
Journal of Siberian Federal University. Mathematics & Physics 2014, 7(4), 417–430

УДК 517.55

On the Asymptotic of Homological Solutions to Linear

Multidimensional Difference Equations

Natalia A. Bushueva∗

Institute of Mathematics and Computer Science

Siberian Federal University

Svobodny, 79, Krasnoyarsk, 660041

Russia

Konstantin V. Kuzvesov†

Multifunctional Center

9 May, 12, Krasnoyarsk, 660125

Russia

Avgust K. Tsikh‡

Institute of Mathematics and Computer Science

Siberian Federal University

Svobodny, 79, Krasnoyarsk, 660041

Russia

Received 18.08.2014, received in revised form 25.09.2014, accepted 20.10.2014

Given a linear homogeneous multidimensional difference equation with constant coefficients, we choose

a pair (γ, ω), where γ is a homological k-dimensional cycle on the characteristic set of the equation and ω

is a holomorphic form of degree k. This pair defines a so called homological solution by the integral over γ

of the form ω multiplied by an exponential kernel. A multidimensional variant of Perron’s theorem in

the class of homological solutions is illustrated by an example of the first order equation.
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Introduction

In this paper we consider linear homogeneous difference equations. In one-dimensional case
they can be written as

f(x + k) + ak+1(x)f(x + k − 1) + · · · + a0(x)f(x) = 0, (1)

where f(x) is an unknown function of a discrete argument x ∈ Z (or Z+) with values in C.
Equations (1) were studied in detail in [1–3]. In the case of constant coefficients (when all aj do
not depend on x) one associates with the equation (1) its characteristic polynomial

P (z) = zk + ak−1z
k−1 + · · · + a0. (2)

The roots λ1, . . . , λk ∈ C of this polynomial generate the space of solutions to (2) as exponential
solutions; for example, if all roots are different, then λx

1 , . . . , λx
k are a base of the solution space.

In the case of variable coefficients an important role is played by the limit characteristic
polynomial, which coefficients ak are equal to the limits of functions ak(x) as x → +∞. But in
this case we can speak only of the effect of the roots of the limit characteristic polynomial on
the asymptotic of the solutions to the equation (1), as follows from Poincaré’s theorem.

∗nbushueva@sfu-kras.ru
†kuzvesov@list.ru
‡atsikh@sfu-kras.ru

c© Siberian Federal University. All rights reserved

– 417 –



Natalia A.Bushueva, Konstantin V.Kuzvesov, Avgust K.Tsikh On the asymptotic of homological ...

Theorem (Poincaré [1], see also [3]). Assume that the coefficients aj(x) of equation (1) have
finite limits

lim
x→+∞

aj(x) =: aj , j = 0, . . . , k − 1,

and that the roots λ1, . . . , λk of the limit characteristic polynomial all have different absolute
values.

Then for any nonvanishing solution f(x) to the equation (1) the limit

lim
x→+∞

f(x + 1)

f(x)

exists and is equal to one of the characteristic roots λj.

The question whether the limits of the ratios
f(x + 1)

f(x)
attain all the values of roots of the

limit characteristic polynomial (when all base solutions f(x) of the equation (1) are run over) is
answered by Perron’s theorem.

Theorem (Perron [2], see also [3]). Assume that all conditions of the Poincaré theorem hold
for the equation (1), and moreover a0(x) 6= 0 for all x ∈ Z. Then there are k solutions
f1(x), . . . , fk(x) of this equation such that

lim
x→+∞

fj(x + 1)

fj(x)
= λj , j = 1, . . . , k.

Now consider the multidimensional case. Let f(x) = f(x1, . . . , xn) be a complex-valued
function of a discrete argument x ∈ Zn. We consider the linear shift operators on the vector
space of such functions:

δjf(x) = f(x + ej) = f(x1, . . . , xj−1, xj + 1, xj+1, . . . , xn), j = 1, . . . , n.

Using notation δ = (δ1, . . . , δn) we can associate to every polynomial

P (x, z) =
∑

α∈A

aα(x)zα

a difference equation

P (x, δ)f(x) =
∑

α∈A

aα(x)f(x + α) = 0;

here A ⊂ Zn
+ is a finite set of indices α = (α1, . . . , αn).

