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Abstract. The work studies commutative and idempotent finite groupoids that are associated with
subnetworks of multilayer feedforward neural networks (hereinafter simply neural networks). Previously,
the concept of a neural network subnet was introduced. This paper introduces the concept of a generalized
subnetwork of a neural network. This concept generalizes the previously introduced concept. The
resulting groupoids are called additive and multiplicative groupoids of generalized subnets of a given
neural network. These groupoids model the union and intersection of generalized subnets of a neural
network. The conditions that the neural network architecture must satisfy in order for the additive
groupoid of generalized subnets to be associative are identified. The conditions that the neural network
architecture must satisfy in order for the multiplicative groupoid of generalized subnets to be associative
are obtained. Subgroupoids of the constructed groupoids are studied.
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Introduction

In this work, only multilayer feedforward neural networks are considered (therefore, we will
further call them simply neural networks or networks). Information about neural networks can
be found in the works [1–4]. The work is a continuation of the works [1, 5, 6]. In the work [1]
for each network N , a commutative and idempotent groupoid is constructed AGS(N ). This
groupoid is called the additive groupoid of neural network subnets of the neural network N . In
the work [6] a multiplicative groupoid of subnets MGS(N ) is constructed. The supports of the
groupoids AGS(N ) and MGS(N ) coincide.

The connection between elements of groupoids AGS(N ) and MGS(N ) with neural network
subnets N is discussed in [1,6]. Article [1] introduces the concept of a subnetwork of a multilayer
feedforward neural network (see Definition 4 of [1]). Subnet data is obtained from the original net-
work by disabling a certain set of neurons. After switching off the selected neurons, the synaptic
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connections that connect the excluded neurons to any other neurons disappear. The remain-
ing neurons and synaptic connections have the same architectural parameters as in the original
network. That is, the activation functions, threshold values, weights of synaptic connections for
the neurons and synaptic connections remaining in the subnetwork do not change. Elements of
a groupoid AGS(N ) (hence, MGS(N )) contain information about the neurons remaining after
switching off. The operation in the groupoid AGS(N ) allows you to model the merging (i.e.
unioning) of two subnets into one network, whenever possible. The groupoid operation MGS(N )

allows you to model the intersection of two subnets when possible.

Objectives of the work. Introduction of new groupoids that allow modeling of various pro-
cesses associated with neural networks. Studying the properties of a neural network depending
on the algebraic properties of groupoids built on this neural network.

Main results. This work expands the concept multilayer feedforward neural network. By virtue
of Definition 3 of [1], a neural network must have at least two layers of neurons. The latter seemed
justified in the context that it is networks with at least 2 layers that are of practical value. But
this led to excessive formalism. Thus, some elements of the groupoid AGS(N ) could be associated
with subnets of the neural network N , but many others could not. At the same time, in practice,
situations arise when it is convenient to carry out various manipulations with layers of neurons.
In other works, neural networks were composed of neurons (see, for example, [2]), which were
associated with abstract automata.

Definition 3 of [1] in this work has been modified so that a neural network can have one
layer of neurons (see Definition 1.1). A single neuron can now also be considered a neural
network by Definition 1.1. In this work, the concept of a neural network subnet was expanded
(see Definition 1.3). Now a neural network subnet can consist of neurons of one layer (see
Definition 2.1). One neuron can now also be considered a subnetwork. In Definition 4 of [1]
subnetworks were required to contain neurons of at least two layers.

The Definition 2.1 introduces the concept of a generalized neural network subnet. This con-
cept allows us to consider generalized subnetworks in which a certain selected set of synaptic
connections has been disconnected. The disconnection of a synaptic link is modeled by assigning
a weight of zero to that synaptic link. The introduction of this feature is justified from a practi-
cal point of view. In practice, it can be convenient to remove weak synaptic connections from a
trained neural network (that is, weight connections that are small enough and have little effect
on the operation of the network). The latter leads to improved performance of the algorithm
built on neural network principles.

The introduction of the concept of a generalized subnetwork of a neural network leads to the
appearance of additive groupoid of generalized subnets and multiplicative groupoid of generalized
subnets: ÂGS(N ) and M̂GS(N ) (see Definition 2.2). The elements of these groupoids now carry
information about the neurons that remain after removing all other neurons, and about the
synaptic connections that will be disconnected. Operations in these groupoids will continue to
model the union and intersection of neural network subnets.

Let n(N ) denote the number of layers of neurons in the network N . The main results of
the work are formulated in the form of Theorems 3.1, 3.2 and 4.1. The groupoid ÂGS(N ) is
associative iff n(N ) = 1 or n(N ) = 2. The groupoid M̂GS(N ) is associative iff in the neural
network N only the first and last layers have more than one neuron. In particular, gruppoid
M̂GS(N ) is associative if n(N ) = 1 or n(N ) = 2; in these cases, there are no restrictions on
the layers of neurons. Thus, we see that the associativity condition for the groupoids ÂGS(N )

and M̂GS(N ) imposes restrictions on architecture (i.e. structure) of the neural network N .
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Theorem 4.1 reveals the connection between the generalized subnetwork N ′ networks N and
subgroupoids of groupoids ÂGS(N ) and M̂GS(N ).

