δi . Substituting Fourier coefficients Mk and Nk (15, 16) in 

Eq. (11) we find 
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Here, the accuracy of the result is dependent on a choice of the upper limit of summing n. In 

particular, a value of n=10 is quite sufficient for good accuracy of the approximation. Regarding 

formula (18), it is worth noting about an influence of a small scaled noise, which usually appears in 

the input data obtained from the numerical calculations. In order to remove effects of such noise, it 

is necessary to apply some kind of regularization. A general theory of regularizations for integral 

equations is described in monographs [15, 16]. To suppress the noisy oscillations, we introduce 

multiplication factors ( )41/1 kgk ε+=  for the Fourier coefficients (15). Here ε is a small parameter 

which has strong influence on damping of the noisy oscillations. With the regularization factors, 

equations (15) are modified as follows 
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Increase of the parameter ε leads to stronger damping of the noise, and it also causes a slight 

decrease of the kernel function peak. Fig. 5 shows the kernel function (solid line) corresponding to 

ε=0.0001. In the same figure, the dashed line is the analytical approximation given by simple 

formula 

( )
β

α ⎥
⎦

⎤
⎢
⎣

⎡
ϕ+

=ϕ
a

KK an 1
12.1 0 ,     (21) 

where a = 5, α = 1.7, β = 1.4, 

 

( ) ( ) ( ) ( )
⎥
⎦

⎤
⎢
⎣

⎡
−

−+−
+

−
−+−

=
2

22

2

23

1

11

1

12
0 1

21)1(
1

21)1(
m

mm
E

RR
m

mm
E

RR
K ,   (22) 

The obtained functions (21) and (22) determine the compliance matrix for any distribution of the 

pressure in the lubrication layer for a given geometric characteristics of the journal bearing. For 
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Here, the pressure and surface deflection as functions of the angle were determined by spline 

approximation of the grid values Pi and δi . Substituting Fourier coefficients Mk and Nk (15, 16) in 

Eq. (11) we find 
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Here, the accuracy of the result is dependent on a choice of the upper limit of summing n. In 

particular, a value of n=10 is quite sufficient for good accuracy of the approximation. Regarding 

formula (18), it is worth noting about an influence of a small scaled noise, which usually appears in 

the input data obtained from the numerical calculations. In order to remove effects of such noise, it 

is necessary to apply some kind of regularization. A general theory of regularizations for integral 

equations is described in monographs [15, 16]. To suppress the noisy oscillations, we introduce 

multiplication factors ( )41/1 kgk ε+=  for the Fourier coefficients (15). Here ε is a small parameter 

which has strong influence on damping of the noisy oscillations. With the regularization factors, 

equations (15) are modified as follows 
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Increase of the parameter ε leads to stronger damping of the noise, and it also causes a slight 

decrease of the kernel function peak. Fig. 5 shows the kernel function (solid line) corresponding to 

ε=0.0001. In the same figure, the dashed line is the analytical approximation given by simple 

formula 
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The obtained functions (21) and (22) determine the compliance matrix for any distribution of the 

pressure in the lubrication layer for a given geometric characteristics of the journal bearing. For 
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decrease of the kernel function peak. Fig. 5 shows the kernel function (solid line) corresponding to 
ε=0.0001. In the same figure, the dashed line is the analytical approximation given by simple formula
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Here, the pressure and surface deflection as functions of the angle were determined by spline 
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Here, the accuracy of the result is dependent on a choice of the upper limit of summing n. In 

particular, a value of n=10 is quite sufficient for good accuracy of the approximation. Regarding 

formula (18), it is worth noting about an influence of a small scaled noise, which usually appears in 

the input data obtained from the numerical calculations. In order to remove effects of such noise, it 

is necessary to apply some kind of regularization. A general theory of regularizations for integral 
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Increase of the parameter ε leads to stronger damping of the noise, and it also causes a slight 

decrease of the kernel function peak. Fig. 5 shows the kernel function (solid line) corresponding to 

ε=0.0001. In the same figure, the dashed line is the analytical approximation given by simple 

formula 
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The obtained functions (21) and (22) determine the compliance matrix for any distribution of the 

pressure in the lubrication layer for a given geometric characteristics of the journal bearing. For 
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pressure in the lubrication layer for a given geometric characteristics of the journal bearing. For 
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The obtained functions (21) and (22) determine the compliance matrix for any distribution of 
the pressure in the lubrication layer for a given geometric characteristics of the journal bearing. For 

Fig. 5. Kernel function obtained from numerical solution (curve 1) is compared to the analytical approximation 
(curve 2) given by formula (21)
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testing formula (10) , we calculated deformations of the bearing surface related to another pressure 
distribution (Fig. 2b) corresponding to larger eccentricity η/d=0.8. These calculations were performed 
with the ANSYS package. Results of the calculations are shown in Fig. 6. One can see in this figure 
that formula (10) with K given by (20) yields result (solid line), which is rather close to that of the 
direct ANSYS calculation (dashed line). A small difference (about 3 %) can be related to the effects of 
numerical approximation of the code.

