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Introduction

The article considers the Stokes system. The solution of such a system is the main problem
in computational fluid dynamics. The system with homogeneous Dirichlet boundary conditions
for the velocity field has been studied most from both theoretical and practical points of view.
A detailed analysis of the problem is presented in [1, 2]. Using the Schur complement operator
(see, for example, [3]), we actually reduce the problem to separately finding the velocity field
u and pressure p. Moreover, in order to find the pressure function, it is not necessary to know
its values on the boundary of a domain and require additional smoothness of the solution (see,
for example, [3]). In the presented article, fundamentally different boundary conditions are
considered, namely u · n = 0 and curl u = 0, where u · n = u1n1 + u2n2,n is the outer unit

normal vector to the boundary, and curl u =
∂u2

∂x1
− ∂u1

∂x2
. Such boundary conditions will be called

model conditions. They are of particular interest from a practical point of view, associated with
the Schur complement operator. More details on this can be found in [4]. On the other hand, it is
fundamental to consider the Stokes system in a polygonal non-convex domain Ω with a reentrant
corner ω on the boundary, i.e. a corner greater than π. In this case, a problem with a corner
singularity is considered. Moreover, as is known (see, for example, [5]), a generalized solution
of such a problem in the velocity-pressure variables (u, p) does not belong to the Sobolev spaces
W2

2(Ω) and W 1
2 (Ω), respectively. Therefore, by the principle of consistent estimates, using any

classical approximate approach (see [6]), its approximate solution converges to an exact one at
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a rate no faster than O(hα), where h is the mesh step, and α is significantly less than one and
decreases with increasing the value of a corner ω. At the same time, an appropriate convergence
rate is of the order O(h), as is in the case of a convex domain Ω.

The article proposes to define the solution of the Stokes problem with model boundary condi-
tions as an Rν-generalized one in sets of weighted spaces. In this case, we will look for a solution
in sets of more general spaces than the weighted Sobolev spaces W k

2,β(Ω), β > 0. Note that
the resulting variational formulation is not symmetric, unlike the classical one for determining
a generalized solution of the problem [4]. This will further add difficulties to the proof of the
existence and uniqueness Rν-generalized solution of the Stokes problem with the proposed model
boundary conditions.

The first time that a solution as an Rν-generalized one was defined for elliptic problems with
Dirichlet boundary conditions in [7]. The construction of a weighted finite element method for
finding an approximate Rν-generalized solution made it possible to obtain the convergence rate
of such a solution to an exact one, which does not depend on the value of a reentrant corner ω.
It is equal to O(h) for various differential problems with Dirichlet boundary conditions [8–12].
Moreover, the result is achieved without refinement of the mesh in the vicinity of the singularity
point. In the presented article we study function properties in sets of weighted spaces. We will
establish a weighted analogue of the Ladyzhenskaya-Babushka-Brezzi conditions for the Stokes
problem with the considered model boundary conditions.

1. Formulation of Stokes problem with model boundary
conditions. Definition of an Rν-generalized solution

Let a domain Ω be a bounded non-convex polygon with the boundary ∂Ω, containing a
reentrant corner ω, ω ∈ (π, 2π) at the origin O = (0, 0), Ω̄ = Ω ∪ ∂Ω.

Let x = (x1, x2) be an element of R2, ∥x∥ =
√
x2
1 + x2

2, dx = dx1dx2. The Stokes problem is
that, for given functions f = (f1, f2) and g in Ω: find the velocity field u = (u1, u2) and pressure
p, which satisfy the system of differential equations and boundary conditions

−△u+∇p = f , div u = g in Ω, (1)

u · n = 0 on ∂Ω, (2)

curl u = 0 on ∂Ω, (3)

where u · n = u1n1 + u2n2, curl u =
∂u2

∂x1
− ∂u1

∂x2
и n = (n1, n2) be the outer unit normal vector

to ∂Ω.

Let us define necessary spaces and sets of weight functions. We denote by L2,α(Ω) the
weighted space of functions v(x) with limited norm

∥v∥L2,α(Ω) =

(∫
Ω

ρ2α(x) v2(x)dx

)1/2

, α > 0.