Algebraic properties of groupoids ÂGS(N ) and M̂GS(N ) are closely related to the structure
of the graph of the neural network N (this is confirmed by Theorems 3.1, 3.2).

1. Basic definitions

Further, R is the set of real numbers and F (R) := Hom(R,R) is the set of all mappings from
R to R.

Definition 1.1. Let the following objects be given:
1) the tuple (M1, . . . ,Mn) of length n > 1 of finite non-empty sets, where for i ̸= j the condition
Mi ∩Mj = ∅ is satisfied;
2) the set S := (M1 ×M2) ∪ (M2 ×M3) ∪ · · · ∪ (Mn−1 ×Mn);
3) the mapping f : S → R;
4) the set A := M1 ∪ · · · ∪Mn;
5) the mapping g : A → F (R);
6) the mapping l : A → R.

Then the tuple N = (M1, . . . ,Mn, f, g, l) will be called a multilayer feedforward neural net-
work.

Neural network operation. Each neural network N = (M1, . . . ,Mn, f, g, l) and each two
bijections

i : M1 :→ {1, . . . , |M1|}, o : Mn → {1, . . . , |Mn|}

corresponds to the mapping Fi,o,N : R|M1| → R|Mn|, which implements the operation of a
neural network as a computing circuit. The mapping Fi,o,N is defined using an artificial neuron
(McCulloch–Pitts; see [2]) model. If compositions of neural networks are studied, then the
bijections i and o must be written into the definition of definition 1.1 (see [7]).

Standard notations associated with neural networks. We will associate the following
notations with each neural network N = (M1, . . . ,Mn, f, g, l):

n(N ) = n, A(N ) =
n∪

i=1

Mi, Syn(N ) =
n−1∪
i=1

Mi ×Mi+1.

Thus, n(N ) is the number of all layers of the neural network, A(N ) is the set of all neurons, and
Syn(N ) is the set all synaptic connections. We will call the tuple (M1, . . . ,Mn) the main tuple
of neurons of the network N .

A tuple of empty sets will be denoted by the symbol ∅ := (∅, . . . ,∅) (the length of such
a tuple will always be clear from the context). Let two tuples X = (X1, . . . , Xn) and Y =

(Y1, . . . , Yn) of finite sets be given. Then we will use the notation

X ∪ Y := (X1 ∪ Y1, . . . , Xn ∪ Yn); X ∩ Y := (X1 ∩ Y1, . . . , Xn ∩ Yn);

X ⊆ Y ⇔ (X1 ⊆ Y1) ∧ (X2 ⊆ Y2) ∧ · · · ∧ (Xn ⊆ Yn).

Definition 1.2. Let (X1, . . . , Xn) be some tuple composed of finite sets. We will say that the
tuple is continuous if for any distinct i, j in{1, . . . , n} the following implication holds: if Xi ̸= ∅
and Xj ̸= ∅ and i < j, then for any s ∈ {i, i+ 1, . . . , j − 1, j} the inequality Xs ̸= ∅ holds. The
tuple ∅ is considered continuous by definition.
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For a tuple of sets to be continuous, it must not contain an alternation of a non-empty set
with an interval of empty sets, and then again with a non-empty set.

Let us introduce a definition of subnet, similar to Definition 4 from [1]. But it differs from it
in that single-layer networks can now also be subnets.

Definition 1.3. Let the neural network be defined N = (M1, . . . ,Mn, f, g, l) and a continuous
tuple (X1, . . . , Xn) is given such that the conditions are satisfied (X1, . . . , Xn) ⊆ (M1, . . . ,Mn)
and (X1, . . . , Xn) ̸= ∅. We assume that (Y1, . . . , Ym) is a tuple obtained from a tuple
(X1, . . . , Xn) by deleting components equal to the empty set, where m 6 n. If f ′ is the re-
striction of the function f on the set S′ := (Y1×Y2)∪ (Y2×Y3)∪ · · ·∪ (Ym−1×Ym) and g′, l′ are
the restriction of the function g and the restriction of the function l on the set A′ := Y1∪· · ·∪Ym,
then the object N ′ := (Y1, . . . , Ym, f ′, g′, l′) will be called subnet of the network N . We will say
that the tuple (X1, . . . , Xn) induces a subnetwork N ′. The tuple (Y1, . . . , Ym) is the main tuple
of neurons of the subnetwork N ′. In general, the tuples (X1, . . . , Xn) and (Y1, . . . , Ym) can be
different.

Groupoids AGS(N ) are introduced into [1], and groupoids MGS(N ) are introduced into [6].
For the convenience of the reader, we give an explicit definition below.