In the case of constant coefficients aα(x) ≡ aα the polynomial

P (z) =
∑

α∈A

aαzα

is said to be characteristic and each its solution z = λ = (λ1, . . . , λn) defines an elementary
exponential solution f(x) = λx = λx1

1 . . . λxn
n . But now the characteristic set

V = {z ∈ Cn : P (z) = 0}

is not finite, so there exist many ways to compose solutions from the elementary exponents.
For example, if the characteristic polynomial P (z) has no multiple factors, then all exponential
solutions can be written as the integral [4]

f(x) =

∫

V

zxdµ(z), (3)
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where dµ is a measure with the support on the characteristic set.
In the present paper we introduce a subclass of exponential solutions for which the measure dµ

in (3) is given by the pair (γ, ω), where γ ∈ Zk(V ) is a k-dimensional homological cycle on V
and ω ∈ Ωk(V ) is a closed holomorphic differential form on V of degree k. That is, we consider
solutions given by the integral

f(x) =

∫

γ

zxω(z), γ ∈ Zk(V ), ω ∈ Ωk(V ), k = 1, . . . , n − 1. (4)

We call them admissible or homological solutions, since they depend only on the homology
class of γ. The restriction of the integral (4) on the ray Lq = {x = q · l; l ∈ N} with the directing
vector q = (q1, . . . , qn) ∈ Zn \ {0} turns into the Laplace integral

f(x)|Lq
=

∫

γ

ω(z)el·〈q,ln z〉,

with the parameter l and the phase

ϕ(z) = 〈q, ln z〉 = q1 ln z1 + · · · + qn ln zn.

Consequently, the behaviour of a homological solution f(x) along radial directions can be studied
by the method of stationary phase (see [5]). The stationary (critical) points of the phase ϕ
are exactly the values of the inversion z = γ−1(q) of the logarithmic Gauss map γ for the
characteristic set V (see formula (8) in section 2).

In the paper [6] solutions (4) were considered only for k = n − 1, i.e. for half-dimensional
cycles γ. For such solutions a multidimensional analog of Poincaré’s theorem was proved in [6],
where instead of the ratio f(x + 1)/f(x) the authors considered the vector (see section 2)

(
f(x + e1)

f(x)
, . . . ,

f(x + en)

f(x)

)

restricted on the ray Lq. This vector we call a Horn vector.
The main purpose here is to show by an example of one-order equation that the study of all

dimensions k = 1, . . . , n in (4) allows to obtain a multidimensional Perron theorem (Theorem 3).

1. Basic definitions and some known facts around

the concept of amoeba

Let us recall same notions and definitions we shall use. Denote by Tn = (C\{0})n the complex
algebraic torus.

Definition 1 ( [7]). The amoeba AV of an algebraic set V ⊂ Tn is the image of V under the
logarithmic map Log : Tn → Rn defined by the formula

Log : (z1, . . . , zn) → (log|z1|, . . . , log|zn|).

An important notion in the study of amoebas is the following one.

Definition 2 ( [8]). The contour CV of the amoeba AV is defined to be the set of critical values
of the logarithmic map Log restricted to V .
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The structure of the contour is described with the help of the logarithmic Gauss map

γV : V → CPn−1,

which to any nonsingular point z ∈ V associates the complex normal γV (z) to the hypersurface
log V at the point log z (here log zj = log |zj | + i arg zj is the complete (complex) logarithm).

In the case of a hypersurface

V = {z ∈ Tn : P (z) = 0},

when V is the zero set of a single polynomial P (z), the logarithmic Gauss map admits the
following analytic expression

(z1, . . . , zn) → (z1
∂P

∂z1
: · · · : zn

∂P

∂zn
).

For the surfaces of codimension greater than 1 the corresponding expression for the logarith-
mic Gauss map see in [9].

Theorem ( [10]). A point of a hypersurface V is critical for the map Log|V if and only if its
image under the logarithmic Gauss map belongs to the real projective subspace RPn−1 ⊂ CPn−1.

