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Abstract. A method has been developed for implementing an algorithm for determining the stress-
strain state (SSS) of a thin shell based on the finite element method (FEM) in a three-field formulation
under step loading. A quadrangular fragment of the median surface of the thin shell is accepted as
the finite element. Nodal unknowns at the loading step used: increments of kinematic quantities (in-
crements of displacements and their derivatives); increments of deformation quantities (increments of
deformations and curvatures of the median surface); increments of force values (increments of forces and
moments). The approximation of kinematic quantities was carried out using bicubic shape functions
based on Hermite polynomials of the third degree, and force and deformation quantities using bilinear
functions. To account for the physical nonlinearity of the shell material, the defining equations are
used in two versions: the first is the defining equations of the theory of plastic flow and the second is
the defining equations based on the proposed hypothesis of proportionality a component of deviators of
strain increments and stress increments. The stiffness matrix of the finite element is formed on the basis
of a nonlinear Lagrange functional for the loading step, expressing the equality of possible and actual
work of given loads and internal forces, with the complementary condition that the actual work of the
increments of internal forces is equal to zero on the difference in increments of deformation quantities
determined by geometric relations and using approximating expressions. An example of calculation is
given using the resulting finite element stiffness matrix.

Keywords: finite element in the three-field formulation, physical nonlinearity of the material, variants
of the governing equations, nonlinear Lagrange functional with condition.

*m.klodkoff@yandex.ru https://orcid.org/0000-0001-6751-4629
Tanpetr4d0@yandex.ru  https://orcid.org/0000-0002-7098-5998

fvap_hm@list.ru https://orcid.org/0000-0001-9148-2815
$ovahnina@bk.ru https://orcid.org,/0000-0001-9243-7287
Yaandreev.07.1988@gmail.com https://orcid.org/0000-0002-3763-0394
Iklotchkov@bk.ru https://orcid.org/0000-0002-1027-1811

(© Siberian Federal University. All rights reserved

- 207 —



Yuri V. Klochkov ... Physically Nonlinear Deformation of the Shell Using. ..

Citation: Yu.V.Klochkov, A.P. Nikolaev, V.A. Pshenichkina, O.V. Vakhnina,
A.S. Andreev, M.Yu. Klochkov, Physically Nonlinear Deformation of the Shell Using a
Three-field FEM, J. Sib. Fed. Univ. Math. Phys., 2025, 18(2), 207-215. EDN: MGVVRP.

Shell structures are widely used in various areas of engineering — in shipbuilding, aircraft
manufacturing, in the creation of chemical engineering objects, in the aerospace industry and in
many other branches of engineering. Nonlinear behavior of the material occurs in many areas
of the considered thin-walled elements of engineering structures. To determine the stress-strain
state in such areas, numerical calculation methods are usually used, among which the most
widely used is the FEM in the formulation of the displacement method, when displacements
and their derivatives of different orders are taken as nodal unknowns. A disadvantage of the
FEM in the displacement method version is the lack of compatibility in terms of deformations
at the boundaries between adjacent elements. To overcome this drawback, the FEM began to be
used in a mixed version, where kinematic unknowns (displacements and their derivatives) and
force unknowns (forces and moments) are used as nodal unknowns, where, when using bilinear
approximation, convergence in force parameters at the boundaries of adjacent finite elements
was ensured [1,2].

The finite element method in a mixed version is used in studies of the stability of nonlinearly
deformed elastic structures [3-5], as well as in determining the stress-strain state of structures
taking into account the physical nonlinearity of the material [6-12]. In elastic-plastic deformation,
the total strains are determined by differentiating the strain energy function with respect to
stresses. Plastic strain is determined by the difference between the total and elastic strains.
Displacements and stresses are taken as unknown quantities. When using the three-field FEM
version [13], plastic multipliers are added to the nodal unknowns.

In this paper, a finite element in the form of a quadrangular fragment of the middle surface of a
thin shell with three fields of nodal unknowns: kinematic, deformation and force is developed. In
the first variant, the equations of the theory of plastic flow are used as the governing equations
at the loading step. In the second variant, the governing equations at the loading step are
obtained without separating the strain increments into elastic and plastic parts, based on the
hypothesis of proportionality of the components of the deviators of strain increments and stress
increments. To obtain the stiffness matrix of the finite element at the loading step, a nonlinear
Lagrange functional is used with the condition of zero work of the increments of internal forces
on the difference in the strain increments determined by geometric relations and found using
approximating expressions directly.

