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1. Introduction and preliminaries

We are interested in the model of evolution of particles so-called a branching process allowing

immigration. The mentioned process can have a simple physical interpretation: a population

size changes not only as a result of reproduction and disappearance of existing particles, but also

at the random stream of inbound "extraneous" particles of the same type from outside. Similar

processes, apparently, have been considered first by Bartlett in [3]. Sevastyanov [11] has defined

the processes allowing immigration as a special case of two-type branching process. In a case

of birth and death process the similar model was considered by Karlin and McGregor [7]. We

adhere on the model of population growth entered by Sevastyanov, called the Markov Branching

Process allowing Immigration (MBPI) in which states form a homogeneous Markov chain on the

set of N0 = 0 ∪ N.

Let X(t), t ∈ T = [0; +∞), be the population size in MBPI, in which evolution of individuals

occurs by the following scheme. Each individual existing at epoch t independently of his history

and of each other for a small time interval (t; t + ε) transforms into j ∈ N0\{1} individuals

with probability ajε + o(ε) and, with probability 1 + a1ε + o(ε) stays to live or makes evenly

one descendant (as ε → 0). Here {aj} represent intensities of individuals’ transformation that

aj > 0 for j ∈ N0\{1} and 0 < a0 < −a1 =
∑

j∈N0\{1}

aj < ∞. Independently of these for

this time interval j ∈ N new individuals inter the population with probability bjε + o(ε) and

immigration is absent with probability 1+b0ε+o(ε). Immigration intensities bj > 0 for j ∈ N and

0 < −b0 =
∑
j∈N

bj < ∞. Appeared individuals undergo transformations under the reproduction

law generated by intensities {aj}. So MBPI X(t) is completely defined by infinitesimal generating
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functions (GFs) (see [11])

f(s) =
∑

j∈N0

ajs
j and g(s) =

∑

j∈N0

bjs
j .

We know that X(t) is homogenous continuous-time Markov chain. Owing to the Markovian

nature of this process transition functions

pij(t) := Pi {X(t) = j} = P {X(t + τ) = j |X(τ) = i}

satisfy to Kolmogorov-Chapman equation

pij(t) =
∑

k∈N

pik(τ) · pkj(t − τ), τ 6 t, (1.1)

for all i, j ∈ N and τ, t ∈ T . A corresponding probability GF

Pi(t; s) := Eis
X(t) = E

[
sX(t) |X(0) = i

]
=

∑

j∈N0

pij(t)s
j

has a following form (see [11]):

Pi(t; s) = Fi(t; s) exp

{∫ t

0

g (F (τ ; s)) dτ

}
, (1.2)

where the GF Fi(t; s) = Eis
Z(t) and Z(t) represents Markov Branching Process (MBP) without

immigrations generated by GF f(s). From the fundamental extinction theorem it follows that

Fi(t; s) = [F (t; s)]
i
→ qi uniformly for 0 6 s < 1, where q is the extinction probability of the

MBP Z(t); see [12, p.53]. Therefore, in view of the formula (1.2)

Pi(t; s)

P(t; s)
→ qi < ∞, (1.3)

where P(t; s) := P0(t; s).

Moments of X(t) for any t ∈ T are expressed by corresponding factorial moments of GF f(s)

and g(s). Designating

a = f ′ (1) and α = g′ (1) ,

we see that aε + o(ε) denote the mean per capita number of single individual during (t; t + ε) as

ε → 0, and αε+o(ε) is mean of immigrants for this time interval. The case α = 0 corresponds to

the MBP without immigration since then g(s) ≡ 0. In this sense the process X(t) is generalisation

of MBP Z(t).

Classification of states is the fundamental problem of the theory of MBPI. Differentiating

(1.2) in a point of s = 1 entails

EiX(t) =
∑

j∈N0

jpij(t) =





(α
a + i

)
eat − α

a , a 6= 0,

αt + i , a = 0.