Definition 1.4. Let a neural network N = (M1, . . . ,Mn, f, g, l) be defined with a main tuple of
neurons M = (M1, . . . ,Mn). The set of all possible continuous tuples X ⊆ M will be denoted by
the symbol AGS(N ). Further, X and Y are two arbitrary element from AGS(N ). Let us define
binary algebraic operations (+) and (∗) on the set AGS(N ):

X + Y :=

{
X ∪ Y , if X ∪ Y ∈ AGS(N ),

∅, if X ∪ Y /∈ AGS(N );
X ∗ Y :=

{
X ∩ Y , if X ∩ Y ∈ AGS(N ),

∅, if X ∩ Y /∈ AGS(N ).

Then the groupoid AGS(N ) := (AGS(N ),+) will be called additive groupoid of neural net-
work subnets N . The groupoid MGS(N ) := (AGS(N ), ∗) will be called the multiplicative groupoid
of neural network subnets N .

Remark 1.1. Each tuple X ̸= ∅ of AGS(N ) induces some subnetwork. Two different tuples
from AGS(N ) induce different subnets of the network N (this follows trivially from the definition
of 1.3). Each subnet of the network N is induced by some tuple from AGS(N ). Thus, there is
a bijection between the set of all subnets of the network N and the set AGS(N ) \ {∅}.

Remark 1.2. The changes made to Definitions 3 and 4 from [1] does not change the contents
of the set AGS(N ). Additionally, these changes do not affect definitions of operation: (+) and
(∗). These changes allow more elements in AGS(N ) to be associated with subnets. Continuous
tuples with only one layer different from the empty set did not induce any subnetworks due to
Definition 4 of [1]. Because the subnets from that definition had at least two layers. If G1(N ) is
the set of all subnets by Definition 4 of [1] and G2(N ) is the set of all subnets by Definition 1.3,
then the inclusion G1(N ) ⊂ G2(N ).

2. Generalized subnets

The concept of a neural network subnet, introduced by the Definition 1.3, describes objects
obtained from the original network by switching off a certain set of neurons and the deleting of
synaptic connections associated with disconnected neurons. Let’s build a model of a generalized
subnetwork that describes objects that can be obtained by turning off a certain set of neurons
and resetting the weights of a given set of synaptic connections to zero.
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The set of all subsets of the set X, as usual, will be denoted by 2X . Let N =

(M1, . . . ,Mn, f, g, l). Then we introduce the set

ÂGS(N ) := AGS(N )× 2Syn(N ).

Elements from ÂGS(N ) will be denoted by capital Latin letters with a cap.

Definition 2.1. Let N ′ = (Y1, . . . , Ym, f ′, g′, l′) is subnet of network N , which is induced by
the tuple X from AGS(N ). We assume that S′ := (Y1 × Y2)∪ (Y2 × Y3)∪ · · · ∪ (Ym−1 × Ym) and
Q is a certain subset of set Syn(N ). Let us introduce the mapping

f ′′(s) :=

{
f ′(s), s /∈ Q,
0, s ∈ Q

(s ∈ S′).

Then the object N ′ := (Y1, . . . , Ym, f ′′, g′, l′) will be called a generalized subnetwork of the
network N . We will say that the tuple Û = (X,Q) induces a generalized subnet N ′. Cortege
(Y1, . . . , Ym) is the main tuple of neurons of the generalized subnet N ′.

Remark 2.1. A generalized subnet N ′ is an object that satisfies the definition of 1.1. Various
tuples from ÂGS(N ) can induce one generalized subnet N ′ of the network N (an important
difference with the case of simple subnets, see remark 1.1). A tuple Û induces a subnet of the
network N if and only if it contains in the set

ÂGS(N ) \ {(∅,W ) | W ⊆ Syn(N )}.

Definition 2.2. We assume that the neural network N = (M1, . . . ,Mn, f, g, l) is defined. Next,
Û1 = (X1, Q1), Û2 = (X2, Q2) — these are two arbitrary elements from ÂGS(N ). Let us define
binary algebraic operations (+) and (∗) on the set ÂGS(N ):

Û1 + Û2 :=

{
(X1 ∪X2, Q1 ∪Q2), if X1 ∪X2 ∈ AGS(N ),

(∅,∅), if X1 ∪X2 /∈ AGS(N );
(1)

Û1 ∗ Û2 :=

{
(X1 ∩X2, Q1 ∩Q2), if X1 ∩X2 ∈ AGS(N ),

(∅,∅), if X1 ∩X2 /∈ AGS(N ).
(2)

Then the groupoid ÂGS(N ) := (ÂGS(N ),+) will be called the additive groupoid of generalized
neural network subnets N and groupoid M̂GS(N ) := (ÂGS(N ), ∗) we will call multiplicative
groupoid of generalized neural network subnets N .

Remark 2.2. Operations in groupoids ÂGS(N ) and M̂GS(N ) are also denoted as in the
groupoids AGS(N ) and MGS(N ), respectively. In practice this does not lead to confusion. It is
always clear from the context what operation is meant. Further, for tuples from ÂGS(N ) it will
be convenient to use the operation of componentwise union and intersection. If Û1 = (X1, Q1)

and Û2 = (X2, Q2) then Û1 ∪ Û2 := (X1 ∪X2, Q1 ∪Q2) and Û1 ∩ Û2 := (X1 ∩X2, Q1 ∩Q2).

