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Given a linear homogeneous multidimensional difference equation with constant coefficients, we choose
a pair (v, w), where 7 is a homological k-dimensional cycle on the characteristic set of the equation and w
s a holomorphic form of degree k. This pair defines a so called homological solution by the integral over ~y
of the form w multiplied by an exponential kernel. A multidimensional variant of Perron’s theorem in
the class of homological solutions is illustrated by an example of the first order equation.
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Introduction

In this paper we consider linear homogeneous difference equations. In one-dimensional case
they can be written as

f@+k)+api(@)f(e+k—1)+ - +ao(z)f(z) =0, (1)

where f(z) is an unknown function of a discrete argument z € Z (or Z,) with values in C.
Equations (1) were studied in detail in [1-3]. In the case of constant coefficients (when all a; do
not depend on x) one associates with the equation (1) its characteristic polynomial

P(z)=2"+ap_12"" 1+ +ay. (2)
The roots A1, ..., A\x € C of this polynomial generate the space of solutions to (2) as exponential
solutions; for example, if all roots are different, then A{, ..., A{ are a base of the solution space.

In the case of variable coefficients an important role is played by the limit characteristic
polynomial, which coefficients aj, are equal to the limits of functions ax(x) as * — +oo. But in
this case we can speak only of the effect of the roots of the limit characteristic polynomial on
the asymptotic of the solutions to the equation (1), as follows from Poincaré’s theorem.
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Theorem (Poincaré [1], see also [3]). Assume that the coefficients aj(x) of equation (1) have
finite limits
lim aj(z)=ta;, 7=0,...,k—1,

xr—-+00
and that the roots Ai,..., A\ of the limit characteristic polynomial all have different absolute
values.
Then for any nonvanishing solution f(x) to the equation (1) the limit

. fle+1)
m (@)

exists and is equal to one of the characteristic roots \;.

flx+1)
f(x)

limit characteristic polynomial (when all base solutions f(x) of the equation (1) are run over) is
answered by Perron’s theorem.

The question whether the limits of the ratios attain all the values of roots of the

Theorem (Perron [2], see also [3]). Assume that all conditions of the Poincaré theorem hold
for the equation (1), and moreover ag(x) # 0 for all x € Z. Then there are k solutions
fi(@),..., fu(z) of this equation such that

(w1
im GEED yak

e—too  fi(x)

Now consider the multidimensional case. Let f(z) = f(x1,...,2,) be a complex-valued
function of a discrete argument x € Z™. We consider the linear shift operators on the vector
space of such functions:

§;if(x)=flx+ej) = flz1,...,xj-1,2; + 1,241, .., Tn), J=1,...,n.

Using notation 6 = (d1,...,0,) we can associate to every polynomial
P(z,2) = Z o (x) 2"
a€cA

a difference equation

P(z,8)f(x) = > an(z)f(z+a) = 0;

acA

here A C Z' is a finite set of indices a = (a1, ..., an).
In the case of constant coefficients a,(z) = a, the polynomial

P(z) = Z e 2"
a€A

is said to be characteristic and each its solution z = A = (Aq,...,\,) defines an elementary
exponential solution f(x) = A* = A{* ... A%". But now the characteristic set

V={zeC": P(z)=0}

is not finite, so there exist many ways to compose solutions from the elementary exponents.
For example, if the characteristic polynomial P(z) has no multiple factors, then all exponential
solutions can be written as the integral [4]

f(z) = / du(z), (3)

v
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where dy is a measure with the support on the characteristic set.

In the present paper we introduce a subclass of exponential solutions for which the measure du
in (3) is given by the pair (y,w), where v € Zx(V) is a k-dimensional homological cycle on V
and w € Q%(V) is a closed holomorphic differential form on V of degree k. That is, we consider
solutions given by the integral

f(w):/ZIW(Z), yeZ(V), weQkV), k=1,...,n—1. (4)

v

We call them admissible or homological solutions, since they depend only on the homology
class of v. The restriction of the integral (4) on the ray L, = {z = ¢-I; | € N} with the directing
vector ¢ = (q1,...,qn) € Z™ \ {0} turns into the Laplace integral

f@y, = [w@ean),

Y

with the parameter [ and the phase
p(2) =(¢;In2) =qiInzi + - +gnlnz,.