We will highlight in bold spaces and sets of functions v = (v1, v2). Here v ∈ L2,α(Ω), if the

quantity ∥v∥L2,α(Ω) =
(
∥v1∥2L2,α(Ω) + ∥v2∥2L2,α(Ω)

)1/2

is limited.
Let Hα(curl)(Ω) be the space of functions v(x) such that v ∈ L2,α(Ω) and curl v ∈ L2,α(Ω)

with bounded norm

∥v∥Hα(curl)(Ω) =
(
∥v∥2L2,α(Ω) + ∥curl v∥2L2,α(Ω)

)1/2

.
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Denote by Hα(div)(Ω) the space of functions v(x) such that v ∈ L2,α(Ω) and div v ∈ L2,α(Ω)

with limited norm

∥v∥Hα(div)(Ω)
=

(
∥v∥2L2,α(Ω) + ∥div v∥2L2,α(Ω)

)1/2

.

Let
◦
Hα (div)(Ω) be the subspace of Hα(div)(Ω) such that {v ∈ Hα(div)(Ω) : v·n = 0 на ∂Ω}

with bounded norm of the space Hα(div)(Ω). Next, we denote by Uα(Ω) the intersection of spaces
◦
Hα (div)(Ω) and Hα(curl)(Ω) of functions v(x) with limited norm

∥v∥Uα(Ω) =
(
∥v∥2L2,α(Ω) + ∥div v∥2L2,α(Ω) + ∥curl v∥2L2,α(Ω)

)1/2

.

Let W 1
2,α(Ω) be the weighted space of functions v(x) with bounded norm

∥v∥W 1
2,α(Ω) =

(
∥v∥2L2,α(Ω) +

∑
|l|=1

∫
Ω

ρ2α(x)|Dlv(x)|2dx
)1/2

,

where Dlv(x) =
∂|l|v(x)

∂xl1
1 ∂x

l2
2

, l = (l1, l2), |l| = l1 + l2, li are non-negative integers i ∈ {1, 2}.

Denote by
◦
W

1

2,α (Ω) the subspace of functions v(x) from W 1
2,α(Ω) such that v = 0 on ∂Ω with

limited norm W 1
2,α(Ω). Similarly, we introduce spaces W1

2,α(Ω) and
◦
W

1

2,α (Ω) of functions

v = (v1, v2) such that vi ∈ W 1
2,α(Ω, δ) and vi ∈

◦
W

1

2,α (Ω, δ), respectively, with bounded norm

∥v∥W1
2,α(Ω) =

(
∥v1∥2W 1

2,α(Ω)
+ ∥v2∥2W 1

2,α(Ω)

)1/2

.

By Ωδ = {x ∈ Ω̄ : ∥x∥ 6 δ ≪ 1, δ > 0} we denote the intersection of the circle with a
radius δ centered at the origin O with Ω̄ and introduce the weight function ρ(x) in Ω̄ as follows:

ρ(x) =

{
∥x∥, if x ∈ Ωδ,

δ , if x ∈ Ω̄ \ Ωδ.

Let us define the following conditions for the function v(x):

∥v∥L2,α(Ω\Ωδ) > C1 > 0, (4)

|v(x)| 6 C2δ
α−τρτ−α(x), x ∈ Ωδ, (5)

where C2 is a positive constant, τ is a small positive parameter independent of δ, α and v(x).
Denote by L2,α(Ω, δ) a set of functions v(x) from the space L2,α(Ω) satisfying conditions (4) and
(5) with limited norm L2,α(Ω). Let L0

2,α(Ω, δ) be a subset of functions v(x) from L2,α(Ω, δ) such
that

∫
Ω

ρα(x)v(x)dx = 0 with bounded norm L2,α(Ω).

Next, we define sets Hα(curl)(Ω, δ), Hα(div)(Ω, δ),
◦
Hα (div)(Ω, δ) and Uα(Ω, δ) of functions

v = (v1, v2) from spaces Hα(curl)(Ω),Hα(div)(Ω),
◦
Hα (div)(Ω) and Uα(Ω), respectively, which

components satisfy conditions (4) and (5) with limited norms of relevant spaces. Let W 1
2,α(Ω, δ)

and
◦
W

1

2,α (Ω, δ) are sets of functions from spaces W 1
2,α(Ω) and

◦
W

1

2,α (Ω) respectively, satisfy-
ing conditions (4), (5) and |D1v(x)| 6 C2δ

α−τρτ−α−1(x), x ∈ Ωδ, with bounded norm of the

space W 1
2,α(Ω). Denote by W1

2,α(Ω, δ) and
◦
W

1

2,α (Ω, δ) sets of functions v = (v1, v2) such that

vi ∈ W 1
2,α(Ω, δ) and vi ∈

◦
W

1

2,α (Ω, δ) respectively.
Let us prove the following assertion.
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Lemma 1. Let the function u ∈ Uν(Ω, δ) and curl u = 0 on ∂Ω, then for an arbitrary function
v ∈ Uν(Ω, δ) an identity∫