Remark 2.3. The additive generalized subnet groupoid models the merging of two subnets into
one when possible and returns the tuple (∅,∅) when this is not possible. The multiplicative
groupoid of generalized subnets models the intersection of two subnets (i.e., returns a subnet
that is contained in both networks) when possible and returns the tuple (∅,∅) when this is not
possible.
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3. Basic algebraic properties

The main result of this section is expressed in the form of Theorems 3.1 and 3.2. First,
we formulate and prove some algebraic properties of additive and multiplicative groupoids of
generalized subnets (see Properties 3.1, 3.2 and 3.3).

Property 3.1. For any neural network N the following statements are satisfied:
1) groupoids ÂGS(N ) and M̂GS(N ) are commutative and idempotent;
2) the tuple (∅,∅) is a neutral element of the groupoid ÂGS(N );
3) the tuple (∅,∅) has the multiplicative zero property in the groupoid M̂GS(N );
4) the tuple ((M1, . . . ,Mn), Syn(N )) is a neutral element in the groupoid M̂GS(N ), where
(M1, . . . ,Mn) is the main tuple of neurons of the network N ;
5) the tuple ((M1, . . . ,Mn), Syn(N )) has the multiplicative zero property in the groupoid
ÂGS(N ).

Proof. Commutativity and idempotency of the groupoids ÂGS(N ) and M̂GS(N ) is trivial follows
from (1) and (2).

Statements 2) – 5) follow from the definitions of the operations (+) and (∗). Indeed, let
Û = (X,Q) be an arbitrary element of the set ÂGS(N ) (hence, it is an element of groupoids
ÂGS(N ) and M̂GS(N )). We assume that (M1, . . . ,Mn) is the main tuple of neurons in the
network N . Then the equalities

Û + (∅,∅) = (X ∪∅, Q ∪∅) = Û , Û ∗ (∅,∅) = (X ∩∅, Q ∩∅) = (∅,∅),

Û ∗ ((M1, . . . ,Mn), Syn(N )) = (X ∩ (M1, . . . ,Mn), Q ∩ Syn(N )) = (X,Q),

Û + ((M1, . . . ,Mn), Syn(N )) = (X ∪ (M1, . . . ,Mn), Q ∪ Syn(N )) = ((M1, . . . ,Mn), Syn(N ))

show the validity of statements 2)–5). 2

Property 3.2. If X1∪X2, Y 1∩Y 2 ∈ AGS(N ), then for elements Û1 = (X1, Q1), Û2 = (X2, Q2)

of the groupoid ÂGS(N ) and elements Û3 = (Y 1,W1), Û4 = (Y 2,W2) of the groupoid M̂GS(N )
the equalities hold

Û1 + Û2 = (X1 +X2, Q1 ∪Q2), Û3 ∗ Û4 = (Y 1 ∗ Y 2,W1 ∩W2). (3)

Proof. Since on the left side of the equalities (3) the operations (+) and (∗) are operations of
groupoids ÂGS(N ) and M̂GS(N ), and on the right side these are groupoid operations AGS(N )

and MGS(N ), then by equalities (1) and (2) the equalities are satisfied

(X1 +X2, Q1 ∪Q2) =

{
(X1 ∪X2, Q1 ∪Q2), if X1 ∪X2 ∈ AGS(N )

(∅,∅), if X1 ∪X2 /∈ AGS(N )
= Û1 + Û2,

(X1 ∗X2, Q1 ∩Q2) =

{
(X1 ∩X2, Q1 ∩Q2), if X1 ∩X2 ∈ AGS(N )

(∅,∅), if X1 ∩X2 /∈ AGS(N )
= Û1 ∗ Û2,

which give equalities (3). 2

We define mapping Ψ : ÂGS(N ) → AGS(N ) as follows Ψ((X,Q)) := X, where (X,Q) ∈
ÂGS(N ) and X ∈ AGS(N ).
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Property 3.3. The following statements are true:
1) the mapping Ψ is a homomorphism of the groupoid ÂGS(N ) into the groupoid AGS(N );
2) the mapping Ψ is a homomorphism of the groupoid M̂GS(N ) into the groupoid MGS(N );
3) the sets Φ(ÂGS(N )) = AGS(N ) are equal.

Proof. Let
Û1 = (X1, Q1), Û2 = (X2, Q2), Û3 = (Y 1,W1), Û4 = (Y 2,W2)

these are arbitrary elements of the groupoids ÂGS(N ) and M̂GS(N ). We assume that X1 ∪X2

and Y 1 ∩ Y 2 are continuous tuples (i.e. tuples from AGS(N )). Then, by virtue of the equalities
(3), the equalities

Ψ(Û1+Û2) = Ψ((X1+X2, Q1∪Q2)) = X1+X2 = Ψ((X1, Q1))+Ψ((X2, Q2)) = Ψ(Û1)+Ψ(Û2),

Ψ(Û3 ∗ Û4) = Ψ((Y 1 ∗ Y 2,W1 ∩W2)) = Y 1 ∗ Y 2 = Ψ((Y 1,W1)) ∗Ψ((Y 2,W2)) = Ψ(Û3) ∗Ψ(Û4).