4. 3-d ANSYS calculation

Next, we analyze a difference between the kernel functions determined for different cross sections 
of the journal bearing. For this study we use 3-D ANSYS calculations, taking the same parameters of the 
journal bearing as described above. To determine the deformation caused by the pressure distribution 
we apply the 3-D ANSYS package with the mesh spacing shown in Fig. 7. Using the finite difference 
scheme described above, we calculate the hydrodynamic pressure in the lubrication layer as a function 
of two coordinates in case of journal bearing with finite length. Fig. 8 shows the pressure profiles 
for different cross sections (y = const) of the bearing. Using results of ANSYS calculations we find 
deformations of the bearing surface in each cross section. Then we compare the 3-D ANSYS solutions 
for the central cross section with the 2-D ANSYS solution. Both solutions are presented in Fig. 9. As 
one can see in Fig. 9, the bearing surface deformation is larger in 2-D case than that in 3-D case. The 
difference is about 28 %. Then we consider the behavior of the kernel functions which determine the 

Fig. 6. Curve 1 shows the sleeve deflection obtained from formula (10); and curve 2 is the sleeve deflection cal-
culated by the ANSYS package
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Fig. 7. Mesh spacing for the 3-D ANSYS model

Fig. 8. Azimuthal distributions of the pressure corresponding to the different cross sections of the journal bear-
ing. Curve 1 is for the cross sections close to the edges of the bearing: y=0.02666 m. Curves 2, 3, 4, and 5 cor-
respond to the cross sections y=0.01999 m, y=0.01333 m, y=0.00666 m and y = 0, respectively

compliance matrix for different cross sections. To obtain these functions we used the described above 
Fourier method, which was applied for different cross sections of the bearing. Finally we find the 
kernel functions shown in Fig. 10. This figure indicates clearly that the kernel functions are rather close 
to each other for all cross sections (besides the cross sections near by the edges). Therefore one can use 
the compliance matrix determined for the central cross section. The kernel function corresponding to 
2-D case is about 28 % larger than that for 3-D case when the length of the bearing is of the same order 
as its diameter.
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5. Self-consistent solution

We apply the obtained kernel function for self-consistent calculation of the lubrication pressure.
The iterative procedure is as follows:
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Fig. 9. Deformations of the bearing surface for the different cross sections (3-D model) and also for the 2-D 
model. Curves 1, 2, 3, 4 and 5 correspond to the surface deflections obtained from the 3-D ANSYS model for the 
cross sections y= 0.03 m, y=0.02333 m, y=0.01666 m, y= 0.00999 m and y=0.00333 m, respectively; curve 6 is 
related to the 2-D ANSYS model

Fig. 10. Kernel functions based on the 3-D and 2-D ANSYS models respectively. Curves 1, 2, 3, 4 correspond to 
the cross sections y=0.02333 m, y=0.01666 m, y= 0.00999 m and y=0.00333 m, respectively. Curve 5 is the 2-D 
kernel function
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where 32
10 /6 dRKA ωμ= . 

This dimensionless parameter A characterizes the role of the elastic surface deformations. 

Numerical iterations (23) converge to self consistent distributions of the pressure and surface 

deflection. Those are presented in Figure 11 for the central cross section (y=0), for three different 

eccentricities of the shaft: η~  = 0.8, 0.9, 0.95. In case η~  = 0.95, the pressure maximum is affected 

quite strongly by the elastic surface deformation. In this case, the surface deformation leads to 

corresponding decrease of the pressure maximum in a factor of 1.5. 

 

6. Conclusion 

An effective approach is proposed which allows one to determine the compliance matrix on 

the base of preliminary calculation of the pressure in the lubrication layer (without elastic 

deformations) and an ANSYS calculation of the surface deformation. Even for a long journal 

bearing, one has to apply 3-D ANSYS model, rather than 2-D one, for the calculation of the surface 

deformations. This is because the 2-D ANSYS model overestimates the surface deflection 

substantially. The compliance matrix is determined by the kernel function which is expressed via 

Fourier series expansion. In order to suppress the noisy oscillations, we modify the Fourier 

coefficients by multiplying them on regularization factors, which cause smoothing of the kernel 

function. The compliance matrices obtained for different cross sections of the journal bearing are 

very similar to each other. Therefore it is sufficient to determine the compliance matrix for the 

central cross section only. The compliance matrix depends on constructive parameters of the journal 

bearing, but it does not depend on a specific pressure distribution. Therefore obtained once, the 

compliance matrix can be used iteratively together with the Reynolds equation for self consistent 

simulations of the dynamical regimes of the journal bearing. The proposed iterative procedure 

converges rather quickly and thus it is very efficient for obtaining a self-consistent surface 

deformations and pressure distribution in heavy loaded journal bearings.  
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This dimensionless parameter A characterizes the role of the elastic surface deformations. 
Numerical iterations (23) converge to self consistent distributions of the pressure and surface 
deflection. Those are presented in Fig. 11 for the central cross section (y=0), for three different 
eccentricities of the shaft: η~  = 0.8, 0.9, 0.95. In case η~  = 0.95, the pressure maximum is affected 
quite strongly by the elastic surface deformation. In this case, the surface deformation leads to 
corresponding decrease of the pressure maximum in a factor of 1.5.

