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Abstract. In the paper the concept of a R,-generalized solution for the Stokes problem with model
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Introduction

The article considers the Stokes system. The solution of such a system is the main problem
in computational fluid dynamics. The system with homogeneous Dirichlet boundary conditions
for the velocity field has been studied most from both theoretical and practical points of view.
A detailed analysis of the problem is presented in [1,2]. Using the Schur complement operator
(see, for example, [3]), we actually reduce the problem to separately finding the velocity field
u and pressure p. Moreover, in order to find the pressure function, it is not necessary to know
its values on the boundary of a domain and require additional smoothness of the solution (see,
for example, [3]). In the presented article, fundamentally different boundary conditions are

considered, namely u-n = 0 and curl u = 0, where u-n = uiny + usne, n is the outer unit

0 0
normal vector to the boundary, and curl u = gz ﬂ. Such boundary conditions will be called

8x1 8%2

model conditions. They are of particular interest from a practical point of view, associated with
the Schur complement operator. More details on this can be found in [4]. On the other hand, it is
fundamental to consider the Stokes system in a polygonal non-convex domain {2 with a reentrant
corner w on the boundary, i.e. a corner greater than 7. In this case, a problem with a corner
singularity is considered. Moreover, as is known (see, for example, [5]), a generalized solution
of such a problem in the velocity-pressure variables (u, p) does not belong to the Sobolev spaces
W2(Q) and W3 (), respectively. Therefore, by the principle of consistent estimates, using any
classical approximate approach (see [6]), its approximate solution converges to an exact one at
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a rate no faster than O(h®), where h is the mesh step, and « is significantly less than one and
decreases with increasing the value of a corner w. At the same time, an appropriate convergence
rate is of the order O(h), as is in the case of a convex domain (2.

The article proposes to define the solution of the Stokes problem with model boundary condi-
tions as an R, -generalized one in sets of weighted spaces. In this case, we will look for a solution
in sets of more general spaces than the weighted Sobolev spaces WQk ﬁ(Q), B > 0. Note that
the resulting variational formulation is not symmetric, unlike the classical one for determining
a generalized solution of the problem [4]. This will further add difficulties to the proof of the
existence and uniqueness R, -generalized solution of the Stokes problem with the proposed model
boundary conditions.

The first time that a solution as an R, -generalized one was defined for elliptic problems with
Dirichlet boundary conditions in [7]. The construction of a weighted finite element method for
finding an approximate R,-generalized solution made it possible to obtain the convergence rate
of such a solution to an exact one, which does not depend on the value of a reentrant corner w.
It is equal to O(h) for various differential problems with Dirichlet boundary conditions [8-12].
Moreover, the result is achieved without refinement of the mesh in the vicinity of the singularity
point. In the presented article we study function properties in sets of weighted spaces. We will
establish a weighted analogue of the Ladyzhenskaya-Babushka-Brezzi conditions for the Stokes
problem with the considered model boundary conditions.

1. Formulation of Stokes problem with model boundary
conditions. Definition of an R, -generalized solution

Let a domain € be a bounded non-convex polygon with the boundary 0f2, containing a
reentrant corner w,w € (7, 27) at the origin O = (0,0), Q2 = QU IN.

Let x = (1, 72) be an element of R?, ||x|| = \/#? + 22, dx = dx1dzs. The Stokes problem is
that, for given functions f = (f1, f2) and ¢ in Q: find the velocity field u = (u1, us) and pressure
p, which satisfy the system of differential equations and boundary conditions

—Au+ Vp=Tf, divu=gyg in Q, (1)

u-n=20 on 09, (2)

curlu=0 on o0, (3)

where u-n = uing + ugng, curl u = g—zf — g—z; u n = (n1,n2) be the outer unit normal vector

to 9N.
Let us define necessary spaces and sets of weight functions. We denote by L o(£2) the
weighted space of functions v(x) with limited norm

1/2

ol = ([ 7 007000) a0
Q
We will highlight in bold spaces and sets of functions v = (v1,v2). Here v € Lg o(€), if the

. vz oo
quantity [|vllL, () :<HU1||%M(Q) + ||1)2||%2’Q(Q)) is limited.
Let H, (curl)(£2) be the space of functions v(x) such that v € Ly (2) and curl v € Ly ()
with bounded norm