Let now the tuples X1 ∪X2 and Y 1 ∩ Y 2 not belong to AGS(N ). Then we have equalities

Ψ(Û1 + Û2) = Ψ((∅,∅)) = ∅ = X1 +X2 = Ψ((X1, Q1)) + Ψ((X2, Q2)) = Ψ(Û1) + Ψ(Û2),

Ψ(Û3 ∗ Û4) = Ψ((∅,∅)) = ∅ = Y 1 ∗ Y 2 = Ψ((Y 1, Q1)) ∗Ψ((Y 2, Q2)) = Ψ(Û3) ∗Ψ(Û4).

These equalities show that Ψ is a homomorphism from statements 1) and 2). Statements 1) and
2) have been proven. Statement 3) follows from the definition of the set ÂGS(N ). The property
is proved. 2

Theorem 3.1. For any neural network N the following statements are equivalent.
1) The condition n(N ) ∈ {1, 2} is satisfied.
2) The groupoid AGS(N ) is associative.
3) The groupoid ÂGS(N ) is associative.

Proof. Let us show that statement 1) is equivalent to statement 2). Let statement 1) be true.
Then for any X1, X2 ∈ AGS(N ) tuple X1+X2 will be a continuous tuple (since there is no way
to get a discontinuous tuple). Therefore, for any Y 1, Y 2, Y 3 ∈ AGS(N ) the relations

(Y 1+Y 2)+Y 3 = (Y 1∪Y 2)∪Y 3 = Y 1∪Y 2∪Y 3, Y 1+(Y 2+Y 3) = Y 1∪(Y 2∪Y 3) = Y 1∪Y 2∪Y 3.

These relations show that the groupoid AGS(N ) is associative. Therefore, the groupoid ÂGS(N )

is associative. Thus, from 1) it follows 2).
On the other hand, suppose that statement 2) holds and statement 1) does not hold. Then

n(N ) > 2. In this case, for any network N it is always possible to specify three tuples X1, X2,
X3 for which the condition is satisfied X1 + (X2 +X3) ̸= (X1 +X2) +X3. For example, you
can take tuples:

X1 = ({a},∅,∅, . . . ,∅), X2 = (∅, {b},∅, . . . ,∅), X3 = (∅,∅, {c}, . . . ,∅).

A contradiction has been obtained. It shows that from 2) follows (1). This means that statements
1) and 2) are equivalent.

Let us show that statements 2) and 3) are equivalent. Let statement 2) be true. The
groupoid AGS(N ) is associative if and only if n(N ) ∈ {1, 2}. Then, as noted above, for any
X1, X2 ∈ AGS(N ) tuple X1 ∪X2 is a continuous tuple. Therefore, by virtue of the equality (3)
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for any elements Û1 = (Y 1, Q1), Û2 = (Y 2, Q2), Û3 = (Y 3, Q3) groupoid ÂGS(N ) the following
relations hold:

(Û1 + Û2) + Û3 = (Y 1 + Y 2, Q1 ∪Q2) + (Y 3, Q3) = ((Y 1 + Y 2) + Y 3, (Q1 ∪Q2) ∪Q3) =

= (Y 1 ∪ Y 2 ∪ Y 3, Q1 ∪Q2 ∪Q3) = (Y 1 + (Y 2 + Y 3), Q1 ∪ (Q2 ∪Q3)) = Û1 + (Û2 + Û3).

From this we obtain the associativity of the groupoid ÂGS(N ). Thus, from 2) follows 3).
Statement 3) implies statement 2). Indeed, since Ψ is a homomorphism of ÂGS(N ) into

AGS(N ) and Φ(ÂGS(N )) = AGS(N ) (see property 3.3), then from the associativity of the
groupoid ÂGS(N ) implies the associativity of the groupoid AGS(N ).

Statements 2) and 3) are equivalent. Since 2) is equivalent to 1), then 3) is equivalent to 1).
The theorem is proved. 2

Remark 3.1. Statement 2 of [1] states that the groupoid AGS(N ) is associative if and only if
N is a two-layer neural network. The discrepancy with the results of Theorem 3.1 is due to the
fact that in the work [1] single-layer neural networks were not considered. Taking this fact into
account, it can be argued that the results of Statement 2 of [1] and Theorem 3.1 are consistent.

Theorem 3.2. For any neural network N the following statements are equivalent.
1) In a neural network N = (M1, . . . ,Mn, f, g, l), only the input layer M1 and the output layer
Mn can contain more than one neuron.
2) The groupoid MGS(N ) is associative.
3) The groupoid M̂GS(N ) is associative.