Ω

∇u : ∇(ρ2νv)dx+ I(u,v) =

∫
Ω

curl u curl (ρ2νv)dx+

∫
Ω

div u div (ρ2νv)dx (6)

holds, where

I(u,v) := −

[ ∫
∂Ω

ρ2ν
∂u1

∂x1
n1v1ds+

∫
∂Ω

ρ2ν
∂u1

∂x2
n2v1ds+

∫
∂Ω

ρ2ν
∂u2

∂x1
n1v2ds+

∫
∂Ω

ρ2ν
∂u2

∂x2
n2v2ds

]
. (7)

Proof. By definition∫
Ω

∇u : ∇(ρ2νv)dx =

∫
Ω

[
∂u1

∂x1

∂(ρ2νv1)

∂x1
+
∂u1

∂x2

∂(ρ2νv1)

∂x2
+
∂u2

∂x1

∂(ρ2νv2)

∂x1
+
∂u2

∂x2

∂(ρ2νv2)

∂x2

]
dx, (8)

∫
Ω

curl u curl (ρ2νv)dx =

∫
Ω

[
∂u2

∂x1

∂(ρ2νv2)

∂x1
− ∂u2

∂x1

∂(ρ2νv1)

∂x2
−

− ∂u1

∂x2

∂(ρ2νv2)

∂x1
+

∂u1

∂x2

∂(ρ2νv1)

∂x2

]
dx,

(9)

∫
Ω

div u div (ρ2νv)dx =

∫
Ω

[
∂u1

∂x1

∂(ρ2νv1)

∂x1
+

∂u1

∂x1

∂(ρ2νv2)

∂x2
+

+
∂u2

∂x2

∂(ρ2νv1)

∂x1
+

∂u2

∂x2

∂(ρ2νv2)

∂x2

]
dx.

(10)

The following equalities

−
∫
Ω

∂u2

∂x1

∂(ρ2νv1)

∂x2
dx = −

∫
Ω

∂u2

∂x2

∂(ρ2νv1)

∂x1
dx+

∫
∂Ω

ρ2ν
∂u2

∂x2
n1v1ds−

∫
∂Ω

ρ2ν
∂u2

∂x1
n2v1ds, (11)

−
∫
Ω

∂u1

∂x2

∂(ρ2νv2)

∂x1
dx = −

∫
Ω

∂u1

∂x1

∂(ρ2νv2)

∂x2
dx+

∫
∂Ω

ρ2ν
∂u1

∂x1
n2v2ds−

∫
∂Ω

ρ2ν
∂u1

∂x2
n1v2ds (12)

are valid. Using expansions (8)-(10), we have∫
Ω

∇u : ∇(ρ2νv)dx =

∫
Ω

curl u curl (ρ2νv)dx+

∫
Ω

div u div (ρ2νv)dx− E(u,v), (13)

where

E(u,v) :=

∫
Ω

[∂u1

∂x1

∂(ρ2νv2)

∂x2
+

∂u2

∂x2

∂(ρ2νv1)

∂x1
− ∂u2

∂x1

∂(ρ2νv1)

∂x2
− ∂u1

∂x2

∂(ρ2νv2)

∂x1

]
dx. (14)

Applying equalities (11) and (12) to (14), we conclude

E(u,v) =

∫
∂Ω

ρ2ν
[∂u2

∂x2
n1v1 +

∂u1

∂x1
n2v2 −

∂u2

∂x1
n2v1 −

∂u1

∂x2
n1v2

]
ds. (15)

Using together (7), (15), conditions v · n = 0 and ∂u2

∂x1
− ∂u1

∂x2
= 0 on ∂Ω, and an equality∫

∂Ω

ρ2ν
(∂u2

∂x1
− ∂u1

∂x2

)
n2v1ds =

∫
∂Ω

ρ2ν
(∂u2

∂x1
− ∂u1

∂x2

)
n1v2ds, we get I(u,v) = E(u,v). Lemma 1 is

proven. �
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Let us introduce bilinear and linear forms

a(u,v) =

∫
Ω

curl u curl (ρ2νv)dx+

∫
Ω

div u div (ρ2νv)dx, b1(v, s) = −
∫
Ω

s div (ρ2νv)dx,

b2(u, q) = −
∫
Ω

(ρ2ν q) div u dx, l(v) =

∫
Ω

f · (ρ2νv)dx, c(q) =

∫
Ω

ρ2νg qdx.