/
¥l curlyoy = (VIR o) + lowl vIZ, @)
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Denote by H,,(div)(€2) the space of functions v(x) such that v € Ly ,(2) and div v € Ly ()
with limited norm

_ /
¥l iy = (V1 ooy + 1V VI, o) -

Let ﬁa (div)(€2) be the subspace of H, (div)(€2) such that {v € H,(div)(Q2) : v.n = 0 na 90}
with bounded norm of the space H, (div)(€2). Next, we denote by U, (Q2) the intersection of spaces

ﬁa (div)(€2) and H, (curl)(€2) of functions v(x) with limited norm
i /
¥l = (1912, 0@ + 14 VI, oy + et vIZ, o))"

Let W3 ,(Q) be the weighted space of functions v(x) with bounded norm

1/2
ol o =(I01E o+ 3 [ # D vGoPax)

=15

[2]
where D'v(x) = 8%()(1)7
Oz 0z

ol
Denote by W, (Q) the subspace of functions v(x) from Wy () such that v = 0 on 9Q with

= (I1,12), |I| = 11 + l2, l; are non-negative integers i € {1,2}.

ol
limited norm Wy (). Similarly, we introduce spaces W3 () and Wy, (€2) of functions

ol
v = (v1,v2) such that v; € Wy ,(Q,6) and v; €Wy, (Q,6), respectively, with bounded norm

/
IVliws o =(lo1l3y o+ 02llZy (o)) -
By Qs = {x € Q: x| £ § < 1,6 > 0} we denote the intersection of the circle with a
radius § centered at the origin O with Q and introduce the weight function p(x) in Q as follows:

I, if x € Qs,
p(x) = . -
5, ifx e\ Qs

Let us define the following conditions for the function v(x):
[0l 2, @\025) 2 C1 >0, (4)
[o(x)] < C26™ 70 (x), x € O, (5)
where Cs is a positive constant, 7 is a small positive parameter independent of 4, « and v(x).
Denote by Lg o(£,9) a set of functions v(x) from the space Ls o(£2) satisfying conditions (4) and

(5) with limited norm Ly o (€). Let L3 ,(£,6) be a subset of functions v(x) from Ly (£, ) such
that [ p*(x)v(x)dx = 0 with bounded norm Ly ().
Q

Next, we define sets H,, (curl)(£2, d), H (div)(£2,9), Ioia (div)(©,9) and U, (€2, 0) of functions
v = (v1,v2) from spaces H, (curl)(£2), Ha(div)(Q),I(—)Ia (div)(£2) and U, (Q), respectively, which
components satisfy conditions (4) and (5) with limited norms of relevant spaces. Let Wy ,(Q,6)

ol ol
and Wy, (€2,0) are sets of functions from spaces Wy ,(Q) and W, () respectively, satisfy-
ing conditions (4), (5) and |Dv(x)| < C20° Tp"*"1(x), x € Qs, with bounded norm of the
1

space W3 ,,(Q). Denote by W3 ,(€,4) and VOVQ’Q (Q,0) sets of functions v = (v1,v2) such that

1
v; € W3 ,(€2,0) and v; EVc[)/Q’a (€, 9) respectively.
Let us prove the following assertion.
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Lemma 1. Let the function u € U,(,6) and curl u =0 on 99, then for an arbitrary function
v e U,(Q,9) an identity

/ Vu:V(p?v)dx+ I(u,v)= / curl u curl (p*v)dx +/ divu div (p*'v)dx (6)
Q Q

holds, where

ou ou L ou ou
I(u,v) := —l/p”axinlvlds—k/pQVax;ngvlds—&—/ 82nwgds—|—/p2”axzn2vgds] (7)

02 o0 o0 [219]

Proof. By definition

Qui O(p*"v1) | Oui D(p*v1) | Duz (p*va) | Duz I(p* va)
. 2v - el 3 1 e} ') 72
/Qvu ' V(p V)dX _/Q [6:01 (3'£E1 83:2 6932 8::31 (9£E1 31172 6932 dX, <8)