Proof. Let us show that statements 1) and 2) are equivalent. Let statement 1) be true. If
n(N ) ∈ {1, 2}, then for any X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) from MGS(N ) the tuple
X ∩ Y is continuous. In this case, X ∗ Y = X ∩ Y . Due to the associativity of the operation (∩)
on sets, we have the associativity of the operation (∩) on tuples from MGS(N ). Therefore the
groupoid MGS(N ) is associative.

We assume that n(N ) > 2 and X = (X1, . . . , Xn), Y = (Y1, . . . , Yn) are two elements of the
groupoid MGS(N ) such that the tuple X ∩ Y is not continuous. This means that the following
conditions are met:
(c.1) there is an index i ∈ {1, . . . , n} such that Xi ∩ Yi = ∅;
(c.2) there are indices u, v ∈ {1, . . . , n} such that the conditions are satisfied

u < i < v, Xu ∩ Yu ̸= ∅, Xv ∩ Yv ̸= ∅.

From (c.2) the conditions follow: i ̸= 1 and i ̸= n. Condition (c.1) cannot be satisfied. Indeed,
since Statement 3) holds, then Xi = Yi = {a}, where a is an element of layer Mi. Thus, we have
shown that for any X and Y from The MGS(N ) tuple X ∩ Y is continuous. Consequently, the
identity X ∗ Y = X ∩ Y holds. Therefore the groupoid MGS(N ) is associative. Statement 1)
gives statement 2).

Let us show that statement 2) implies statement 1). Let the groupoid MGS(N ) is associative
and statement 1) does not hold. Since statement 1) does not hold, then n(N ) > 2 and there is
an index i /∈ {1, n} such that layer Mi contains more than one neuron. For any tuple Y from
MGS(N ) we denote by Ks(Y ) the s-th component of the tuple Y . For any network N with the
specified conditions, we can define tuples Y 1, Y 2 and Y 3 from MGS(N ) so that the following
conditions are satisfied:

Ki−1(Y 1) = {a}, Ki(Y 1) = {b}, Ki+1(Y 1) = {c}, Ks(Y 1) = ∅ (s /∈ {i− 1, i, i+ 1});
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Ki−1(Y 2) = {a}, Ki(Y 2) = {m}, Ki+1(Y 2) = {c}, Ks(Y 2) = ∅ (s /∈ {i− 1, i, i+ 1});

Ki−1(Y 3) = ∅, Ki(Y 3) = ∅, Ki+1(Y 3) = {c}, Ks(Y 3) = ∅ (s /∈ {i− 1, i, i+ 1})

(a ∈ Mi−1, b,m ∈ Mi, c ∈ Mi+1).

Then the equalities hold (Y 1 ∗ Y 2) ∗ Y 3 = ∅, Y 1 ∗ (Y 2 ∗ Y 3) = Y 3. The equality data shows the
lack of associativity in the groupoid MGS(N ) if |Mi| > 2 and i ̸= 1, n. This contradiction shows
that statement 1) must be true if statement 2) is true. Statements 1) and 2) are equivalent.

Let us show that from statement 2) and 3) are equivalent. Let 2 be fulfilled The groupoid
MGS(N ) is associative if and only if Statement 1) holds. Therefore, for any X1, X2 ∈ MGS(N )

tuple X1 ∩ X2 is a continuous tuple. Therefore, by virtue of equalities (3) for any elements
Û1 = (Y 1, Q1), Û2 = (Y 2, Q2), Û3 = (Y 3, Q3) groupoid M̂GS(N ) the following relations hold:

(Û1 ∗ Û2) ∗ Û3 = (Y 1 ∗ Y 2, Q1 ∩Q2) ∗ (Y 3, Q3) = ((Y 1 ∗ Y 2) ∗ Y 3, (Q1 ∩Q2) ∩Q3) =

= (Y 1 ∩ Y 2 ∩ Y 3, Q1 ∩Q2 ∩Q3) = (Y 1 ∗ (Y 2 ∗ Y 3), Q1 ∩ (Q2 ∩Q3)) = Û1 ∗ (Û2 ∗ Û3).

From this we obtain the associativity of the groupoid M̂GS(N ). Thus, from 2) follows 3).
Statement 3) implies statement 2). Indeed, since the groupoid MGS(N ) is a homomorphic

image of the groupoid M̂GS(N ) (see property 3.3), then the associativity of M̂GS(N ) implies
the associativity of MGS(N ). Statements 2) and 3) are equivalent. Since 2) is equivalent to 1),
then 3) is equivalent to 1). The theorem is proved. 2

4. Generalized subnets and subgroupoids

Theorem 4.1. Let N ′ be a generalized subnet of the neural network N . Then the set ÂGS(N )

has a subset T (N ′) such that this subset is a subgroupoid in the groupoid ÂGS(N ) and a sub-
groupoid in the groupoid M̂GS(N ). In this case, the isomorphisms hold

(T (N ′),+) ∼= ÂGS(N ′), (T (N ′), ∗) ∼= M̂GS(N ′).