We define the concept of an Rν-generalized solution of the Stokes problem (1)–(3) with model
boundary conditions in weighted sets.

Definition 1. A pair of functions (uν , pν) ∈ Uν(Ω, δ) × L0
2,ν(Ω, δ) is called an Rν-generalized

solution of the Stokes problem (1)–(3), the function uν satisfies the boundary conditions (2) and
(3), if for all pairs of functions (v, q) ∈ Uν(Ω, δ)× L0

2,ν(Ω, δ) the integral identities

a(uν ,v) + b1(v, pν) = l(v), (16)
b2(uν , q) = c(q) (17)

hold, where f ∈ L2,γ(Ω), g ∈ L2,β(Ω), 0 6 γ, β 6 ν and uν = (u1,ν , u2,ν).

Remark 1. Since the bilinear form b2(·, ·) does not coincide with the bilinear form b1(·, ·), there-
fore the variational formulation for an Rν-generalized solution of the problem is not symmetric,
in contrast to the standard variational formulation for a generalized solution of the problem [4].

Remark 2. The bilinear form a(·, ·) is not a symmetric one.

2. Auxiliary statements

Let us formulate and prove necessary statements.

Lemma 2 ( [13]). Let ν > 0. For an arbitrary function z ∈ L2,ν(Ω), satisfying conditions (4),
(5), the following estimate ∫

Ωδ

ρ2ν−2z2dx 6 C2
3δ

2ν∥z∥2L2,ν(Ω) (18)

is valid, where C3 =
C2

C1

√
φ1 − φ0

2τ
, (φ1 − φ0) is the magnitude of the change of a reentrant

corner.

Corollary 1. Let conditions of Lemma 2 be satisfied, then∫
Ω

[ 2∑
i=1

(∂ρν
∂xi

)2]
z2dx 6 ν2C2

3δ
2ν∥z∥2L2,ν(Ω). (19)

Proof. Thanks to the fact that
2∑

i=1

(∂ρν
∂xi

)2

=

{
ν2ρ2ν−2,x ∈ Ωδ,

0,x ∈ Ω̄ \ Ωδ

and Lemma 2 its inequality

(18), directly implies an estimate (19) of Corollary 1.
Let us connect norms of functions z and ρνz from sets Uν(Ω, δ) and U0(Ω, δ), respectively.
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Lemma 3. The function z ∈ Uν(Ω, δ) if and only if ρνz ∈ U0(Ω, δ) and

∥ρνz∥U0(Ω) 6 C4∥z∥Uν(Ω), (20)

∥z∥Uν(Ω) 6 C4∥ρνz∥U0(Ω), (21)

where C4 = max{
√
2,
√
1 + 4ν2C2

3δ
2ν}.

Proof. 1. Let the function z ∈ Uν(Ω, δ). We show that ρνz ∈ U0(Ω, δ) and an inequality (20)
holds. We have decompositions

curl(ρνz) = ρνcurl z+
[
z2

∂ρν

∂x1
− z1

∂ρν

∂x2

]
, (22)

div(ρνz) = ρνdiv z+
[
z1

∂ρν

∂x1
+ z2

∂ρν

∂x2

]
. (23)

Using expansions (22), (23), we conclude

∥curl(ρνz)∥2L2,0(Ω) 6 2∥curl z∥2L2,ν(Ω) + 4

∫
Ω

(∂ρν
∂x1

)2

z22dx+ 4

∫
Ω

(∂ρν
∂x2

)2

z21dx, (24)

∥div(ρνz)∥2L2,0(Ω) 6 2∥div z∥2L2,ν(Ω) + 4

∫
Ω

(∂ρν
∂x1

)2

z21dx+ 4

∫
Ω

(∂ρν
∂x2

)2

z22dx. (25)

Since ∥ρνz∥L2,0(Ω) = ∥z∥L2,ν(Ω), then applying relations (24), (25), and next Corollary 1 to
Lemma 2 its estimate (19), we have a chain of inequalities