(1.4)

From (1.4) follows that in case of a < 0 a limit

lim
t→∞

EiX(t) =
α

|a|
< ∞,
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and in the supercritical case EiX(t) has an asymptotic exponential growth:

EiX(t) ∼
(α

a
+ i

)
eat, t → ∞.

Last statements denote various behaviors of trajectories of the process X(t) depending on value

of parameter a = f ′ (1). According to the general classification the MBPI is designated as

subcritical, critical and supercritical, if a < 0, a = 0 and a > 0, respectively.

In this paper we observe limit properties of transition function pij(t), and also problems

concerning an ergodic property of states and existence of an invariant (stationary) measure of

process X(t).

Ergodic properties of arbitrary continuous-time Markov chain are in detail investigated in the

monograph of Anderson [1, Chapter 6]. First results concerning existence of invariant measures

for MBPI have been received by Sevastyanov in his fundamental researches [11]. Conner [4]

investigated invariant properties of MBPI in the critical case. Seneta [10] has established a

unique correspondence between properties of invariant measures of a branching process with

immigration and those of the process without immigration in a discrete-time case. Yang [13]

considers a subcritical case. Pakes [9] studied all cases. Li, Chen and Pakes [8] have generalized

results of paper [9].

Sevastyanov [12] has proved that if the first moment of immigration intensity g′ (1) is fi-

nite, then for subcritical case there are finite limits limt→∞ p0j(t) and corresponding GF P(t; s)

converges to the limit one:

P(t; s) → exp

{∫ 1

s

g(x)

f(x)
dx

}
, t → ∞. (1.5)

Yang [13] has improved Sevastyanov’s result, having established that GF defined in (1.5) at

minimal moment condition of
∑
j∈N

bj ln j < ∞ generates an invariant distribution.

It is easy to see that GF P̂(t; s) = P(t; qs) generates subcritical MBPI in which offspring law

obeys the GF f̂(s) = f(qs)/q and the immigration size law has the GF ĝ(s) = g(qs). According

to the convergence (1.5), if
∑
j∈N

j ln b̂j < ∞, where b̂j are positive coefficients in the power series

expansion of ĝ(s), then

P̂(t; s) → exp

∫ 1

s

ĝ(x)

f̂(x)
dx, t → ∞.

We re-join our designation and receive that if
∑
j∈N

bjq
j ln j < ∞ then in case of a 6= 0

P(t; s) → exp

{∫ q

s

g(x)

f(x)
dx

}
, t → ∞, (1.6)

for all 0 6 s < q.

In critical case Sevastyanov [11] proved that if the offspring law has a finite variance and the

immigration size law has a finite mean then the normalized process 2X(t)/f ′′(1)t has a limiting

Gamma distribution function Γ1, λ(x), x > 0, where λ = 2g′(1)/f ′′(1). In this case Pakes [9]

has proved a convergence of tλPi(t; s) to a limit GF
∑

j∈N0

πjs
j , where non-negative numbers {πj}

represent an invariant measure for X(t).

In Section 2 we observe limit properties of transition functions pij(t) and their convergence

to invariant measures. In supercritical case results of paper [8] are recurred and discussed. In
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critical case the new proof of mentioned theorem from [9] about convergence to invariant measure

at minimal moment conditions is shown.

Section 3 is devoted to estimate of speed of convergence of πj to invariant measures. In

particular, in the critical case we prove that a rate of speed of convergence of tλpij(t) to the πj

is O (ln t/t).

2. Ergodic properties of transition functions

Observing limit properties of transition functions pij(t), in this section we are interested in

ergodicity property of the chain X(t) and observe a problem of existence of invariant measure.

For our purpose we need to the statement about a limit behavior of ratio pij(t)/p00(t). In

particular, putting s = 0 in (1.3) gives pi0(t)/p00(t) → qi. The following more general statement,

the monotone ratio lemma is proved in [8].

Lemma 1 ( [8]). For all j ∈ N

pij(t)

p00(t)
↑ qiυj < ∞, t → ∞, (2.1)

where positive numbers υj = lim
t→∞

p0j(t)/p00(t) are in the power series expansion of

U(s) = exp

{∫ s

0

g(q) − g(u)

f(u)
du

}
, (2.2)

that converges on set of 0 6 s < 1.