2v
/Curlucurl (pz”v)dx:/ {auza(p U2) Oug a(P ‘U1)
Q Q

833‘1 8371 8331 8.132
| D) | O )]
3x2 8.1‘1 8332 8582 ’

: : u1 A(p*v1) | Ouy A(p*"va)
22U . Y\PV) i s
/Q div u div (p*'v)dx —/ [axl o5, + 9r, 0m +

10
Dus (g v1) | Oy Dlva) ] 1o
dry Oy Oy Ows '
The following equalities
dug O(p*v1) , Oug O(p?¥v1) / L, Ous / L, Oug
o aixlaixzdx = o %Txldx + a nl'l}lds P a n2U1d8 (11)
o0 o0
Ouy O(p?*vs) Ouy A(p**vs) / 9, OUL / 5, OUuq
— Zdx = —=d v— ds — v— d 12
32132 8561 x 8131 61‘2 X+ p X1 1121205 p 8:62 fv2as ( )

o0 o

are valid. Using expansions (8)-(10), we have

/ Vu: V(p*v)dx = / curl u curl (p?"v)dx +/ div u div (p*v)dx — E(u,v), (13)
Q Q Q

where

ui d(p*va) | Qug A(p*v1)  Qug B(p™v1)  Juy A(p*v2)
Blav) = [ [2% Juz ) d 14
(u,v) /Q [8$1 8x2 81‘2 8%‘1 6331 8.%‘2 81‘2 8371 :| X ( )

Applying equalities (11) and (12) to (14), we conclude
ou ou ou ou
— 2v | 82 et _ 92 _ 9

E(u,v) = /p [axgn““ + 02, oo 3z1n2v1 axinvg}dS. (15)

[219]

Using together (7), (15), conditions v -n = 0 and % — 9w — () on 99, and an equality

Oxo
0 0 0 0
8{2 PQV(TZT - %)nzvlds —8{2 pz”(a—z azl)nlvgds we get I(u,v) = E(u,v). Lemma 1 is
proven. O
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Let us introduce bilinear and linear forms

a(u,v) = / curl u curl (pQ"v)dx—F/ div u div (p*v)dx, bi(v,s) = —/ s div (p*v)dx,
Q Q Q

biwg) == [ (¢*0) divadx, 19 = [ £ Pvix oo = [ pgaix

Q

We define the concept of an R, -generalized solution of the Stokes problem (1)—(3) with model
boundary conditions in weighted sets.

Definition 1. A pair of functions (u,,p,) € U,(Q,8) x LY ,(€,0) is called an R, -generalized
solution of the Stokes problem (1)—-(3), the function u, satisfies the boundary conditions (2) and
(8), if for all pairs of functions (v,q) € U,(Q,68) x L3 ,(€,6) the integral identities

a(ul,,v) + bl(vapu) = l(V), (16)
ba(u,, q) = c(q) (17)
hold, where f € Ly (), g € L2 5(Q), 0< v, 8 < v and u, = (uq,,, U2,).

Remark 1. Since the bilinear form by(-,-) does not coincide with the bilinear form by(-,-), there-
fore the variational formulation for an R, -generalized solution of the problem is not symmetric,
in contrast to the standard variational formulation for a generalized solution of the problem [4].

Remark 2. The bilinear form a(-,-) is not a symmetric one.

2. Auxiliary statements

Let us formulate and prove necessary statements.

Lemma 2 ([13]). Let v > 0. For an arbitrary function z € Lo, (), satisfying conditions (4),
(5), the following estimate

/Q p* 222 dx < C30% |2, (o "
)

C —
is valid, where C5 = 62 <,012 900, (p1 — o) is the magnitude of the change of a reentrant
1 T

corner.

Corollary 1. Let conditions of Lemma 2 be satisfied, then

S ap’/ 2 2 2,2 c2v 2
L2 (GE) J2ax < ez a1, o (19)

2
Proof. Thanks to the fact that > ( and Lemma 2 its inequality

apu)g B V2,02V72,X€Q(5,
i=1 \Ox;

B 0,x € Q \ Qs
(18), directly implies an estimate (19) of Corollary 1.
Let us connect norms of functions z and p”z from sets U, (€2,0) and Uy(€2, d), respectively.
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Lemma 3. The function z € U,(Q,9) if and only if p*z € Up(Q,6) and
10”2]lu, (@) < Callzllu, @), (20)

Izllu, @) < Callpzllu, ), (21)
where Cy = max{v/2,/1 + 4020252 }.