According to this statement the contour CV of the amoeba AV is the set Log(γ−1(RPn−1)).
The boundary ∂AV of the amoeba belongs to the contour CV but in general CV is larger. We
say that the boundary ∂AV comprises the external part of the contour CV , while the rests of the
contour we call its internal part.

Sometimes it is more useful to study the contour of the amoeba looking at the compactified
amoeba.

By the compactified amoeba AV of a projective algebraic set V ⊂ CPn defined in the ho-
mogeneous coordinates (Z0 : · · · : Zn) we call the image of this variety under the moment map
µ : CPn → Σn

(Z0 : · · · : Zn) →
(|Z0|, . . . , |Zn|)

|Z0| + · · · + |Zn|

into the standard simplex Σn = {t ∈ Rn+1 : tj > 0, t0 + · · · + tn = 1} [11].

Remark. The projective space CPn is the union of the complex torus Tn and n+1 hypersurfaces
{Zj = 0}, j = 0, . . . , n. The amoeba AV corresponds to the points of V in the complex torus Tn,
the compactified amoeba AV corresponds to AV with the (n + 1) compactified amoebas of
hypersurfaces V j = V

⋂
{Zj = 0} of one dimension less.

Definition 3. The contour of a compactified amoeba is the image of the set of critical values of
the projection Log|V under the moment map µ.

Example 1. The amoeba of the complex line z1 + z2 + 1 = 0 in T2 is shown on Fig. 1 (left).
The contour of this amoeba consists only of the boundary ∂AV . The compactified amoeba of
this line is shown on Fig. 1 (right) as the shaded triangle.

Theorem ( [11,12]). Let n > 3. The compactified amoeba AV of the hyperplane

V = {z ∈ Tn : P = b0 + b1z1 + · · · + bnzn = 0}, bj 6= 0,

is an n-dimensional polyhedron with 2(n+1) hyperfaces in the simplex Σn defined by the inequal-
ities

tj > 0,

n∑

l=0

tl = 1, βjtj 6
∑

k 6=j

βjtk, j = 0, . . . , n,
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Fig. 1. Amoeba for a complex line in C2 and its compactified variant

where βj = |bj |. The external part of its contour (the boundary ∂AV ) consists of (n+1) simplicial
faces of AV 


t ∈ Σn : βjtj =

∑

k 6=j

βktk



 , j = 0, . . . , n,

and the internal part consists of (2n − n − 2) polyhedrons of the form

{
t ∈ Σn :

∑

k∈I

βktk =
∑

l/∈I

βltl

}
, I ⊂ {0, . . . , n}, 2 6 #I 6 n − 1.

We see that in the case n = 2 the internal part of the contour of the amoeba is empty (we saw
this also in Example 1). For n = 3 the compactified amoeba of the hyperplane z1+z2+z3+1 = 0
in C3 is an octahedron (Fig. 2). On the left of Fig. 2 the external part of the contour is coloured,
it consists of n+1 = 4 faces of the octahedron, which correspond to the boundaries of connected
components of R3 \ AV . The remaining 2n − (n + 1) − 1 = 3 internal pieces of the contour
are parallelograms, each dividing the octahedron in two quadrangular pyramids (on the right of
Fig. 2). In accordance with the remark to the definition of the compactified amoeba, the four
non coloured faces of the octahedron correspond to amoebas of smaller dimension, namely, to
amoebas of lines V j .

Fig. 2. The external and internal parts of the contour of the compactified amoeba for the complex
hyperplane z1 + z2 + z3 + 1 = 0 in C3

– 421 –



Natalia A.Bushueva, Konstantin V.Kuzvesov, Avgust K.Tsikh On the asymptotic of homological ...

Further, we shall need some more general facts about amoebas.

1. The complement Rn\AV consists of a finite number of connected components {E}, each is
open and convex, and each preimage Log−1(E) is the domain of convergence of the corresponding
Laurent series for the rational function 1/P centred at the origin, see [7].