From Kolmogorov-Chapman equation (1.1) it follows

p0j(t + τ)

p00(t + τ)
·
p00(t + τ)

p00(t)
=

∑

k∈N0

p0k(t)

p00(t)
· pkj(τ).

In other hand it is easily to see

p00(t + τ)

p00(t)
↑ eg(q)τ , t → ∞,

for any τ ∈ T . Then taking limit as t → ∞ from last but one relation and considering (2.1)

directly appears the invariant equation

eg(q)t · υj =
∑

i∈N0

υipij(t), j ∈ N0. (2.3)

Let’s consider the case a 6= 0. Statements (2.1), (2.3) suggest to consider the normalized GF

P(t; s)
/
eg(q)t. So due to (1.3) and (1.6) come out that if

∑
j∈N

bjq
j ln j < ∞ then

e|g(q)|t · Pi(t; s) → qi · C(s), t → ∞, (2.4)

for all 0 6 s < q, where limiting GF C(s) =
∑

j∈N0

σjs
j has a form of

C(s) = exp

{∫ q

s

g(x) − g(q)

f(x)
dx

}
(2.5)
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In [9] the assertion (2.4) stated in virtue of corresponding discrete time result. Putting s = 0

gives the following local limit property:

e|g(q)|t · p00(t) → C(0) < ∞, t → ∞ (2.6)

since integrand in (2.5) is finite as s ↑ q. Considering together (2.2) and (2.4)–(2.6) ensues a

following formula about interrelation of functions U(s) and C(s):

U(s) =
C(s)

C(0)
. (2.7)

The last form in the context of transition functions could be written as

pij(t)

p00(t)
↑ qi σj

C(0)
, t → ∞.

From last reasons and Lemma 1 it directly follows

eg(q)t · C(s) = P(t; s) · C (F (t; s)) (2.8)

for 0 6 s < q. The relation (2.8) shows that for case a > 0 transition functions pij(t) are

exponentially decrease to zero. The limit

λX = − lim
t→∞

ln pii(t)

t

denotes a decay parameter of the state space of MBPI. The process X(t) is called as λX -recurrent

if

∫ +∞

0

eλXtpii(t)dt = ∞ and λX -transient otherwise. Mote over the chain is subdivided as

λX -positive if lim
t→∞

eλXtpii(t) > 0 and λX -null if this limit is zero. According to results of [8] if
∑
j∈N

bjq
j ln j < ∞, then λX = |g(q)| and X(t) is λX -positive. The set of non-negative numbers

{σj} generated by GF C(s) is the unique (up to multiplicative constant) λX -invariant measure.

In subcritical case the set {σj} is an invariant distribution having a finite mean

C′(1) =
∑

j∈N

jσj = g′ (1)/|a|.

Now consider the case a = 0. After minor reasoning from (1.2) it is possible to be convinced

that p00(t) = O
(
t−λ

)
as t → ∞. Ipso facto Pakes [9] observed the limit π(s) := lim

t→∞
tλPi(t; s).

He proves this limit exists if

∑

j∈N

ajj
2 ln j < ∞ and

∑

j∈N

bjj ln j < ∞, (2.9)

and it has a form

π(s) =
1

[b(1 − s)]
λ

exp

{∫ 1

s

[
g(u)

f(u)
+

λ

1 − u

]
du

}
(2.10)

Herewith embedding techniques for corresponding discrete time result are used. We show below

that abovementioned result holds if moments
∑
j∈N

j2aj and
∑
j∈N

jbj are finite instead of condi-

tions (2.9).
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Theorem 1. If in critical MBPI 2b := f ′′ (1) < ∞, α := g′ (1) < ∞ and λ = α/b, then

tλPi(t; s) → π(s), t → ∞, (2.11)

where GF π(s) =
∑

j∈N0

πjs
j has the form of (2.10) and set of non-negative numbers {πj} is

invariant measure for X(t).