1. Geometrical relationships of a thin shell

The position of an arbitrary point M? of the mid-surface of the shell is determined by the
radius vector
R = 2™ (0%)i,, (1.1)
where ™, i are the coordinates and orthants of the Cartesian coordinate system; 6% are the
curvilinear coordinates of the point.
The basis vectors of the point M° are defined by the expressions

_,O_ﬁoiqo_d’?x&'g_ﬁ?xd’g 1.9
o = ’0‘7a3_|§(1)><dg\_ Vo (1.2)
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The derivatives (1.2) are written as components in the same basis

{@h} = [ml{a"}; {a@%} = []{a"}, (1.3)
3x1 3x3 3x1 3x1  3x33x1

where {@,}" = {@, @, @} (@) ={a} & a).
1x3 S 1x3
The displacement vector of the point M and its derivatives are defined in the basis of the

same point
17=Up672+05§; U,oz :f£6?)+faag; 77,aﬂ :fgga_:g"_faﬂ&gv (14)

where the components f2, f,, fpﬂ, fap are defined using (1.3).

(e}
Deformations and curvatures of the median surface at the point M? are determined by the

relations [14]
1 R . 1 . . . .
Acap = 5(5&?} pHapTa); Artap = i[ﬁ(as,ﬁ—ﬁg,ﬁ)ﬂﬁ(as,a—@g )03 0T 3+a3 5-Tal. (1.5)

s

—_

= o N - N = Lo =0 - o ) N
where d3 o = \/—T)( La X G2+ 01 X d2,a); Go = 0o +Vaj Gap = o, p + Uap-
a

On the basis of (1.5) we can form a matrix relation

{Ac) = [L}{AU}, (L6)
6x1 6x3 3x1

where {AE}T = {Aey; Acgg 2Ae19 Asryy Asegy 205015} {AU}T = {AvlAv2Av}.
1x6 1x3

2. Defining equations

In the first variant, the equations of plastic flow theory were used, according to which the
incremental strains at an arbitrary point of the shell are composed of elastic and plastic strains

e P
AEiB = Asiﬁ + Aaiﬁ. (2.1)
The elastic strain increments are determined by the relations [15]

1 31-—-2v
A%, = —A0us — GasAPrg—
6(15 2# O’B gﬁ A2 2# ’

(2.2)

where A, p are the Lame parameters; v is the transverse strain coefficient; Pa, = Ao,rg”" —

first invariant of the stress increment tensor; gqg, g*? — components of the metric tensor.
Plastic strain increments in the flow theory are determined on the basis of the hypothesis of

proportionality of plastic strain increments to the components of the stress deviator

3 1
¢P_ )
Aga,@ = TO_ZSO(O'aﬁ — ggaBPU)AO'Z, (23)
where p = R FE; is the modulus of the initial section of the strain diagram; FEj is the
k 1

Jo;

tangent modulus of the strain diagram; Ao; = LAO'I)T = {S}{Ac}; o; — stress intensity;
&Tpr 1x3 3x1

{AO’}T = {AU]lAUQQAU]Q}.
1x3
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Based on (2.1), (2.2) and (2.3) a matrix relation is formed

e = 0 &

In the second version of the defining relations, the hypothesis of separation of strain incre-
ments into elastic and plastic parts is not used. The defining equations are obtained on the basis
of the hypothesis of proportionality of the components of the deviators of strain increments and
stress increments

1 1
AEO&,@ - ggaBPAE = K(Aaa,@ - gga,BPAa)y (25)
3 1—2v . . .
where K = F; Pa. = PAgiE Pro; Pas = Ao,rgP™ is the first invariant of the stress
x0

increment tensor.

Based on (2.5) a matrix relation is formed

{i&f} = [C5){Ad}. (2.6)

3x3 3x1

At an arbitrary point M° we introduce lines of increments of deformations and curvatures of
the medial surface and lines of increments of internal forces and moments of the shell section,
the relations between which are determined taking into account (2.4), (2.6) on the basis of the
Kirchhoff-Lava hypothesis

(4= i e

where
{ASY' = {AN' AN22 AN'2 AM'Y AM?2 AM2};
6x1

{AE} = {AEH AEQQ 2A812 A%ll A%QQ QA%]_Q}.