2. There exists an injective mapping

ν : {E} → Zn ∩ NP

such that the normal cone of the Newton polyhedron NP at the point ν(E) coincides with
the recession cone of the component E. The integer vector ν(E) is called the order of the
component E, and we shall denote by Eν the component of the order ν, see [11].

3. The number of connected components is at least equal to the number of vertices of the
polytope NP and is at most equal to the total number of integer points of NP :

#vertNP 6 #{E} 6 #{Zn ∩ NP } .

2. Fundamental solutions to equations with constant

coefficients

In [6] a class of fundamental solutions to the scalar difference equations with constant coeffi-
cients

P (δ)f(x) = 0 (5)

was defined. Like homological solutions (4) these fundamental solutions are defined by integrals,
but the integration cycles here lie outside the characteristic set. Namely, in [6] to each connected
component Eν of the amoeba complement Rn\AV a fundamental solution is associated by means
of the integral

Pν(x) =
1

(2πi)n

∫

Γν

zx

P (z)

dz

z
, (6)

where Γν = Log−1 u is an n-dimensional real torus defined by an arbitrary point u ∈ Eν (Fig. 3),

and
dz

z
is the differential form

dz1

z1
∧ · · · ∧

dzn

zn
. The integral (6) satisfies the relation

∑

α∈A

aαPν(x + α) =
1

(2πi)n

∫

Γν

zx dz

z
= δx,0,

where δx,0 is the function equal to zero for all x ∈ Zn \ {0}, and at the point 0 its value is equal
to 1. Thus, P(x) is a fundamental solution.

Now, a certain class of solutions to equation (5) can be obtained as linear combinations of
fundamental solutions

f(x) =
∑

ν

mνPν(x),
∑

ν

mν = 0. (7)

In fact, besides (5), the class of solutions (7) satisfies the extended system of difference
equations 




P (δ)f(x) :=
∑

α∈A

aαf(x + α) = 0,
∑

α∈A

(xnαi − xiαn)aαf(x + α) = 0, i = 1, . . . , n − 1,
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E0,0

E1,2

E2,1E1,1

Γ0,0

Γ2,1

c1

Fig. 3. Components of the amoeba complement for the polynomial z2w − 4zw + zw2 + 1 and
some integration cycles Γν

which is called the associated system for the equation (5). This system is holonomic, i.e. the
dimension of the space of its solutions is finite. As x → ∞ along the ray x = a + lq with the
directing vector q = (q1, . . . , qn) its limit characteristic system is





P (z) = 0,

ziP
′

zi

znP ′

zn

=
qi

qn
, i = 1, . . . , n − 1.

(8)

The roots z = λ(q) of the algebraic system of equations (8) are exactly the preimages γ−1(q)
of the logarithmic Gauss map γ : V → CPn−1 (see the analytic definition of γ in section 1). The
asymptotic behaviour of solutions (7) is described by the following theorem.

Theorem (Leinartas, Passare, Tsikh [6]). If for the direction q ∈ QPn−1 the roots λ(j)(q) of
the limit characteristic system (8) are such that the absolute values of all monomials [λ(j)(q)]

q

are different, then for any solution f(x) of the form (7) non-vanishing on the sequence {a + lq},
a ∈ Zn, the limit of the Horn vector

lim
l→∞

(
f(x + e1)

f(x)
, . . . ,

f(x + en)

f(x)

)∣∣∣∣
x=a+lq

is equal to one of the characteristic roots λ(p)(q).

In [6] we investigated the connection between combinations (7) of fundamental solutions (6)
and homological solutions (4) in the case k = n − 1. In section 3 we shall complete the list of
fundamental solutions (see formula (17)) and describe their connection with homological solu-
tions (4) for k 6 n − 1 (see Proposition 1).

3. Multidimensional Version of the Perron Theorem for the

First Order Difference Equation

Consider a scalar difference equation of the first order

b0f(z) + b1f(x + e1) + · · · + bnfn(x + en) = 0, (9)
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with the linear function as the characteristic polynomial

P (z) = b0 + b1z1 + · · · + bnzn. (10)

In this case the characteristic set V = {z ∈ Tn : P (z) = 0} is a hypersurface. We assume that
all coefficients bj 6= 0.