Consequently, the behaviour of a homological solution f(x) along radial directions can be studied
by the method of stationary phase (see [5]). The stationary (critical) points of the phase ¢
are exactly the values of the inversion z = 7 !(q) of the logarithmic Gauss map ~ for the
characteristic set V' (see formula (8) in section 2).

In the paper [6] solutions (4) were considered only for k = n — 1, i.e. for half-dimensional
cycles v. For such solutions a multidimensional analog of Poincaré’s theorem was proved in [6],
where instead of the ratio f(x + 1)/f(z) the authors considered the vector (see section 2)

(15

restricted on the ray L,. This vector we call a Horn vector.
The main purpose here is to show by an example of one-order equation that the study of all
dimensions k = 1,...,n in (4) allows to obtain a multidimensional Perron theorem (Theorem 3).

1. Basic definitions and some known facts around
the concept of amoeba

Let us recall same notions and definitions we shall use. Denote by T™ = (C\{0})™ the complex
algebraic torus.

Definition 1 ( [7]). The amoeba Ay of an algebraic set V' C T™ is the image of V under the
logarithmic map Log : T" — R"™ defined by the formula

Log: (z1,-..,2n) — (loglz1],...,log|zn]).
An important notion in the study of amoebas is the following one.

Definition 2 ( [8]). The contour Cy of the amoeba Ay is defined to be the set of critical values
of the logarithmic map Log restricted to V.
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The structure of the contour is described with the help of the logarithmic Gauss map
Yo V — C]P)n_l,

which to any nonsingular point z € V' associates the complex normal v (z) to the hypersurface
log V' at the point log z (here log z; = log|z;| + ¢ arg z; is the complete (complex) logarithm).
In the case of a hypersurface

V={2eT": P(z) =0},

when V is the zero set of a single polynomial P(z), the logarithmic Gauss map admits the
following analytic expression

oP 9P

(217"'7Zn) - (2187211 Do Zﬁ@)

For the surfaces of codimension greater than 1 the corresponding expression for the logarith-
mic Gauss map see in [9].

Theorem ( [10]). A point of a hypersurface V is critical for the map Logl|,, if and only if its
image under the logarithmic Gauss map belongs to the real projective subspace RP,_1; C CP,_;.

According to this statement the contour Cy of the amoeba Ay is the set Log(y~}(RP,_1)).
The boundary 0Ay of the amoeba belongs to the contour Cy but in general Cy is larger. We
say that the boundary 0.4y comprises the external part of the contour Cy,, while the rests of the
contour we call its internal part.

Sometimes it is more useful to study the contour of the amoeba looking at the compactified
amoeba.

By the compactified amoeba Ay of a projective algebraic set V' C CP,, defined in the ho-

mogeneous coordinates (Zy : -+ : Z,) we call the image of this variety under the moment map
w:CP, — %,
(|Z0|7 ) ‘ZTLD
Zyi i1 ly) > ———————
% UV A

into the standard simplex ¥, = {t e R" ™! : ¢; > 0,t0 + -+ + ¢, = 1} [11].

Remark. The projective space CP,, is the union of the complex torus T™ and n+1 hypersurfaces
{Z; =0}, j=0,...,n. The amoeba Ay corresponds to the points of V' in the complex torus T",
the compactified amoeba Ay corresponds to Ay with the (n + 1) compactified amoebas of
hypersurfaces V; = V (({Z; = 0} of one dimension less.

Definition 3. The contour of a compactified amoeba is the image of the set of critical values of
the projection Log|,, under the moment map .

Example 1. The amoeba of the complex line z; + 2o + 1 = 0 in T? is shown on Fig. 1 (left).
The contour of this amoeba consists only of the boundary d.Ay. The compactified amoeba of
this line is shown on Fig. 1 (right) as the shaded triangle.