Proof. Let the tuple Û = (X,Q) induce a generalized subnet N ′. Let’s build a set

T (N ′) := {(V ,W ) ∈ ÂGS(N ) | V ⊆ X, W ⊆ Syn(N ′)}.

From the construction it is clear that T (N ′) ⊆ ÂGS(N ) does not depend on the set Q. The
set T (N ′) contains the tuple (∅,∅). Moreover, T (N ′) is closed under the operation (+) in the
groupoid ÂGS(N ). Indeed, if T̂1, T̂2 are two arbitrary elements from T (N ′), then at least one
of the conditions is satisfied: T̂1 + T̂2 = (∅,∅), T̂1 + T̂2 = T̂1 ∪ T̂2. In both cases we have
T̂1 + T̂2 ∈ T (N ′). Thus, T (N ′) is a subgroupoid of the groupoid ÂGS(N ). Similarly, we obtain
that T (N ′) is a subgroupoid of the groupoid M̂GS(N ).

Let us show that (T (N ′),+) is isomorphic to ÂGS(N ′). Since Û = (X,Q) induces a gener-
alized subnet N ′, then X is a continuous tuple. We assume that the first non-empty component
of the tuple X has number u, and the last non-empty component has number v. Since X is a
continuous tuple, the neural network N ′ has exactly v−u+1 layers (follows from the definition).
As before, let Ks(Y ) denote the s-th component of the tuple Y from AGS(N ). Let us define a
mapping α : T (N ′) → ÂGS(N ′) so that for an arbitrary element (Y ,W ) ∈ T (N ′) and arbitrary
s ∈ {1, . . . , v − u+ 1} the equalities hold

α((Y ,W )) := (α(Y ),W ), Ks(α(Y )) := Ku+s−1(Y ), (4)
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where α(Y ) is the first component of the tuple α((Y ,W )) by definition. Since the tuple X is
continuous and by virtue of the construction of the set T (Y ), then for any Y ∈ T (N ′) and an
arbitrary index d /∈ {u, u+1, . . . , v} we have Kd(Y ) = ∅. Therefore the α-images of two distinct
elements from T (N ′) are different (α is injective). The surjectivity of α follows easily from the
definitions of the set T (N ′) and ÂGS(N ′). Thus, α is a bijection of the set T (N ′) onto the set
ÂGS(N ′).

In what follows, operations in the groupoids ÂGS(N ′) and AGS(N ′) will be denoted by (+′).
Let Û1 = (Y 1,W1) and Û2 = (Y 2,W2) be two arbitrary elements of T (N ′). There are possible
cases: either Y 1 ∪ Y 2 is a continuous tuple, or Y 1 ∪ Y 2 is not a continuous tuple. Let the first
case be true. Then the identity Y 1 + Y 2 = Y 1 ∪ Y 2 is true, due to (4) tuple α(Y 1 ∪ Y 2) is a
continuous tuple. In addition, for any index s ∈ {1, . . . , v − u+ 1} the following equalities hold:

α(Û1 + Û2) = α((Y 1,W1) + (Y 2,W2)) = α(Y 1 + Y 2,W1 ∪W2) = (α(Y 1 ∪ Y 2),W1 ∪W2),

Ks(α(Y 1 ∪ Y 2)) = Ku+s−1(Y 1 ∪ Y 2) = Ku+s−1(Y 1) ∪Ku+s−1(Y 2) = Ks(α(Y 1)) ∪Ks(α(Y 2)).

From the last chain of equalities we obtain the condition α(Y 1) ∪ α(Y 2) ∈ AGS(N ′) and the
relations

α(Y 1 ∪ Y 2) = α(Y 1) ∪ α(Y 2) = α(Y 1) +
′ α(Y 2).

Therefore we have the relations

α(Û1+Û2) = (α(Y 1∪Y 2),W1∪W2) = (α(Y 1)∪α(Y 2),W1∪W2) = (α(Y 1)+
′α(Y 2),W1∪W2) =

= (α(Y 1),W1) +
′ (α(Y 2),W2) = α(Û1) +

′ α(Û2).

Now let Y 1 ∪ Y 2 be not a continuous tuple. Then, by virtue of (4), we have the relations
(α(∅),∅) = (∅,∅)′, where (∅,∅)′ is a tuple in the groupoid ÂGS(N ′).

Let there exist parameters d,m, k ∈ {u, u+ 1 . . . , v} such that the conditions

d < m < k, Kd(Y 1 ∪ Y 2) = Kd(Y 1) ∪Kd(Y 2) ̸= ∅, Kk(Y 1 ∪ Y 2) = Kk(Y 1) ∪Kk(Y 2) ̸= ∅,

Km(Y 1 ∪ Y 2) = Km(Y 1) ∪Km(Y 2) = ∅.