We introduce the following notion in order to formulate results in terms of the contour of the
amoeba.

Definition 4. The logarithmic Horn vector of the function f(x) along the direction q ∈ RPn−1

is defined to be the vector
(

log

∣∣∣∣
f(x + e1)

f(x)

∣∣∣∣ , . . . , log

∣∣∣∣
f(x + en)

f(x)

∣∣∣∣
)∣∣∣∣

x=ql

.

Theorem 1. The limit positions of the logarithmic Horn vector for fundamental solutions (6)
to the scalar first order difference equation (9) fill the external contour of the amoeba AV .

Proof. In the case of the first order scalar difference equation the theorem by Leinartas-
Passare-Tsikh [6] describes the asymptotic behaviour of solutions f(x) only for directions q,
corresponding to the external part of the contour of the amoeba AV of the characteristic set,
because according to the definition, the fundamental solution Pν(a + lq) is equal to zero for
directions q, corresponding to the internal part of the contour of AV . 2

Recall that an admissible solutions of the equation (9) has the form

f(x) =

∫

γ

zx ω(z), γ ∈ Zk(V ), ω ∈ Ωk(V ). (11)

Fundamental solutions (6), described in the previous section, are defined by integrals over
cycles γ ∈ Hn−1(V ) of maximal dimension. We use them to obtain solutions to the equation (10)
with asymptotic behaviour only along the directions q that correspond to the internal part of
the contour of the amoeba AV of the characteristic set V = {z ∈ Tn : P (z) = 0}.

The remaining solutions with asymptotic along the directions q, corresponding to the internal
part of the contour of AV , are given by the cycles τ ∈ Hk(V ) of smaller dimension k < n − 1.

Let us find a section of V by a plane S such that a point of the internal part of the contour
of the amoeba AV lies in the external part of the contour of the section V ∩ S.

Lemma 1. Let the point a belong to the internal part of the contour of the amoeba AV of the
complex hypersurface V = {z ∈ Tn : b0 + b1z1 + · · ·+ bnzn = 0}. Then there exists a plane S of
the form {zj = cj = const : j ∈ J} (here J is a subset of {1, . . . , n} and depends on the point a)
such that

— the point a belongs to the internal part of the contour of the amoeba AV ∩S;
— the parts of the external contour of the amoeba AV ∩S that do not contain the point a belong

to the external part of the contour of the amoeba AV .

Proof. The critical set of the logarithmic projection Log |V is defined by a solution z(q) of
the system of equations 




b0 + b1z1 + · · · + bnzn = 0,
b1z1

q1
= · · · =

bnzn

qn
,

where q = (q1 : · · · : qn) ∈ RPn−1. This solution is given by the formula

zi(q) = −
b0

bi

qi

q1 + · · · + qn
, i = 1, . . . , n. (12)
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Let us find out for which values of q the image Log z(q) lies in the external and in the internal
part of the contour of AV .

On the Reinhardt diagram, the external part of the contour corresponds to the boundary of
the image of V . The boundary consists of n + 1 connected components defined by the equations

|b1z1| + · · · + |bnzn| − |b0| = 0, (13)

|b1z1|+ · · · − |bjzj | + · · · + |bnzn| + |b0| = 0, j = 1, . . . , n. (14)

Indeed, on the Reinhardt diagram, in a neighbourhood of the image of each solution to, for
example, the equations (13), there are both points belonging to the image of V , and points that
do not have a preimage on V . Such points should be looked for on hyperplanes defined by the
equations of the kind

|b1||z1| + · · · + |bn||zn| − r = 0. (15)

For r < |b0| the solutions to (15) do not have a preimage on V , and for r > |b0| there are points
from a neighbourhood of the solution having a preimage. Similarly, the equations (14) describe
the external part of the contour.

Now we find the condition on the parameter q which guarantees that the image of the critical
points of the logarithmic map lies in the boundary of V on the Reinhardt diagram.