Theorem ( [11,12]). Let n > 3. The compactified amoeba Ay of the hyperplane
V:{ZET":P:b0+b121+-"+bn2n:0}, bj;éO,

is an n-dimensional polyhedron with 2(n+ 1) hyperfaces in the simplex 3, defined by the inequal-
ities
n
t]>0; Ztlzla Bjt]<2ﬁ]tk7 j:O7"'ana
1=0

k#j

— 420 —



Natalia A.Bushueva, Konstantin V. Kuzvesov, Avgust K. Tsikh On the asymptotic of homological ...

~

Fig. 1. Amoeba for a complex line in C? and its compactified variant

where B; = |b;|. The external part of its contour (the boundary Ay ) consists of (n+1) simplicial

faces of Ay

teESn: Bty = Btk g, j=0,...,m,
K

and the internal part consists of (2" —n — 2) polyhedrons of the form

{tezn:Zﬂktk:Zﬂltl}a IC{O,...,TL}, 2<H#I<n—1.

kel g1

We see that in the case n = 2 the internal part of the contour of the amoeba is empty (we saw
this also in Example 1). For n = 3 the compactified amoeba of the hyperplane z; +25+23+1 =10
in C3 is an octahedron (Fig. 2). On the left of Fig. 2 the external part of the contour is coloured,
it consists of n+ 1 = 4 faces of the octahedron, which correspond to the boundaries of connected
components of R? \ Ay. The remaining 2" — (n + 1) — 1 = 3 internal pieces of the contour
are parallelograms, each dividing the octahedron in two quadrangular pyramids (on the right of
Fig. 2). In accordance with the remark to the definition of the compactified amoeba, the four
non coloured faces of the octahedron correspond to amoebas of smaller dimension, namely, to

amoebas of lines V/;.

Q £

Fig. 2. The external and internal parts of the contour of the compactified amoeba for the complex
hyperplane z; 4+ 25 4+ 23 +1 =0 in C>
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Further, we shall need some more general facts about amoebas.

1. The complement R™\ Ay consists of a finite number of connected components { E'}, each is
open and convex, and each preimage Log ™" (E) is the domain of convergence of the corresponding
Laurent series for the rational function 1/P centred at the origin, see [7].

2. There exists an injective mapping
v: {E} >Z"NNp

such that the normal cone of the Newton polyhedron Np at the point v(E) coincides with
the recession cone of the component E. The integer vector v(E) is called the order of the
component F, and we shall denote by E, the component of the order v, see [11].

3. The number of connected components is at least equal to the number of vertices of the
polytope Np and is at most equal to the total number of integer points of Np:

#vertNp < #{E} < #{Z" N Np}.

2. Fundamental solutions to equations with constant
coefficients

In [6] a class of fundamental solutions to the scalar difference equations with constant coeffi-
cients

P6)f(z) =0 (5)

was defined. Like homological solutions (4) these fundamental solutions are defined by integrals,
but the integration cycles here lie outside the characteristic set. Namely, in [6] to each connected
component E, of the amoeba complement R™\ Ay a fundamental solution is associated by means
of the integral

1 Z" dz
v - " —— 6
Pu(x) (2mi)m / P(z) = (6)
where I', = Log ™!  is an n-dimensional real torus defined by an arbitrary point u € E, (Fig. 3),
d d dzp
and = is the differential form - A -+ A “%. The integral (6) satisfies the relation
z 21 Zn

1 L4z
Zaoﬂ’u(aH—a) = W/Z - = 0,0

acA .
where 0, ¢ is the function equal to zero for all x € Z™ \ {0}, and at the point 0 its value is equal
to 1. Thus, P(x) is a fundamental solution.
Now, a certain class of solutions to equation (5) can be obtained as linear combinations of
fundamental solutions

f(z) = Zm,,”Pl,(x), Zmy =0. (7)

In fact, besides (5), the class of solutions (7) satisfies the extended system of difference
equations