Proof. 1. Let the function z € U, (,d). We show that p¥z € Uy(Q,d) and an inequality (20)
holds. We have decompositions

o\ — o 9p” dp”
curl(p’z) = p¥curl z + [zg T 21 (9.%'2:|’ (22)

N v dp” Ip”
div(p¥z) = p¥div z + [21 1 + 2o 31‘2] (23)

Using expansions (22), (23), we conclude

Op” \ 2 Ip¥\ 2
Ak < 2||curl z||? 4/7261 4/7%5 24
lewrl(p2)|3, @) < et allf, o +4 [ (G0) Bdxra | (G0-) sdax, @)

.y 9p”\?2 9p”\?
||div(p Z)H%Z0 < 2||div z||L —i—4/Q (87331) z%dx—f—él/Q (61‘2) Z5dx. (25)

Since [|p"z||L, o) = 1ZllL,., (), then applying relations (24), (25), and next Corollary 1 to
Lemma 2 its estimate (19), we have a chain of inequalities

”pVZH%JO(Q) = HPVZH?JQ,O(Q) + ||Cur1(PVZ>||%2,O(Q) + HdiV(PVZ)H%Q,O(Q) < ||Z||i2,,,(9)+

2

2
olleurl 22, o) + 2div 22, o) + 42/ |2 < (14 402367 Yl o +
=19

i=1
+2||curl ZH%Q,,,(Q) + 2||d1V ZHL2,V(Q) < I’IIaX‘{27 1 + 4V2C§62V}“ZH%V(Q)

An estimate (20) is proven and p“z € Uy(2,9).
2. Let the function p*z € Uy(, §). We show that z € U,(Q, ) and an inequality (21) holds.
We express in (22) and (23) terms (p”curl z) and (p”div z), respectively, then

ap¥\ 2 ap¥\ 2
2 < o2 2 2
lleurl z[|7, , (@) < 2lleurl(p2)|Z, 4@) + 4/9 (83:1) adx+ 4/9 <6x2> “1dx, (26)

) ) dp¥\ 2 Dp¥\2
div z|7 < 2||div(p“z)||7 4/ ) zid 4/ ) Z3dx. 27
Idiv 2l o) < 2Mdiv(e' @)l ooy +4 | (55) Aaxra [ (50) dex )

Since [|z[|L, , ) = lp"2l|L, . (02), then applying inequalities (26), (27), and next Corollary 1
to Lemma 2 its estimate (19), we have a chain of relations

||Z||%V(Q) = ||Z||i2,u(g) + [[curl ZH%Q,V(Q) + |[div Z||%2,V(Q) < ||PUZ||%‘2,O(Q) + 2HC111"1(PVZ)||2L2,0(Q)+

2
+2[[div(p”2)|7, ) + 42/ Z de < max{2,1+ 4°C36™ }H|p 2|3, (-
Jj= 19 =1
An estimate (21) is obtained and z € U, (,4). Lemma 3 is proven. O
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Lemma 4. Let v > 0, then there exists a value dg = do(v) > 0, such that for any ¢ € (0,d] and
an arbitrary function z € U,(Q,0) an inequality

I12[1%, , ) < 8CE(lcurl 2|7, (o) + | diva|Z, () (28)
holds.
Proof. Using Lemma 3, if z € U,(£,4), then p*z € Uy(R,d), and Lemma 3.6 [6]:

P72, o (2) < Callleurl(p”2)| L, o) + 1div(p72) ]|, o))

I2]1Z, , @) < 2C5(lcwl(p”2)|7, o) + Idiv(p"2)[1Z, o (0))- (29)
Applying estimates (24) and (25) for the first and second terms of the right-hand side of (29),
respectively, and then Corollary 1 to Lemma 2 its inequality (19), we have

l21%, , @) <4C&(lcurl z[7, (o) + Idiv 2]|7, (o) + 8V CICE* 2]z, , (o)
and
(1-8v2C3C20™ )2l ) < ACH(lowl 213, , (o) + Idiv 22, , (o))- (30)
For v > 0, there exists such a value 6 = do(v) > 0 : v>*CEC363” = 1%, that for each § € (0, ],
according to (30), the following chain of relations

1 . .
slzlE, @ < (1-82C3CE0™ )z}, ) < 4Ch(lew 2l13, (o) + Idiv I3, , (o)

is valid. Lemma 4 is proven.