The last statement is a necessary and sufficient condition for the fact that Y 1 ∪ Y 2 /∈ AGS(N ).
From the given equalities we derive the conditions

Kd−u+1(α(Y 1)) ∪Kd−u+1(α(Y 2)) = Kd(Y 1) ∪Kd(Y 2) ̸= ∅,

Kk−u+1(α(Y 1)) ∪Kk−u+1(α(Y 2)) = Kk(Y 1) ∪Kk(Y 2) ̸= ∅,

Km−u+1(α(Y 1))∪Km−u+1(α(Y 2)) = Km(Y 1)∪Km(Y 2) = ∅, d−u+1 < m−u+1 < k−u+1.

Therefore, the equality α(Û1) +
′ α(Û2) = (∅,∅)′ holds. From here we get

α(Û1 + Û2) = α((Y 1,W1) + (Y 2,W2)) = α((∅,∅)) = (α(∅),∅) = (∅,∅)′ = α(Û1) +
′ α(Û2).

This means that α is an isomorphism of the groupoid T (N ′) and ÂGS(N ′).
Similarly, it is proved that α is an isomorphism between the groupoid (T (N ′), ∗) and

M̂GS(N ′). Indeed, in the above reasoning, the operation (∪) must be replaced by the oper-
ation (∩), and the operation (+′) by the operation (∗′), which is an operation in the groupoid
M̂GS(N ′). The theorem is proved. 2
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The problems below are of interest.

Problems 4.1. Describe all subgroupoids H of the groupoid X(N ) such that H ∼= Y (N ′) for a
suitable generalized subnet N ′ networks N , where:

(a) X(N ) := ÂGS(N ), Y (N ′) := ÂGS(N ′); (b) X(N ) := M̂GS(N ), Y (N ′) := M̂GS(N ′).

Problems 4.2. Describe all subgroupoids H of the groupoid X(N ) such that H is not isomorphic
Y (N ′) for any generalized subnet N ′ of the N network, where:

(a) X(N ) := ÂGS(N ), Y (N ′) := ÂGS(N ′); (b) X(N ) := M̂GS(N ), Y (N ′) := M̂GS(N ′).

Solutions to problems 4.1 (a) and 4.2 (a) will give a description of all subgroupoids of the
groupoid ÂGS(N ) (similar, problems 4.1 (b) and 4.2 (b) give a description of all subgroupoids
of the groupoid M̂GS(N )).

Problems 4.3. Give a description of all subgroupoids of the H groupoid ÂGS(N ) such that H
is isomorphic ÂGS(N ′), where N ′ is the appropriate neural network. A similar question for the
groupoid M̂GS(N ).

In the above problems, a description of subgroupoids is understood as a description that
provides information about what elements a subgroupoid with the desired property contains.

Problems 4.4. Describe all pairs of neural networks (N ,K) for which isomorphism holds: a)
ÂGS(N ) ∼= M̂GS(K); b) ÂGS(N ) ∼= ÂGS(K); c) M̂GS(N ) ∼= M̂GS(K).

Problems 4.5. Give an element-by-element description of the monoids of all endomorphisms of
the groupoids ÂGS(N ) and M̂GS(N ).

Problems 4.6. Give an element-by-element description of the sets of all congruences of
groupoids ÂGS(N ) and M̂GS(N ).

Problems 4.5 and 4.6 are closely related (the connection between endomorphisms and congruences
of universal algebras is well known; see, for example, the homomorphism theorem).

This work is supported by the Krasnoyarsk Mathematical Center and financed by the Ministry
of Science and Higher Education of the Russian Federation (Agreement no. 075-02-2024-1429).
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О некоторых коммутативных и идемпотентных конечных
группоидах, связанных с подсетями многослойных
нейронных сетей прямого распространения сигнала

Андрей В.Литаврин
Татьяна В.Моисеенкова

Сибирский федеральный университет
Красноярск, Российская Федерация

Аннотация. В работе изучаются коммутативные и идемпотентные конечные группоиды, которые
связанны с подсетями многослойных нейронных сетей прямого распространения сигнала (далее,
просто нейронные сети). Ранее вводилось понятие подсети нейронной сети. В данной работе вводит-
ся понятие обобщенной подсети нейронной сети. Это понятие обобщает ранее введенное понятие.
Полученные группоиды получают название обобщенных подсетей заданной нейронной сети. Дан-
ные группоиды моделируют объединение и пересечение обобщенных подсетей некоторой нейронной
сети. Выявлены условия, которым должна удовлетворять архитектура нейронной сети, чтобы ад-
дитивный группоид обобщенных подсетей был ассоциативен. Получены условия, которым должна
удовлетворять архитектура нейронной сети, чтобы мультипликативный группоид обобщенных под-
сетей был ассоциативен. Изучаются подгруппоиды построенных группоидов.

Ключевые слова: группоид, многослойная нейронная сеть прямого распространения сигнала,
подсеть многослойной нейронной сети прямого распространения сигнала, аддитивный группоид
обобщенных подсетей, мультипликативный группоид обобщенных подсетей, обобщенная подсеть.
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