We substitute (12) in (13) and (14) to see that the parameters corresponding to the connected
components of the external part of the contour satisfy one of the equations

∣∣∣∣
q1

q1 + · · · + qn

∣∣∣∣+ · · · +

∣∣∣∣
qn

q1 + · · · + qn

∣∣∣∣− 1 = 0,

∣∣∣∣
q1

q1 + · · · + qn

∣∣∣∣+ · · · −

∣∣∣∣
qj

q1 + · · · + qn

∣∣∣∣+ · · · +

∣∣∣∣
qn

q1 + · · · + qn

∣∣∣∣+ 1 = 0, j = 1, . . . , n.

Therefore, the image Log z(q) of the point z(q) lies in the external part of the contour of AV

if the inequality
qi

q1 + · · · + qn
> 0

holds either for all i or only one.
Correspondingly, the image a of the point z0 = z(q0) belongs to the internal part of the

contour of AV if 



q0
j

q0
1 + · · · + q0

n

< 0 for j ∈ J ⊂ {1, . . . , n},

q0
i

q0
1 + · · · + q0

n

> 0 for i ∈ {1, . . . , n} \ J,

(16)

with the condition 1 6 |J | 6 n − 2 on the cardinal number of the set J (for n = 3 see Fig. 4,
where (q1, q2) are affine coordinates).

Consider the point a lying in the internal part of the contour of AV and construct a suitable
section S.

Let a = Log z0 and z0 = z(q0). Determine the set J , for which the parameter q0 = (q0
1 , . . . , q0

n)
satisfies the system of equation (16) and consider the plane

S = {z ∈ Tn : zj = cj , j ∈ J},

where cj = z0
j are constants, which depend on the parameter q0:

cj = −
b0

bj

q0
j

q0
1 + · · · + q0

n

.
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q1

q2

q1 + q2 + 1 = 0

q1

q2

q1 + q2 + 1 = 0

Fig. 4. The connected components of the definition domain for the parametrization of the
contour of the amoeba of a plane in C3: for the external components (left) and for the internal
components (right)

The intersection of V and S is a plane, which we see as a hyperplane in the space T|I| of the
remaining variables ′z = (zi), i ∈ I, where I = {1, . . . , n} \ J :

V ∩ S = {′z ∈ T|I| : b0 +
∑

j∈J

bjcj +
∑

i∈I

bizi = 0}.

The Log-image of the point ′z0 with the coordinates z0
i , i ∈ I, belongs to the external part

of the contour of AV ∩S . Indeed, denote b̃0 = b0 +
∑

j∈J bjcj , then according to (12) the contour

of amoeba AV ∩S consists of the Log-images of points ′z ∈ T|I| with the coordinates

zi(q̃) = −
b̃0

bi

q̃i∑
i∈I q̃i

, i ∈ I,

where q̃ = (q̃i)i∈I runs over RP|I|−1. Furthermore, the point ′z0 corresponds to the value of q̃
such that

−
b̃0

bi

q̃i∑
i∈I q̃i

= −
b0

bi

q0
i

q0
1 + · · · + q0

n

, i ∈ I.

So, according to (16), for all i ∈ I

q̃i∑
i∈I q̃i

=
b0

b̃0

q0
i

q0
1 + · · · + q0

n

=
b0

b0 +
∑

j∈J bj

(
−

b0

bj

q0
j

q0
1 + · · · + q0

n

) q0
i

q0
1 + · · · + q0

n

=

=
1

1 −
∑

j∈J

q0
j

q0
1 + · · · + q0

n

q0
i

q0
1 + · · · + q0

n

> 0,

this means that the point Log(′z0) belongs to the external part of the contour of the
amoeba AV ∩S .

Hence, the first statement of the lemma is proved.
Now consider the parts of the contour of AV ∩S not containing the point a. It is obvious that

the internal parts of the contour of AV ∩S , if they exist, do not intersect the external contour
of AV .
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Let the image of the point ′z = ′z(q̃) ∈ S lies in the external part of the contour of AV ∩S ,

then
q̃i∑
i∈I q̃i

> 0 only for one i from I, because the external part of the contour, corresponding

to the positive relations for all i, contains the point a. The point z ∈ V , corresponding to
′z ∈ V ∩ S, has the parametrization z = z(q), related to the parameters used above by

zi = −
b0

bi

qi

q1 + · · · + qn
= −

b̃0

bi

q̃i∑
i∈I q̃i

for i ∈ I,

zj = −
b0

bj

qj

q1 + · · · + qn
= cj = −

b0

bj

q0
j

q0
1 + · · · + q0

n

for j ∈ J.