Proof. According to relation (1.3), it suffices to consider the case i = 0. Designating R(t; s) =

1 − F (t; s) and setting u = F (τ ; s) it follows from (1.2) that

tλP(t; s) = exp

{
λ ln t +

∫ t

0

g (F (τ ; s)) dτ

}
=

= exp

{
λ ln [tR(t; s)] − λ lnR(t; s) +

∫ F (t;s)

s

g(u)

f(u)
du

}
=

= exp

{
λ ln [tR(t; s)] + λ

∫ F (t;s)

0

1

1 − u
du +

∫ F (t;s)

s

g(u)

f(u)
du

}
=

= exp

{
λ ln [tR(t; s)] +

∫ F (t;s)

s

[
g(u)

f(u)
+

λ

1 − u

]
du + ln(1 − s)−λ

}
.

In turn, it is known that if the second moment 2b := f ′′ (1) is finite then tR(t; s) → b as t → ∞

for all 0 6 s < 1; see [12, p.73]. Hence taking limit as t → ∞ we receive (2.11).

Now from the formula (1.2) we will write out the following chain of equalities:

P(t + τ ; s) = exp

{∫ t+τ

0

g (F (u; s)) du

}
=

= P(τ ; s) · exp

{∫ t+τ

τ

g (F (u; s)) du

}
=

= P(τ ; s) · exp

{∫ t

0

g (F (u;F (τ ; s))) du

}
.

In junction of last equality we replaced v = u − τ and used the well-known functional equation

F (t + τ ; s) = F (t;F (τ ; s)); see [12, p. 24]. Thus

P(t + τ ; s) = P(τ ; s) · P (t;F (τ ; s)) .

Considering (2.11) it follows from this the invariant functional equation

π(s) = P(t; s) · π (F (t; s)) ,

that has a transition functions version as

πj =
∑

i∈N0

πipij(t), j ∈ N0.

The theorem is proved. 2

The following theorem describes main properties of GF π(s).

Theorem 2. In conditions of Theorem 1 GF π(s) =
∑

j∈N0

πjs
j is positive and strongly increasing

for 0 6 s < 1. If in addition suppose
∑
j∈N

bjj ln j < ∞, then

1

nλ
[π0 + π1 + · · · + πn] →

1

Γ (λ + 1) bλ
, n → ∞, (2.12)
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where Γ(∗) is the Euler’s Gamma function.

Proof. Positiveness of π(s) is obvious. Direct differentiating implies

π′(s) = −
g(s)

f(s)
π(s).

In the considering case GF f(s) monotonously decreases from f(0) > 0 to f(1) = 0, and GF g(s)

monotonously increases from g(0) < 0 to g(1) = 0. Therefore π′(s) > 0 for all 0 6 s < 1.

It is easy to see that in additional condition the function

B(s) := exp

{
−

∫ 1

s

[
g(u)

f(u)
+

λ

1 − u

]
du

}
(2.13)

is bounded for 0 6 s < 1. So that

π(s) ∼
1

bλ (1 − s)
λ

, s ↑ 1.

According to Hardy-Littlewood Tauberian theorem, from last formula it follows (2.12). 2

Corollary 1. If conditions of Theorem 1 occur and in addition
∑
j∈N

bjj ln j < ∞, then

tλp00(t) →
1

bλB(0)
, t → ∞,

where function B(s) is defined in (2.13).

3. A speed rate of convergence to invariant measures

Recall the GF F (t; s) = EsZ(t), where Z(t) is MBP without immigration . This GF is the

solution of backward Kolmogorov equation (see [12, p.27])

∂F (t; s)

∂t
= f (F (t; s)) , (3.1)

with initial condition F (0; s) = s, here f(s) is infinitesimal GF defined in Section 1.

Let a 6= 0. Multiplying to f ′(q) · (F (t; s) − q) the equation (3.1) we transform as

dF (t; s)

F (t; s) − q
·

[
1 −

f (F (t; s)) − f ′(q) · (F (t; s) − q)

f (F (t; s))

]
= f ′(q)dt.