6. Conclusion

An effective approach is proposed which allows one to determine the compliance matrix on the 
base of preliminary calculation of the pressure in the lubrication layer (without elastic deformations) 
and an ANSYS calculation of the surface deformation. Even for a long journal bearing, one has to 
apply 3-D ANSYS model, rather than 2-D one, for the calculation of the surface deformations. This 
is because the 2-D ANSYS model overestimates the surface deflection substantially. The compliance 
matrix is determined by the kernel function which is expressed via Fourier series expansion. In 
order to suppress the noisy oscillations, we modify the Fourier coefficients by multiplying them 
on regularization factors, which cause smoothing of the kernel function. The compliance matrices 
obtained for different cross sections of the journal bearing are very similar to each other. Therefore 
it is sufficient to determine the compliance matrix for the central cross section only. The compliance 
matrix depends on constructive parameters of the journal bearing, but it does not depend on a 
specific pressure distribution. Therefore obtained once, the compliance matrix can be used iteratively 
together with the Reynolds equation for self consistent simulations of the dynamical regimes of 
the journal bearing. The proposed iterative procedure converges rather quickly and thus it is very 

Fig. 11. Self consistent pressure and surface deflection profiles corresponding to the central cross section (y =0) 
for three eccentricities: 0.95 (curve 1), 0.9 (curve 2) and 0.8 (curve 3). Here δ is normalized to d = R1-R0
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efficient for obtaining a self-consistent surface deformations and pressure distribution in heavy 
loaded journal bearings. 

This work was supported by the Russian Foundation for Basic Research (project 15-05-
00879).

References

[1] Williams J.A. Engineering tribology. New York: Oxford University Press Inc. 242. 1994.
[2] Hamrock B. J. Fundamentals of fluid film lubrication. McGraw-Hill Inc. 1994.
[3] Bair S. High-Pressure Theology for quantitative elastohydrodynamics. In Tribology and 

Interface Engineering Series; 54, Elsevier: The Netherlands. 2007.
[4] Szeri A. Z. Fluid film lubrication (2-nd ed.). Cambridge University Press. 2011.
[5] Lugt P. M., Morales-Espejel G. E. A Review of elasto-hydrodynamic lubrication Tteory. 

Tribology Transactions. 2011. Vol. 54. P. 470-496.
[6] Galakhov M. A., Usov P. P. Differential and integral equations of the mathematical theory of 

friction. Nauka, Moscow. 1990.
[7] Goryacheva I. G. Contact mechanism in tribology. Kluwer academic pub lishers. 1998.
[8] Landau L. D., Lifshitz E, M. Theory of elasticity. Pergamon Press. 1970.
 [9] Arghir, M., Alsayed, A., and Nicolas D. The finite volume solution of the Reynolds equation 

of lubrication with film discontinuities. International Journal of Mechanical Sciences. 2002. Vol. 44. 
[10] Benasciutti D., Gallina M., Munteanu M. A numerical approach for the analysis of deformable 

journal bearings. Frattura ed Integrit Strutturale. 2012. Vol. 21. P. 37-45. 
[11] Salant R.F., Fortier A. E. Numerical Simulation of a slider Bearing with an engineered slip/

no-slip surface. Tribology and lubrication engineering: 14 International Colloquium Tribology. 13-15 
Jan. Esslingen, Germany. Technische Akademie Esslingen. 2004. P. 1699-1704.

[12] Kumar M. S., Thyla P. R., Anbarasu E. Numerical analysis of hydrodynamic journal bearing 
under transient dynamic conditions. MECHANIKA. 2010. Vol. 2(82). P. 37-42.

[13] Samarskii A.A. The theory of difference schemes. USA, Marcel Dekker, Inc. 2001.
[14] Stolarski T., Nakasone Y., Yoshimoto S. Engineering analysis with ANSYS software. 

ELSEVIER. 2006.
[15] Tikhonov, A. N., Arsenin V. Y. Solution of ill-posed problems. Washington, Winston & Sons. 

1977.
[16] Tikhonov A.N., Goncharsky A.V., Stepanov V.V., Yagola A.G. Numerical methods for the 

solution of ill-posed problems. Kluwer Academic Publishers. 1995.