PO)f(x) := X aaf(z+a) =0,

a€A
S(zpay — ziam)anflz+a) =0, i=1,...,n—1,

acA
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B>

Fig. 3. Components of the amoeba complement for the polynomial 22w — 4zw + zw? + 1 and
some integration cycles I',,

which is called the associated system for the equation (5). This system is holonomic, i.e. the
dimension of the space of its solutions is finite. As z — oo along the ray x = a + lg with the

directing vector ¢ = (¢1,. .., ¢,) its limit characteristic system is
P(z) =0,
z P ; _ % - (8)

ZnPl qn )

Zn

The roots z = A(q) of the algebraic system of equations (8) are exactly the preimages v~ !(q)
of the logarithmic Gauss map v : V — CP,,_; (see the analytic definition of ~ in section 1). The
asymptotic behaviour of solutions (7) is described by the following theorem.

Theorem (Leinartas, Passare, Tsikh [6]). If for the direction q € QP,,_; the roots \;)(q) of
the limit characteristic system (8) are such that the absolute values of all monomials [\(;)(q)]?
are different, then for any solution f(x) of the form (7) non-vanishing on the sequence {a +1q},
a € 7", the limit of the Horn vector

lim (f(a};;)el),._w f(ﬂ}z;)en))

is equal to one of the characteristic roots A (q).

=00 r=a+lq

In [6] we investigated the connection between combinations (7) of fundamental solutions (6)
and homological solutions (4) in the case k = n — 1. In section 3 we shall complete the list of
fundamental solutions (see formula (17)) and describe their connection with homological solu-
tions (4) for k < n — 1 (see Proposition 1).

3. Multidimensional Version of the Perron Theorem for the
First Order Difference Equation

Consider a scalar difference equation of the first order

bof(2>+b1f($+€1)+"~+bnfn(l‘+€n):0, (9)
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with the linear function as the characteristic polynomial

In this case the characteristic set V = {z € T" : P(z) = 0} is a hypersurface. We assume that
all coeflicients b; # 0.

We introduce the following notion in order to formulate results in terms of the contour of the
amoeba.

Definition 4. The logarithmic Horn vector of the function f(x) along the direction q € RP,_;
is defined to be the vector

f(z+en) >
f(x)

f(@+e1)

log ‘
< f(z)

Theorem 1. The limit positions of the logarithmic Horn vector for fundamental solutions (6)

to the scalar first order difference equation (9) fill the external contour of the amoeba Ay .

,...,log‘

z=ql

Proof. In the case of the first order scalar difference equation the theorem by Leinartas-
Passare-Tsikh [6] describes the asymptotic behaviour of solutions f(x) only for directions g,
corresponding to the external part of the contour of the amoeba Ay of the characteristic set,
because according to the definition, the fundamental solution P,(a + lg) is equal to zero for
directions ¢, corresponding to the internal part of the contour of Ay . O

Recall that an admissible solutions of the equation (9) has the form

f@%:/fw@% v € Zu(V), we (V). (11)

Fundamental solutions (6), described in the previous section, are defined by integrals over
cycles v € Hy,—1(V) of maximal dimension. We use them to obtain solutions to the equation (10)
with asymptotic behaviour only along the directions ¢ that correspond to the internal part of
the contour of the amoeba Ay of the characteristic set V = {z € T" : P(z) = 0}.

The remaining solutions with asymptotic along the directions ¢, corresponding to the internal
part of the contour of Ay, are given by the cycles 7 € Hy (V) of smaller dimension k < n — 1.

Let us find a section of V' by a plane .S such that a point of the internal part of the contour
of the amoeba Ay lies in the external part of the contour of the section V' N S.

Lemma 1. Let the point a belong to the internal part of the contour of the amoeba Ay of the
complex hypersurface V.= {z € T" : by +b1z1+ - +bnz, = 0}. Then there exists a plane S of
the form {z; = ¢; = const : j € J} (here J is a subset of {1,...,n} and depends on the point a)
such that

— the point a belongs to the internal part of the contour of the amoeba Ayns;

— the parts of the external contour of the amoeba Ayns that do not contain the point a belong
to the external part of the contour of the amoeba Ay .