Integrating this equation on [0; t] ⊂ T it receives

R(t; s)

R(0; s)
= βt exp

{∫ F (t;s)

s

[
1

u − q
−

f ′(q)

f(u)

]
du

}
, (3.2)

where R(t; s) = q − F (t; s) and hereinafter β := exp {f ′(q)}. Since R(0; s) = q − s and

sup
06s<1

F (t; s) → q, taking limit in (3.2) as t → ∞ entails the following assertion.

Lemma 2. If a 6= 0, then

R(t; s) = A(s) · βt (1 + o(1)) , t → ∞, (3.3)

for 0 6 s < 1, where

A(s) = (q − s) exp

{∫ q

s

[
1

u − q
−

f ′(q)

f(u)

]
du

}
. (3.4)
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Note that the Lemma 2 in [6] was proved for the case of a > 0 only.

In considering case our discussion will depend on the function A(s). Thereby we have to

observe properties of this function in detail.

Lemma 3. The function A(s) is continuously, monotone decreasing and concave for 0 6 s < 1.
Moreover if a > 0 or a < 0 and ∑

j∈N

ajj ln j < ∞, (3.5)

then 0 < A(0) < ∞, A(q) = 0, A′(q) = −1. This function is a solution of the Schroeder equation

A (F (t; s)) = βt · A(s) (3.6)

and this solution is unique for 0 6 s < q.

Proof. In fact the function A(s) is defined on the set of 0 6 s < 1, since that is result of (3.2)

as t → ∞. Its continuity is obvious. From (3.4) we have

A′(s) =
f ′(q)

f(s)
A(s). (3.7)

It is known that GF f(s) is convex everywhere. For 0 6 s < q it is strictly positive and monotone

decreasing. As A(s) > 0 and f ′(q) < 0 it follows A′(s) < 0. Hence the function A(s) is monotone

decreasing. By the same reasoning we will be convinced that A(s) to be monotone decreasing

for q 6 s < 1.

We know that in point of s = q the GF f(s) changes its sign from plus to minus and its

derivative f ′(s) monotonously increase. Therefore considering A′(s) < 0 we find out that

A′′(s) =
f ′(q) − f ′(s)

f(s)
· A′(s) < 0.

This implies the concavity of A(s).

In case a < 0 the condition (3.5) is equivalent to that

∫ 1

0

f(u) − a(u − 1)

(u − 1)f(u)
du = lnA(0) < ∞; (3.8)

see [12, p.57]. We see that that A(0) > 0 and this is finite. In the case a > 0 we can easily be

convinced that 0 < A(0) < ∞ from (3.4). The assertion A(q) = 0 directly follows from (3.8) in

the case a < 0. If a > 0, then the integrand in (3.4) stays bounded as s → q and hence A(q) = 0.

Considering f(s) ∼ f ′(q)(s − q) as s → q, it follows from (3.4) and (3.7) that

A′(q) = lim
s→q

A′(s) = lim
s→q

f ′(q)

f(s)
A(s) = lim

s→q

A(s)

s − q
= −1.

Now designating K(u) the integrand in (3.4) we see that function A(s) actually satisfies the

equation (3.6):

βtA(s) = (q − s)βt exp

{∫ F (t;s)

s

K(u)du

}
exp

{∫ q

F (t;s)

K(u)du

}
=

= (q − F (t; s)) exp

{∫ q

F (t;s)

K(u)du

}
= A (F (t; s)) .
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In the last equality we used (3.2).