Let us show that the image of the point z lies in the external part of the contour of AV . Indeed,
for i ∈ I the inequality

qi

q1 + · · · + qn
=

b̃0

b0

q̃i∑
i∈I q̃i

=
b0 +

∑
j∈J bjcj

b0

q̃i∑
i∈I q̃i

=


1 −

∑

j∈J

q0
j

q0
1 + · · · + q0

n


 q̃i∑

i∈I q̃i
> 0

holds only for one value of i. But for j ∈ J

qj

q1 + · · · + qn
=

q0
j

q0
1 + · · · + q0

n

< 0.

Thus, the second statement of the lemma is also proved. 2

It follows that in the constructed sections we act exactly as in Cn taking into account that
one of the external parts of the contour of the amoeba AV ∩S of the section lies in the internal
contour of the amoeba AV of the given hyperplane.

We are now going to determine the asymptotic of the solutions of the type (11) for the cycles
of dimension less then n− 1 in the directions q corresponding to the internal part of the contour
of AV . Let z = z(q) be a point in the internal part of the contour, this means

qj

q1 + · · · + qn
< 0 for j ∈ J =⊂ {1, . . . , n},

qi

q1 + · · · + qn
> 0 for i ∈ I = {1, . . . , n} \ J,

and k is the cardinal number of I.
Consider a cycle γ ∈ Zk−1(V ∩ S) and the corresponding integral

f(x) =

∫

γ

zx ω(z) =

∫

γ

∏

j∈J

z
xj

j

∏

i∈I

zxi

i ω(zJ , zI) =
∏

j∈J

c
xj

j

∫

γ

∏

i∈I

zxi

i ω(cJ , zI),

where zJ = (zj1 , . . . , zjn−k
), zI = (zi1 , . . . , zik

) and cJ = (cj1 , . . . , cjn−k
).

For x = ql it is a Laplace integral

f(ql) =
∏

j∈J

c
qj l
j

∫

γ

exp(l < qI , ln zI >)ω(cJ , zI).

The critical phase points ϕ(zI) =< qI , ln zI >|V ∩S coincide with the critical points of the mono-
mial zI

qI and project to the contour of the amoeba AV ∩S (see [6]). Moreover, max
zI∈γ

Re ϕ(zI) is

attained in the only point zI(q) ∈ V ∩S, for which the image of the logarithmic Gauss map γ(zI)
equals to qI .
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Therefore, following the saddle point method, we have the asymptotic

f(ql)∼
∏

j∈J

c
qj l
j · C · l−

k
2 zI(q)

qI l = C · l−
k
2 z(q)ql, l → ∞,

where the coefficient C does not depend on l, therefore,

lim
l→∞

log

∣∣∣∣
f(ql + e)

f(ql)

∣∣∣∣ = log |z(q)|.

Note that it is possible to calculate the asymptotic of the solutions of the type (11) represented
by integrals over any cycles γ ∈ Zk(V ) and not only over cycles lying in the section V ∩S. Indeed,
by the Bernshtein-Danilov-Khovanskii theorem [13] the elements of the group Hk(V ) are given
by cycles in sections of V by complex planes of dimension k. One can do this the following way.

Every k-cycle on V is homologous to a sum of iterated Leray coboundaries over the intersection
of the closure V in Cn with intersections of k coordinate planes Ti = {z ∈ Cn : zi = 0} (see [14]):

Hk(V ) =
⊕

16i1<···<ik6n

δkH0(V ∩ Ti1 ∩ · · · ∩ Tik
),

where the sum is taken over all ordered sets of integers 1 6 i1 < · · · < ik 6 n, and δk is an
iterated Leray coboundary [15].