Proof. The critical set of the logarithmic projection Log |y is defined by a solution z(g) of
the system of equations
bo+b1z1+---+bpz, =0,

b1z1 o o bnzn
q1 qn ’
where ¢ = (g1 : -+ : gn) € RP,,_1. This solution is given by the formula
bo g ,
zilq) =——————, i=1,...,n. 12
()=~ (12)
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Let us find out for which values of ¢ the image Log z(g) lies in the external and in the internal
part of the contour of Ay .

On the Reinhardt diagram, the external part of the contour corresponds to the boundary of
the image of V. The boundary consists of n + 1 connected components defined by the equations

[b1z1] + -+ + [bpza| — [bo] =0, (13)

Indeed, on the Reinhardt diagram, in a neighbourhood of the image of each solution to, for
example, the equations (13), there are both points belonging to the image of V', and points that
do not have a preimage on V. Such points should be looked for on hyperplanes defined by the
equations of the kind

[b1||z1] + - - + |bn||zn| — 7 = 0. (15)

For r < |bg| the solutions to (15) do not have a preimage on V', and for r > |by| there are points
from a neighbourhood of the solution having a preimage. Similarly, the equations (14) describe
the external part of the contour.

Now we find the condition on the parameter ¢ which guarantees that the image of the critical
points of the logarithmic map lies in the boundary of V' on the Reinhardt diagram.

We substitute (12) in (13) and (14) to see that the parameters corresponding to the connected
components of the external part of the contour satisfy one of the equations

e |,
Gt ot
R
Gt T

_|_q7”
G+ Fan
+q7n
G+t

—1=0,

e,
Qa+-+an

Therefore, the image Log z(g) of the point z(q) lies in the external part of the contour of Ay
if the inequality
di

— >0
Gt

holds either for all ¢ or only one.
Correspondingly, the image a of the point 2° = z(¢”) belongs to the internal part of the

contour of Ay if
0

4q; .
—2 <0 forjeJc{l,...,n},
A+ 44 (16)

0
q(l)—l-qilﬁ—qg>0 forzE{l,...,n}\J,

with the condition 1 < |J| < n — 2 on the cardinal number of the set J (for n = 3 see Fig. 4,
where (¢1,¢2) are affine coordinates).

Consider the point a lying in the internal part of the contour of Ay and construct a suitable
section S.

Let a = Log 2" and 2° = 2(¢"). Determine the set J, for which the parameter ¢° = (¢?,...,¢%)
satisfies the system of equation (16) and consider the plane

S={ze€T": z;=¢;, j€J},

where ¢; = z? are constants, which depend on the parameter ¢°:

bo q)

cj = _—.
Y B
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q2

q1 q1

¢ +qg+1=0 G +qg+1=0

Fig. 4. The connected components of the definition domain for the parametrization of the
contour of the amoeba of a plane in C3: for the external components (left) and for the internal
components (right)

The intersection of V and S is a plane, which we see as a hyperplane in the space T/! of the

remaining variables 'z = (z;), i € I, where I = {1,...,n} \ J:
VvnsS= {/Z ET‘” : bo—‘erjCj"f-ZbiZi :0}
jeJ iel

The Log-image of the point '2° with the coordinates z?, i € I, belongs to the external part

of the contour of Ayns. Indeed, denote l;) =by+ ZjeJ

of amoeba Ay ng consists of the Log-images of points 'z € THI with the coordinates

b;c;, then according to (12) the contour

bo G .
Zz‘(?f):—%ﬁy iel,
i 2uier i

where ¢ = (¢;)icr runs over RP|;_;. Furthermore, the point '20 corresponds to the value of ¢
such that

bo @ b 0
S . S— =, €l
biZiejqi qu1++qn
So, according to (16), for all i € T
G bo 4 bo %

Zie]ai _goq(l)"‘"""qg B

bO+Zj€ij <_qu(f+~-~+q0

1 q?
- qo q?+...+q0>07
1-3 J "

S R

b o >ﬁ+m+ﬁ

this means that the point Log(’z®) belongs to the external part of the contour of the
amoeba Ayng.