By the definition of a norm in the space U, (f2), the following statement is derived directly
from Lemma 4.

Corollary 2. Let conditions of Lemma 4 be satisfied, then

I2][T, (@) < (1+8C3)([curl z]|7, ) + [[div 2[7, o)) (31)

3. Weighted analogue of LBB-conditions of forms b;(v, s)

Let us prove a weighted analogue of LBB-conditions of forms b;(v,s) on sets of functions
veU,(Q,0) and s € LY, (Q,6).

Theorem 1. For each v > 0 there exists a value 61 = 61(v) > 0 (81 < by, 00 from Lemma 4)
such that for all 6 € (0,01] and an arbitrary function s € L%V(Q, 0) the following inequalities

bi(v,s
0 <BillsllLs @) < sup i)
veU, (9,6) ||V||UV(Q)

Vi .
S CR—
2¢/1+8C3
Proof. In [14], it is proved that there exists a value d; = d3(v) > 0, such that for all § € (0, 5]
and an arbitrary function s € LY ,(Q,6) the following inequalities

hold, where B; = =1,2.

bi(v,s)

||V|\w;m(n)

0 <7illsllz,, ) < sup
VEW,,, (2,5)
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hold. If we use an inequality (31) of Corollary 2 and an estimate for an arbitrary function

o1
v EWQ,V (Qa 5)
[div vl[L,, @ + l[cwrl vz, @) < 2VIlws (@)

ol
then, due to the fact that W, (©2,6) C U,(Q,9) and for all ¢ € (0,d:], where §; = min{do, 52},
from (32) we obtain a chain of inequalities

bi(v,s) bi(v,s)
%HS||L2”’(Q) S os}lp m <2 os}lp [div vl @ + [curl v|| () s
VEW,, (2,8) 2y VEW, ,(2,0) 2y 2
bi 9 bz 3
<2 sup - (v,5) <2y/1+8C% sup &
veu, (.8 v vz, @) + llcatl vz, , o) veu, (8  IVlu, @

An estimate of Theorem 1 is obtained. O

Conclusions

In the article the concept of an R,-generalized solution for the Stokes problem with model
boundary conditions in a polygonal non-convex domain with a reentrant corner on the boundary
in weighted sets is defined. In this case, the variational formulation of the problem is not
symmetric. Weighted analogue of the Ladyzhenskaya-Babushka—Brezzi conditions in special
norms of weighted spaces is established.

The research was carried out within the state assignment for IAM FEB RAS (no. 075-00459-
24-00).
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Becosoii anajgor LBB-ycaoBmit g pentennd 3agaunm CTokca

C MOJ€JIbHbBIMU I'PaHUYHBbIMHA YCJ/IOBHUAMMU B obJjiacTn
C CMHI'YJIAPDHOCTBIO

Anekceii B.PykaBuUIiHUKOB

VHCTUTYT NPUKIIQIHON MaTEMaTHKI

HanpHeBoCcTOYHOE oTheeHne Poccuiickoll akageMun HaykK
Xabaposck, Poccuiickast @enepatiust

Amwnnoranusi. B pabore onpeneneno mousitue R,-06001mEHHOr0 pemtenns 3amaan CTOKCa ¢ MOJAETbHbBI-
MU TPAHUYHBIMEU YCJIOBUSIMHA B OOJIACTH C YIJIOBOW CHHTYJIAPHOCTHIO. JloKa3zaH BECOBOI aHAJIOT YCIOBUM
Jlagprkenckoit-bBabyku-Bperiiin B 06/1aCTH ¢ BXOIAIIUM YIJIOM.

KiroueBble cJiioBa: yryioBad OCO6€HHOCTB, 3a1a4da Crokca ¢ MOJI€JIBHBIMU T'DAHUYIHBIMUA YCJIOBUAMMU,

R, -06001ménHOe perieHue.
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