To observe the uniqueness of the solution of equation (3.6) we follow the method from [2,

p.14]. Suppose Ã(s) to be an arbitrary solution of (3.6). Then it as well as A(s) satisfies to

equation

A′ (F (t; s)) · F ′(t; s) = βt · A′(s). (3.9)

Hereinafter, if not otherwise stated, the derivative symbol for the function F (t; s) should be

understood by s. It follows from (3.9)

A′(s)

Ã′(s)
=

A′ (F (t; s))

Ã′ (F (t; s))
. (3.10)

We have already proved that the solution of (3.6) is concave, hence both A′(s) and Ã′(s) are

monotone decrease. Since F (t; 0) ↑ q for all 0 6 s < q, there always exists some τ ∈ T and some

arbitrary small ε ∈ T such that F (τ ; 0) 6 s 6 F (τ + ε; 0). Then by combining the equalities

(3.9) and (3.10) we can write following relations:

A′(s)

Ã′(s)
6

A′ (F (t;F (τ ; 0)))

Ã′ (F (t;F (τ + ε; 0)))
6

6
A′ (F (t + τ ; 0))

Ã′ (F (t + τ ; 0))
·

Ã′ (F (t + τ ; 0))

Ã′ (F (t + τ + ε; 0))
6

6
A′(0)

Ã′(0)
·
F ′(t + τ + ε; 0)

F ′(t + τ ; 0) · βε
=

A′(0)

Ã′(0)
·
F ′ (ε;F (t + τ ; 0))

βε
. (3.11)

Since F (t; 0) ↑ q, we see F ′ (ε;F (t; 0)) ↑ βε as t → ∞. Undoubtedly that F ′ (t; q) = βt. So

taking limit as t → ∞ of right side of (3.11) gives

A′(s)

Ã′(s)
6

A′(0)

Ã′(0)
.

A similarly reasoning implies a converse inequality. Thus we have

A′(s)

Ã′(s)
=

A′(0)

Ã′(0)
= const,

As A(0) = Ã(0), then A(s) = Ã(s). The Lemma 3 is proved completely. 2

Further, according to Lemma 1

P(t; s)

P(t; 0)
= exp

{∫ t

0

[g (F (τ ; s)) − g (F (τ ; 0))] dτ

}
→ U(s).

Using this relation gives

e|g(q)|tP(t; s) = exp

{∫ t

0

[g (F (τ ; s)) − g(q)] dτ

}
∼

∼ U(s) · exp

{∫ t

0

[g (F (τ ; 0)) − g(q)] dτ

}
∼

∼ U(s) · exp

{∫ F (t;0)

0

g(u) − g(q)

f(u)
dτ

}
∼

∼ U(s) · C(0) · exp

{∫ F (t;0)

q

g(u) − g(q)

f(u)
dτ

}
,
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as t → ∞. From here, having designation

H(s) := exp

{∫ q

s

g(q) − g(u)

f(u)
dτ

}
,

for 0 6 s < q and taking into account (2.7), obtain

e|g(q)|tP(t; s) ∼ C(s) · H (F (t; 0)) , t → ∞. (3.12)

Using the Taylor expansion for H(s) it follows

H(s) ∼ 1 +
g′(q)

f ′(q)
(s − q), s ↑ q. (3.13)

Combining now relations (3.12) and (3.13), taking into account convergence F (t; 0) → q we draw

a conclusion that

e|g(q)|tP(t; s) ∼ C(s) ·

(
1 +

g′(q)

|f ′(q)|
R(t)

)
, t → ∞.

We use the received asymptote together with the formula (3.3) in equality (1.2). Then considering

that Fi(t; s) ∼ qi−iqi−1R(t; s), we write the following theorem which gives an estimation of speed

of convergence in (2.4).

Theorem 3. Let a 6= 0. If
∑
j∈N

bjq
j ln j < ∞, then

e|g(q)|tPi(t; s) = qiC(s) ·

(
1 +

(
g′(q)

|f ′(q)|
−

i

q

)
A(s)βt (1 + o(1))

)
,

as t → ∞, where limit GF C(s) has the form of (2.5) and function A(s) defined in (3.4) and
β = exp {f ′(q)} as before.

Using the continuity theorem of GF attracts from the Theorem 3 the following statement.