Hence, the first statement of the lemma is proved.

Now consider the parts of the contour of Ay ng not containing the point a. It is obvious that

the internal parts of the contour of Ayng, if they exist, do not intersect the external contour
of .Av.
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Let the image of the point 'z = 'z(q) € S lies in the external part of the contour of Ayng,
_ %
Dier i
to the positive relations for all i, contains the point a. The point z € V, corresponding to
'z € VN S, has the parametrization z = z(q), related to the parameters used above by

then > 0 only for one 7 from I, because the external part of the contour, corresponding

e bo#:_ﬁk fori € I,
bigi + - +an bi 2161 qi
bo 4 bo 4y .
Z2j=—————"—"—"=2¢(¢j = — 70 fOI“jEJ
bjai+--+an bjai +- +an

Let us show that the image of the point z lies in the external part of the contour of Ay . Indeed,
for ¢ € I the inequality

qi b @ bt Xiesbie @ 1 @ di
— o 4 _ = [1- : _ >0
G+ +an bo Y e Ui bo dier i ier @+ +qf Dicr Ui

holds only for one value of i. But for j € J

0
4q; _ 4q;

= 5 <0.
R

Thus, the second statement of the lemma is also proved. O

It follows that in the constructed sections we act exactly as in C™ taking into account that
one of the external parts of the contour of the amoeba Ay ng of the section lies in the internal
contour of the amoeba Ay of the given hyperplane.

We are now going to determine the asymptotic of the solutions of the type (11) for the cycles
of dimension less then n — 1 in the directions ¢ corresponding to the internal part of the contour
of Ay. Let z = z(q) be a point in the internal part of the contour, this means

U]
qt

q; .
—————— >0 foriel=A{1,...,n}\J,
. {1n

<0 forjeJ=c{l,...,n},

and k is the cardinal number of I.
Consider a cycle v € Z,_1(V N S) and the corresponding integral

f(x):/ /H 7 [ 20 wizr21) i $J/I_IZ w(cs, 21),

b v jeJ iel icl

where 27 = (2j,,...,25, +), 21 = (Ziy, .., 2i,) and ¢y = (¢j,5 -+, Cj_x)-
For = = ¢l it is a Laplace integral

H it /exp (I < qr,Inzy >)w(ey, 21).

jeJ Y

The critical phase points ¢(z7) =< qr,Inz; >|, ¢ coincide with the critical points of the mono-
mial z;% and project to the contour of the amoeba Ayng (see [6]). Moreover, max Re p(z1) is
zZrey

attained in the only point z;(q) € V'NS, for which the image of the logarithmic Gauss map ~y(zy)
equals to q.
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Therefore, following the saddle point method, we have the asymptotic

)~ [ 2O 15 2()" = C- 175 2()", 1 ox,
jeJ

where the coefficient C' does not depend on [, therefore,

i log ’fql+e)

= log|z(q)]-

Note that it is possible to calculate the asymptotic of the solutions of the type (11) represented
by integrals over any cycles v € Z; (V') and not only over cycles lying in the section VNS. Indeed,
by the Bernshtein-Danilov-Khovanskii theorem [13] the elements of the group Hy (V) are given
by cycles in sections of V' by complex planes of dimension k. One can do this the following way.

Every k-cycle on V' is homologous to a sum of iterated Leray coboundaries over the intersection
of the closure V in C" with intersections of k coordinate planes T; = {z € C" : z; = 0} (see [14]):

Hy (V) = b SFHVAT, N--NT),

1< < <ig<n

where the sum is taken over all ordered sets of integers 1 < i; < --- < i, < n, and 0¥ is an
iterated Leray coboundary [15].

The construction of a Leray coboundary allows to consider a tube not just in C™ but in the
section V' NS C T" over the intersection V N;ey T;. Therefore, any k-dimensional cycle on V is
homologous to a sum of cycles lying in the section of V' by some k-dimensional plane.