3. Stiffness matrix of the finite element

The finite element is taken in the form of a curvilinear quadrilateral fragment of the median
surface with nodes i, j, k, [. The relations between kinematic, deformation and force parameters
for the finite element are regulated at the loading step by a nonlinear variational Lagrangian
functional with condition

3x1

o= [y sagr Tager - anr |- sppjors
r F

o[ en - -
F

where the first expression means the possible and actual work of internal forces on the deformation
values of the loading step. The second expression defines the possible and actual work of the
given forces on the loading step. The third expression means the actual work of internal forces
of the loading step on the difference of deformation values determined by geometrical formulae
(through displacements) with subsequent approximation of displacements and deformation values
found by their direct approximation.
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The following kinematic nodal unknowns in the local {Av;} and global {Avf} coordinate
systems are used for the finite element under consideration
{Avs T = {Avh AV AGY L AR AVY L A AV A
1x36
Av?g . Av?&lAv?ni ... Av%Avi . Alevfg . Avngvfn e Avfn};
{Avs}" = {Av AV AVY AR AT L AR AR L Av?!
1x36
Avii . AvﬁAv?é . .Av?ﬂlAvi e Alevfa .. AvfaAvfﬂ e Avfﬁ},

(3.2)

between which there is a matrix relation

{Av} = [T] {Avd}. (3.3)

36x1  36x36 36x1
The strain {AE,}T and force nodal unknowns {AS,}7 were taken as follows lines

{AEy} = {({aE)} {AB) {AESY {AE} )

1x6 1x6 1x6 1x6

{as,}" = ({asi} {asi} {ash) {asi}'

1x24 1x6 1x6 1x6 1x6

(3.4)

where {AE;}T = {Ae} Acp2Ae7, Asey Ay 2A5, } — a string of strain and curvature incre-
1x6

ments at the nodal point; {AS}} = {ANTAANZAANTAAMPAMZAAM?A} — line of
1x6
force and moment increments at the nodal point A\; A =1, j, k, [.

The approximation of the increments of displacements of the internal point of the finite
element was carried out by the expression

A=1ele, )} {Av}, (3-5)

36x1
where the symbol A is Av!, Av?, Av?, Av; the elements of the function {p(¢,1)} are Hermite
polynomials of degree three.
On the basis of (3.5) the matrix relations are formed

(AU} = Al {Av, ) {Ach = [L{AU} = [L] [A] {Av,} = [B] {Av,}. (3.6)

3x36 36x1 3x1 6x3 3x36 36x1 6x36 36x1

Bilinear functions are used for approximation of deformations and forces on the basis of which
matrix expressions are formed

{Ac} = [H]{AE}; {AS} = [H]{AS,}. (3.7)

6x1 6x24 24x1 x1 6x24 24x1

Taking into account the approximating expressions (2.7), (3.3), (3.6), (3.7), the functional
(3.1) is written by the expression

Moy = {AUgY (1] © / [B] {S}dF + {Aey} [H] " [ho] [H]dF{Ae,}—
1%36 36x36 36x6 6x1 1x36 pa 36x6 6x6 6x24 1x24
~(auy” 1) 7 [ A7 (g)ar - SaunT 1) 7 [ 14T (Agdr (.5
1%x36 36x36 7 36x3  3x1 1x36 36x36 36x3  3x1

Hasy'5 [ [T (BldF 1) (AU - a8,)75 [ ()7 (H)dF(ae,).

1x24 24x6 6x36 36x36  36x1 24x6 6x24 24x1
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Minimising the functional (3.8) by nodal unknowns leads to the matrix equations

————— = |a|] {Aeg,} — [d] [AS,] =0; 3.9
a{Agy}T 24[><]24{24><Z{} 24[><}24[24><7{] ( )
O~ ) (AU - () "[As) =0 (3.10)
o{AS,} 24x36 36x1 24%24  24x1
oy T
— = |b AS,] — +{R} =0, 3.11
a{AUZ?}T 36[><]24 [24><21!] {?'iﬁql} §6><}1 ( )
where [a] = [ [H]"[ho] [H|dF; [d] = L[ [H]" [H]dF; [b] =3[ [H]" [B]dF [T] ;
24x24 [ 24x6 6x6 6x24 24x24 F 24x6 6x24 24%36 F 24x6 6x36  36x36
{fagy = [T] [ [A]"{Aq}dF; {R} = — [T] [ [A]"{q}dF + [T] [ [B] {S}dV.
36x1  36x36 F 36x3 3x1 36x 1 36x36 F 36x3 3x1 36x36 V7 6x36 36x1
From the systems (3.9), (3.10) we obtain the relations
{Ae,} = [d ' 0] {AUZY; {AS,} = [d 7' [a] {As}. (3.12)
24x1 24x24 24%x36 36x1 24x1 24x24  24x24 24x1