The construction of a Leray coboundary allows to consider a tube not just in Cn but in the
section V ∩ S ⊂ Tn over the intersection V ∩i∈I Ti. Therefore, any k-dimensional cycle on V is
homologous to a sum of cycles lying in the section of V by some k-dimensional plane.

Consider on the chosen intersections V ∩ S the fundamental solutions

PI,ν(x) =
1

(2πi)k

∫

ΓI,ν

zx

P (z)

dzi1

zi1

∧ . . . ∧
dzik

zik

, (17)

where ΓI,ν = Log−1 uν and uν belongs to EI,ν , a connected component of the complement of
the amoeba AV ∩S ⊂ Rk.

This proves the following theorem.

Theorem 2. The limit positions of the logarithmic Horn vector for the fundamental so-
lutions (17) of the first-order scalar difference equation (9) fill the internal contour of the
amoeba AV .

Analogously to formula (7), a linear combination of solutions (17) gives some class of solutions
to the equation (9):

f(x) =
∑

ν

mI,νPI,ν(x),
∑

ν

mI,ν = 0.

Moreover, f(x) can be represented in the form (11) due to the following proposition.

Proposition 1. For ν 6= µ,

PI,ν(x) − PI,µ(x) =

∫

γν,µ

zx Res

[
dzI

P (z)zI

]
,

where Res

[
dzI

P (z)zI

]
is a Leray residue form for

dzI

P (z)zI
in (C \ {0})k.
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Proof. Let the cycles ΓI,ν and ΓI,µ be defined by points uν and uµ from different connected
components of the complement of the amoeba AV ∩S . Connect uν and uµ by the segment h.
The difference of the cycles ΓI,ν − ΓI,µ is homeomorphic in Ck \ V ∩ S to a tube over the cycle
V ∩ S ∩ Log−1(h).

Indeed, Log−1(h) is a (k + 1)-dimensional chain homeomorphic to a cylinder: Log−1(h) ∼
I ×S1 × . . . S1

︸ ︷︷ ︸
k

. The tube over V ∩S∩Log−1(h) divides Log−1(h) into two parts, one of which is

bounded by this tube and the boundary of the chain Log−1(h), therefore the difference ΓI,ν−ΓI,µ

is homological to a tube over the cycle V ∩ S ∩ Log−1(h).
Now it remains to apply the Leray formula to the integral PI,ν(x) − PI,µ(x)

PI,ν(x) − PI,µ(x) =
1

(2πi)k

∫

ΓI,ν−ΓI,µ

zx

P (z)

dzi1

zi1

∧ . . . ∧
dzik

zik

=

=
1

(2πi)k

∫

δγν,µ

zx

P (z)

dzi1

zi1

∧ . . . ∧
dzik

zik

=

∫

γν,µ

zx Res

[
dzI

P (z)zI

]
,

that gives us the stated formula. 2

Thus, we have a multidimensional analogue of Perron’s theorem for the first order difference
equations.

Theorem 3. Each point of the contour of the amoeba for the characteristic set of the equa-
tion (10) is a limit position of the logarithmic Horn vector of some fundamental solution to this
equation. The points in the external part of the contour of the amoeba correspond to fundamental
solutions of the form (6), and for k > 2 the points in the internal part correspond to fundamental
solution of the type (17).

Proof. The proof follows from theorems 1 and 2. 2
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Cauchy III), Bull. Math. Soc. France, 87(1959), 81–180.

Об асимптотике гомологических решений многомерных
линейных разностных уравнений

Наталья А. Бушуева

Константин В. Кузвесов

Август К.Цих

Рассматривается многомерное линейное разностное уравнение с постоянными коэффициента-

ми и пара (γ, ω), где γ — гомологический k-мерный цикл на характеристическом множестве

уравнения, а ω — голоморфная форма степени k. Интеграл по γ формы ω, умноженной на экспо-

ненциальное ядро, называется гомологическим решением. На примере уравнения первого порядка

иллюстрируется многомерный вариант теоремы Перрона в классе гомологических решений.

Ключевые слова: разностное уравнение, асимптотика, амеба алгебраического множества, лога-

рифмическое отображение Гаусса.
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