Corollary 2. In conditions of Theorem 3 a following representation hols:

e|g(q)|tpij (t) = qiσj ·

(
1 +

(
g′(q)

|f ′(q)|
−

i

q

)
A(0)βt (1 + o(1))

)
,

as t → ∞.

In critical case we have to use the following lemma.

Lemma 4 ( [5]). Let a = 0 and 2b := f ′′(1). If c = f ′′′ (1) < ∞, then

R(t; s) =
1

bt
+

c

6b3

ln bt(1 − s)

t2
+ ε(t; s), (3.14)

as t → ∞, where

sup
06s<1

|ε (t; s)| = o

(
ln t

t2

)
.

The following theorem holds.

Theorem 4. Let in critical MBPI 2b := f ′′ (1), α := g′ (1) and λ = α/b. If c := f ′′′ (1) < ∞
and g′′ (1) < ∞, then

tλP(t; s) = π(s) ·

(
1 +

αc

6b3
·
ln bt(1 − s)

t
(1 + o(1))

)
, t → ∞. (3.15)
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Proof. Repeating initial reasoning in the proof of Theorem 1, we have

tλP(t; s) = exp

{
λ ln

[
tR(t; s)

1 − s

]
+

∫ F (t;s)

s

[
g(u)

f(u)
+

λ

1 − u

]
du

}

= π(s) · exp

{
λ ln [btR(t; s)] −

∫ 1

F (t;s)

[
g(u)

f(u)
+

λ

1 − u

]
du

}

= π(s) · [btR(t; s)]
λ
· B (F (t; s)) , (3.16)

where the function B(s) is defined in (2.13). Owing to Taylor expansion and the Lemma 4

B (F (t; s)) ∼ 1 −
g′′(1)

2b2t
, t → ∞. (3.17)

In other hand according to Lemma 4 again

btR(t; s) = 1 +
c

6b2

ln bt(1 − s)

t
(1 + o(1)) , t → ∞. (3.18)

Now formula (3.15) follows from (3.16)–(3.18). 2

Setting s = 0, it follows from Theorem 4 the assertion below.

Corollary 3. In conditions of Theorem 4 the following asymptote holds:

tλp00 (t) =
1

bλB(0)
·

(
1 +

αc

6b3
·
ln t

t
+ o

(
ln t

t

))
, t → ∞.

The following theorem is generalization of Theorem 5 for all i ∈ N.

Theorem 5. Let conditions of Theorem 4 hold. Then

tλPi(t; s) = π(s) ·

(
δi(t) +

αc

6b3
·
ln bt(1 − s)

t
(1 + o(1))

)
(3.19)

as t → ∞, where δi(t) = 1 − i/bt.

Proof repeats the reasoning in previous theorems and it follows

tλPi(t; s) = π(s) · Fi(t; s) · [btR(t; s)]
λ
· B (F (t; s)) .

We get on to statement (3.16) using (3.14), (3.17), (3.18), seeing Fi(t; s) ∼ 1 − iR(t; s). 2

Finally, from Theorem 5 we have the following

Corollary 4. In conditions of Theorem 4

tλpi0 (t) =
1

bλB(0)
·

(
δi(t) +

αc

6b3
·
ln t

t
+ o

(
ln t

t

))
, t → ∞,

and for all j ∈ N the following asymptote occurs:

tλpij (t) = πj ·

(
δi(t) +

αc

6b3
·
ln t

t
+ o

(
ln t

t

))
, t → ∞,

where δi(t) as in Theorem 5.

Proof of first assertion follows from (3.16) setting in it s = 0. The second one is consequence

of use the continuity theorem for GF. 2
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О предельном поведении марковских ветвящихся
процессов с иммиграцией непрерывного времени

Азам А. Имомов

Мы рассмотрим марковский ветвящийся процесс с иммиграцией. Исследуются предельные свой-

ства переходных вероятностей и их сходимость к инвариантным мерам. Определяется скорость

этой сходимости.

Ключевые слова: марковский ветвящийся процесс, иммиграция, переходные вероятности, инва-

риантные меры, скорость сходимости к инвариантным мерам.
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