By considering (3.12), the stiffness matrix of the finite element is obtained from the system
(3.11)

(K] {AUJ} = {faq} — {R}, (3.13)
36x36 36x1 36x1  36x1
where [K] = [b] © [ [dT]l} [a] [d ~' [b] — finite element stiffness matrix, which is used
36x36  36x24 | 24x24 [24x2424x24  24x36

to form the shell stiffness matrix.
After determining the kinematic nodal unknowns of the shell, the deformation and force nodal
unknowns are determined by (3.12).

4. Calculation example

As an example, the calculation of a shell with a medial surface in the form of a truncated
ellipsoid of rotation loaded with internal pressure of intensity ¢ = 6 MPa. Due to axial symmetry,
the ellipsoid was modelled by a ribbon of discretisation elements oriented along the shell meridian.
The left end of the shell was rigidly clamped, the right end was free of clamping (Fig. 1). The
initial data had the following values: ellipsoid parameters a = 1.3 m; b = 0.9 m; thickness
h = 0.02 m; axial coordinate varied in the range 0 < z < 1.2 m. Mechanical characteristics of
the shell material: duralumin alloy E = 7.49 - 10* MPa; v = 0.32. The yield strength of the
material is op = 200 MPa. The deformation diagram was modelled by a two-link broken line
with linear hardening defined by the dependence

o; = 200 + 18087(e; — 0,0023496). (4.1)

The calculations were performed with control of the convergence of the computational process
both by the number of sampling elements and by the number of loading steps. Tab. 1 shows the
results of ellipsoidal shell calculation with the number of sampling elements equal to 200 and
different numbers of loading steps. The table shows the values of normal stresses in the support
and free ends of the shell on the inner o™, outer o°* and midline 0" surfaces of the shell.
Analyses of the tabular data allow us to conclude that the computational process is stable as the

number of loading steps increases. Due to the unloaded right end of the ellipsoid, 7% must be
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Fig. 1. Calculation diagram of an ellipsoidal shell

equal to zero. As Tab. 1 shows, the numerical values of o4
stresses o7 at the free end of the ellipsoid can be calculated using the Laplace formula

are quite close to zero. The ring

Ozxx Ott q
gy 2R 2 4.2
Ry + R, t (42)
where Ry, R; are the radii of the principal curvatures.

Given that at the free end o,, = 0, the analytical value of o+ can be obtained from (4.2).

O = %Rt = % -0.6708 = 201.2 MPa. Comparing the analytical value of o4, presented in
: midl

the rightmost column of Table 1, with the numerical value of o}}**, we can conclude that the
calculation error 6 = 3.38% is within acceptable limits when performing engineering calculations.

Table 1. Numerical values of stresses depending on the number of loading steps

Point o, Number of loading steps Analytical
coordinates, x, m | MPa 12 22 32 42 solution
0,00 oin 3226 | 321.1 | 319.8 | 320.1 —

T

oout | —230.4 | —228.4 | —227.2 | —227.9 —

Txr

omidl [ 1687 | 167.0 | 1651 | 1655 -

T

1,20 oim[70.039 | 0.025 | 0.032 | 0.033 -
oot [70.041 | 0.030 | 0.036 | 0.036 -
o™ 70,036 | 0.023 | 0.030 | 0.030 0,00

T

o | 200.7 | 199.5 | 200.1 | 200.2
ot | 189.5 | 188.3 | 188.9 | 1889 —
omid 11950 | 193.8 | 194.4 | 194.4 201.2