Consider on the chosen intersections V' N .S the fundamental solutions

1 2% le'l lek
(7)) = —— ALop L 17
Prv() (2mi)k / P(z) z; Zi, (17)

FI,L/

where I'y , = Log_1 u, and u, belongs to Ej,, a connected component of the complement of
the amoeba Ayng C RF.
This proves the following theorem.

Theorem 2. The limit positions of the logarithmic Horn wvector for the fundamental so-
lutions (17) of the first-order scalar difference equation (9) fill the internal contour of the
amoeba Ay .

Analogously to formula (7), a linear combination of solutions (17) gives some class of solutions
to the equation (9):
ZmIVPIV Zmlu—o

Moreover, f(z) can be represented in the form (11) due to the following proposition.

Proposition 1. For v # pu,

Pro(x) — Pr(a) = / 2" Res {P?ZZ)IZI]’

Yv,u

dZ[
h
where Res [P

B } is a Leray residue form for
Z)ZT

dZ[ i
P(2)z;
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Proof. Let the cycles I'y , and I'y ,, be defined by points u, and w, from different connected
components of the complement of the amoeba Ay ~g. Connect u, and u, by the segment h.
The difference of the cycles I'; , — I'r ,, is homeomorphic in Ck \ VN S to a tube over the cycle
VNnSnLog '(h).

Indeed, Log™*(h) is a (k + 1)-dimensional chain homeomorphic to a cylinder: Log™'(h) ~
IxS' % ...S'. The tube over VNSNLog *(h) divides Log™!(h) into two parts, one of which is

k
bounded by this tube and the boundary of the chain Log ™" (h), therefore the difference T'y , —T'r ,,
is homological to a tube over the cycle VNS N Log™*(h).

Now it remains to apply the Leray formula to the integral Py, (x) — Pr . (z)

1 v dz dz;,
Pro(@) = Pro(e) = —— / et day o dE

(27i)k P(2) z;, Ziy
I'ro—Tru
1 2% dz, dz; dzr
= Ao AN —= 'R ,
(2mi)* / P(z2) 2 Ziy /Z * {P(Z)ZI]
S’YV,[.L Yo,
that gives us the stated formula. a

Thus, we have a multidimensional analogue of Perron’s theorem for the first order difference
equations.

Theorem 3. Each point of the contour of the amoeba for the characteristic set of the equa-
tion (10) is a limit position of the logarithmic Horn vector of some fundamental solution to this
equation. The points in the external part of the contour of the amoeba correspond to fundamental
solutions of the form (6), and for k > 2 the points in the internal part correspond to fundamental
solution of the type (17).

Proof. The proof follows from theorems 1 and 2. O
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O6 acuMOTOTHMKE TOMOJIOTUYECKUX PeIleHruii MHOTOMepPHBIX
JIMHENHBIX PA3HOCTHBIX YpPaBHEHUI

Haranpsa A.Bynryesa
Kouncrantun B. Ky3Becos
Asryct K. IIux

Pacemampusaemces mmozomeproe AUHETUHOE DAZHOCMHOE YPABHEHUE C TLOCTMOAHHLMUY KOIPHUUUEHMA-
Mmu u napa (v, w), 20e ¥ — zomonozuneckuti k-mepruli YUKA HA TAPAKMEPUCTIUNECKOM MHONHCECTNEE
YPABHEHUSA, G W — 20A0MODPHAA Popma cmenenu k. Unmeepan no v Gopmvl w, YMHOMHCEHHOT HA IKCNO-
HEHUUGALHOE AO0PO, HA3BIBAEMCA 20MOA0RUMECKUM peweruem. Ha npumepe ypasnenus nepeozo nopadka
UALIOCTNPUPYEMCA MHO2OMEPHIT 8apuarm meopemdv, [leppora 6 Kaacce 2omono2uveckuxr peuteHut.

Kaoueswie caosa: pasHocmHoe ypasHeHue, acCuUMNMoOmuKa, amedo an2edpauieckozo MHOHCECTEA, A02a-
pugmureckoe omobpascenue Iaycca.
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