∥ρνz∥2U0(Ω) = ∥ρνz∥2L2,0(Ω) + ∥curl(ρνz)∥2L2,0(Ω) + ∥div(ρνz)∥2L2,0(Ω) 6 ∥z∥2L2,ν(Ω)+

+2∥curl z∥2L2,ν(Ω) + 2∥div z∥2L2,ν(Ω) + 4
2∑

j=1

∫
Ω

[ 2∑
i=1

(∂ρν
∂xi

)2]
z2j dx 6

(
1 + 4ν2C2

3δ
2ν
)
∥z∥2L2,ν(Ω)+

+2∥curl z∥2L2,ν(Ω) + 2∥div z∥2L2,ν(Ω) 6 max{2, 1 + 4ν2C2
3δ

2ν}∥z∥2Uν(Ω).

An estimate (20) is proven and ρνz ∈ U0(Ω, δ).

2. Let the function ρνz ∈ U0(Ω, δ). We show that z ∈ Uν(Ω, δ) and an inequality (21) holds.
We express in (22) and (23) terms

(
ρνcurl z

)
and

(
ρνdiv z

)
, respectively, then

∥curl z∥2L2,ν(Ω) 6 2∥curl(ρνz)∥2L2,0(Ω) + 4

∫
Ω

(∂ρν
∂x1

)2

z22dx+ 4

∫
Ω

(∂ρν
∂x2

)2

z21dx, (26)

∥div z∥2L2,ν(Ω) 6 2∥div(ρνz)∥2L2,0(Ω) + 4

∫
Ω

(∂ρν
∂x1

)2

z21dx+ 4

∫
Ω

(∂ρν
∂x2

)2

z22dx. (27)

Since ∥z∥L2,ν(Ω) = ∥ρνz∥L2,0(Ω), then applying inequalities (26), (27), and next Corollary 1
to Lemma 2 its estimate (19), we have a chain of relations

∥z∥2Uν(Ω) = ∥z∥2L2,ν(Ω) + ∥curl z∥2L2,ν(Ω) + ∥div z∥2L2,ν(Ω) 6 ∥ρνz∥2L2,0(Ω) + 2∥curl(ρνz)∥2L2,0(Ω)+

+2∥div(ρνz)∥2L2,0(Ω) + 4

2∑
j=1

∫
Ω

[ 2∑
i=1

(∂ρν
∂xi

)2]
z2j dx 6 max{2, 1 + 4ν2C2

3δ
2ν}∥ρνz∥2U0(Ω).

An estimate (21) is obtained and z ∈ Uν(Ω, δ). Lemma 3 is proven. �
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Lemma 4. Let ν > 0, then there exists a value δ0 = δ0(ν) > 0, such that for any δ ∈ (0, δ0] and
an arbitrary function z ∈ Uν(Ω, δ) an inequality

∥z∥2L2,ν(Ω) 6 8C2
Ω(∥curl z∥2L2,ν(Ω) + ∥div z∥2L2,ν(Ω)) (28)

holds.

Proof. Using Lemma 3, if z ∈ Uν(Ω, δ), then ρνz ∈ U0(Ω, δ), and Lemma 3.6 [6]:

∥ρνz∥L2,0(Ω) 6 CΩ(∥curl(ρνz)∥L2,0(Ω) + ∥div(ρνz)∥L2,0(Ω)),

i. e.
∥z∥2L2,ν(Ω) 6 2C2

Ω(∥curl(ρνz)∥2L2,0(Ω) + ∥div(ρνz)∥2L2,0(Ω)). (29)

Applying estimates (24) and (25) for the first and second terms of the right-hand side of (29),
respectively, and then Corollary 1 to Lemma 2 its inequality (19), we have

∥z∥2L2,ν(Ω) 6 4C2
Ω(∥curl z∥2L2,ν(Ω) + ∥div z∥2L2,ν(Ω)) + 8ν2C2

3C
2
Ωδ

2ν∥z∥2L2,ν(Ω)

and (
1− 8ν2C2

3C
2
Ωδ

2ν
)
∥z∥2L2,ν(Ω) 6 4C2

Ω(∥curl z∥2L2,ν(Ω) + ∥div z∥2L2,ν(Ω)). (30)

For ν > 0, there exists such a value δ0 = δ0(ν) > 0 : ν2C2
ΩC

2
3δ

2ν
0 = 1

16 , that for each δ ∈ (0, δ0],
according to (30), the following chain of relations

1

2
∥z∥2L2,ν(Ω) 6

(
1− 8ν2C2

3C
2
Ωδ

2ν
)
∥z∥2L2,ν(Ω) 6 4C2

Ω(∥curl z∥2L2,ν(Ω) + ∥div z∥2L2,ν(Ω))

is valid. Lemma 4 is proven.