Conclusion

In the developed FEM algorithm in the three-field variant, when using bilinear approximations
for deformation and force quantities to be sought, their coherence is ensured not only at the
nodes of adjacent finite elements, but also along their boundaries. In addition, the developed
algorithm can control the location of an internal point with coordinates ¢;, ¢; on the deformation
diagram, which opens up the possibility of finding unloading zones under complex loading of shell
structures.
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Awnnoranus. Pazpaborana MeToJuKa peajM3alii [PU IIArOBOM HATDYXKEHUU aJI'OPUTMa OIpejeJie-
HUs HaIpsikeHHO-edpopmuposarnoro cocrostaust (HIC) ToHKO#M 0607I049KH HA OCHOBE METO/A KOHEUHBIX
anementoB (MKD) B TpexmonbHO# hopmymmpoBke. B KadecTBe KOHETHOTO 9JIEMEHTA MTPUHAT Y€TBIPEX-
YTOJIbHBIN (DPArMEHT CPEJUHHON MOBEPXHOCTH TOHKOM OOOJIOYKHU. Y3JIOBHIMH HEM3BECTHBIMH HA IIAre
Harpy»KeHUsl NCIOJIb30BAHbl: NIPUPAIIEHNs] KHUHEMATHYIECKUX BeJINIMH (IPUPAIIEHUS] IePEMEIEHUN U UX
IPOM3BOJIHBIX ); TpUpPAINeHus AehOPMAIMOHHBIX BETWMYUH (mpuparienns aedopManuii 1 MCKPUBJICHUH
CPEMHHOM MOBEPXHOCTN ); IIPUPAIIEHUS CUJIOBLIX BeJINIUH (IPUPAIEHNs] YCUIAIA 1 MOMEHTOB). ANIIPOK-
CAMaIsl KHHEMaTUIECKUX BEJIMYUH OCYIIECTBIISIACh C UCIOJIb30BaHNeM OMKybudeckux GpyHKImi (op-
MBI HA OCHOBE MOJMHOMOB JDPMHUTA TPETbEH CTEIEeHU, & BEJIUYNH CHJIOBBIX U JIe(DOPMAIMOHHBIX — C
HCIOJIb30BaHNeM OMMHeRHbIX dyHKIui. g ydyera dpusndeckoit HEJIMHERHOCTH MaTepuaJsia 000JTOYKHI
KCIIOJIb30BaHBI OIPEIE/ISIIONINE YPABHEHUS B JIBYX BAPUAHTAX: IIEPBBIN — OIPEJIEJISONINE YPABHEHUS T€O-
pUH IJIACTUYIECKOTO TEYEHUsT M BTOPOI — OMPEIEISIIONINE YPABHEHUS HA OCHOBE MIPEJJIOZKEHHON THIIOTE3bI
O MPOIOPIUOHAJIBLHOCTA KOMIIOHEHT JI€BUATOPOB IIPUpAIIeHni JedopManii 1 IpUPAIEHUH HAIIPsizKe-
Huit. MaTpuna »KecTKOCTH KOHEYHOTO 3JIEMEHTa, C(pOPMUPOBaHA Ha OCHOBE HEJIMHEHHOTO (PYHKITMOHATIA
Jlarpamrka mjis 1mara Harpy KeHusl, BBIPAYKAOIIEr0 PABEHCTBO BO3MOXKHBIX U JIEHCTBUTEIHHBIX PAOOT 3a-
JIAHHBIX HAIPY30K U BHYTPEHHHUX YCHUJIMIA, C JIOIOJHSIONMINM YCJIOBUEM DABEHCTBA HYJIIO JIEACTBUTEJIHLHON
paboTh! MpUpAIeHni BHYTPEHHUX YCUJIHI Ha Pa3HOCTH MpUpAIleHnil 1edOpMaIlMOHHBIX BEJIMYH, OTPe-
JeJISIEMBbIX T€OMETPUIECKUMH COOTHOIIEHUSIMU W C WCIIOJb30BAHUEM AMMPOKCUMUPYIONINX BBIPAXKEHMUIA.
C nCrosib30BaHreM HOJIyYeHHON MaTPUIbI XKECTKOCTH KOHEYHOI'O 3JIEMEHTA, JIAeTCs IIPUMED PACUETA.

KiroueBbie cjioBa: KOHEYHBIN JIEMEHT B TPEXIIOJILHONW (OPMYJIMpOBKe, dbHU3ndecKas HEJINHEHHOCTH
MaTepuaJia, BAPUAHTLI OIIPEIe/ISIIONINX YPaBHEHN, HeJIMHeHHbIH hyHKInonas Jlarpamska ¢ ycaoBueM.
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