By the definition of a norm in the space Uν(Ω), the following statement is derived directly
from Lemma 4.

Corollary 2. Let conditions of Lemma 4 be satisfied, then

∥z∥2Uν(Ω) 6 (1 + 8C2
Ω)(∥curl z∥2L2,ν(Ω) + ∥div z∥2L2,ν(Ω)). (31)

3. Weighted analogue of LBB-conditions of forms bi(v, s)

Let us prove a weighted analogue of LBB-conditions of forms bi(v, s) on sets of functions
v ∈ Uν(Ω, δ) and s ∈ L0

2,ν(Ω, δ).

Theorem 1. For each ν > 0 there exists a value δ1 = δ1(ν) > 0 (δ1 6 δ0, δ0 from Lemma 4)
such that for all δ ∈ (0, δ1] and an arbitrary function s ∈ L0

2,ν(Ω, δ) the following inequalities

0 < βi∥s∥L2,ν(Ω) 6 sup
v∈Uν(Ω,δ)

bi(v, s)

∥v∥Uν(Ω)

hold, where βi =
γi

2
√

1 + 8C2
Ω

, i = 1, 2.

Proof. In [14], it is proved that there exists a value δ2 = δ2(ν) > 0, such that for all δ ∈ (0, δ2]

and an arbitrary function s ∈ L0
2,ν(Ω, δ) the following inequalities

0 < γi∥s∥L2,ν(Ω) 6 sup

v∈
◦
W

1

2,ν(Ω,δ)

bi(v, s)

∥v∥W1
2,ν(Ω)

, γi > 0 (32)
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hold. If we use an inequality (31) of Corollary 2 and an estimate for an arbitrary function

v ∈
◦
W

1

2,ν (Ω, δ):
∥div v∥L2,ν(Ω) + ∥curl v∥L2,ν(Ω) 6 2∥v∥W1

2,ν(Ω),

then, due to the fact that
◦
W

1

2,ν (Ω, δ) ⊂ Uν(Ω, δ) and for all δ ∈ (0, δ1], where δ1 = min{δ0, δ2},
from (32) we obtain a chain of inequalities

γi∥s∥L2,ν(Ω) 6 sup

v∈
◦
W

1

2,ν(Ω,δ)

bi(v, s)

∥v∥W1
2,ν(Ω)

6 2 sup

v∈
◦
W

1

2,ν(Ω,δ)

bi(v, s)

∥div v∥L2,ν(Ω) + ∥curl v∥L2,ν(Ω)
6

6 2 sup
v∈Uν(Ω,δ)

bi(v, s)

∥div v∥L2,ν(Ω) + ∥curl v∥L2,ν(Ω)
6 2

√
1 + 8C2

Ω sup
v∈Uν(Ω,δ)

bi(v, s)

∥v∥Uν(Ω)
.

An estimate of Theorem 1 is obtained. �

Conclusions

In the article the concept of an Rν-generalized solution for the Stokes problem with model
boundary conditions in a polygonal non-convex domain with a reentrant corner on the boundary
in weighted sets is defined. In this case, the variational formulation of the problem is not
symmetric. Weighted analogue of the Ladyzhenskaya–Babushka–Brezzi conditions in special
norms of weighted spaces is established.

The research was carried out within the state assignment for IAM FEB RAS (no. 075-00459-
24-00).
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Весовой аналог LBB-условий для решения задачи Стокса
с модельными граничными условиями в области
с сингулярностью

Алексей В.Рукавишников
Институт прикладной математики

Дальневосточное отделение Российской академии наук
Хабаровск, Российская Федерация

Аннотация. В работе определено понятие Rν-обобщённого решения задачи Стокса с модельны-
ми граничными условиями в области с угловой сингулярностью. Доказан весовой аналог условий
Ладыженской-Бабушки-Брецци в области с входящим углом.

Ключевые слова: угловая особенность, задача Стокса с модельными граничными условиями,
Rν-обобщённое решение.
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