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Abstract. We apply the notion of a one-side-ordered minimal polynomial to investigations in finite
semifields. A proper finite semifield has non-associative multiplication, that leads to the anomalous
properties of its left and right spectra. We obtain the sufficient condition when the right (left) order
of a semifield element is a divisor of the multiplicative loop order. The interrelation between the min-
imal polynomial of non-zero element and its right (left) order is described using the spread set. This
relationship fully explains the most interesting and anomalous examples of small-order semifields.
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1. Introduction and preliminaries

The weakening of the field axioms leads to more general algebraic systems such as near-fields,
semifields and quasifields. According to [1], a semifield is a set Q with two binary algebraic
operations + and ∗ such that:

1) ⟨Q,+⟩ is an abelian group with neutral element 0;
2) ⟨Q∗, ∗⟩ is a loop (Q∗ = Q \ {0});
3) both distributivity laws hold, a ∗ (b + c) = a ∗ b + a ∗ c, (b + c) ∗ a = b ∗ a + c ∗ a for all

a, b, c ∈ Q.
The first examples of non-trivial semifields (not the fields) were constructed by L. E.Dickson

in 1906, the multiplicative law in a proper semifield is non-associative. By replacing the two-
sided distributivity with a one-sided one, we get the concept of a quasifield (left or right). A
quasifield with associative multiplication is a near-field. Unlike the finite near-fields, which
were completely classified by H. Zassenhaus in 1936, neither semifields nor even quasifields have
received an exhaustive classification by now.

The absence of associativity even in a finite semifield and a finite quasifield leads to it having a
number of specific properties, which are poorly studied. The identification of structural features
and anomalous properties is an important step in solving the classification problem of finite
quasifields. The most complete review is presented by N. L. Johnson at al. in Handbook [2].

The following problems for finite proper quasifields were presented in 2013 by V.M. Levchuk
at research seminar of chair of algebra of Moscow State University, see also [3].
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(A) Enumerate maximal subfields and their possible orders.
(B) Find the finite quasifields Q with not-one-generated loop Q∗.
(C) What loop spectra Q∗ of finite semifields and quasifields are possible?
(D) Find the automorphism group AutQ.

The notion of spectrum is used for quasifields and semifields taking into account the abcense
of associativity. The product of m multipliers is said to be m-th degree of a fixed element a ∈ Q∗,
if every multiplier coincides with a. The smallest integer m > 1 such that there exists the m-th
degree of a, which is equal to the identity, is called the order of a and denoted by |a|. The set of
orders of all elements is called the spectrum of multiplicative loop Q∗.

Similarly, using the right-ordered and the left-ordered m-th degrees

am) = am−1) ∗ a, a(m = a ∗ a(m−1, a1) = a = a(1,

we define the right order |a|r and the left order |a|l of a and the right and the left spectra of Q∗

respectively.
Even the weakened associativity of multiplication allows us to obtain important results about

loops and, consequently, semifields and quasifields. Thus, Lagrange’s theorem and some other
classical group-theoretic theorems can be transferred to binary associative loops or Moufang
loops (A.N. Grishkov, A. V. Zavarnitsin) [4]. In general, Lagrange’s theorem is not valid for a
multiplicative loop of a semifield or quasifield. In particular, even the semifields of the minimal
order 16 contain the elements of the right and left order 6, which do not divide the order of the
loop. In the exceptional non-primitive Knuth–Rúa semifield of order 32, all elements except 0
and 1 have the same right and left order 21.

To identify the patterns of the right and left spectra, we apply the classical concept of a
minimal polynomial of a nonzero element to the study of finite semifields. Let Q be a semifield
of order pn, p be prime. The right-ordered minimal polynomial of an element a ∈ Q is said to be
a monic polynomial

µra(x) = xm + c1x
m−1 + · · ·+ cm−1x+ cm ∈ Zp[x] (1)

of minimal degree such that

am) + c1a
m−1) + · · ·+ cm−1a+ cm = 0.

The left-ordered minimal polynomial µla(x) is defined likewise. Some useful properties of one-
sided-ordered minimal polynomials see in [5].

The main result of the paper is the following theorem, where «lcm» is a least common multiple
of some numbers.

Theorem 1. Let Q be a non-associative semifield of order pn (p be prime), the right-ordered
minimal polynomial of an element a ∈ Q∗ has the canonical decomposition into irreducible fac-
tors:

µra(x) = φs11 (x)φs22 (x) . . . φsds (x) ∈ Zp[x].
Then the right order of an element a is a divisor of the number

lcm(pm1 − 1, pm2 − 1, . . . , pmd − 1, k1, k2, . . . , kd),

where mi is the degree of irreducible polynomial φi(x), the number ki equals to 1 if si = 1,
otherwise ki is the minimal with conditions

C1
ki

... p, C2
ki

... p, . . . , Csi−1
ki

... p,

for all i = 1, 2, . . . , d.
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As a corollary, we indicate the important special cases of small-rank semifields: for orders p3,
p4, p5. Moreover, we can say that our results are true for left orders and left-ordered minimal
polynomials in finite semifields. Also, for right and left quasifield, respectively.

The research method is closely related to linear spaces and spread sets, is based on multi-
plication recording in a quasifield as a linear transformation in the associated linear space. The
matrix operations allow us to effectively apply the method to prove the theoretical result and to
illustrate it by the examples of some semifields of orders 24, 25, 26, 34, 54, 134.

2. Spread set and minimal polynomials

It is well-known, that the order of finite semifield or quasifield is the prime number degree
pn [1]. A finite quasifield may be constructed on the basis of a linear space over an appropriate
finite field. Let Q be a n-dimensional linear space over the field Zp, θ is a bijective mapping from
Q to GLn(p) ∪ {0} such that:

1) det(θ(u)− θ(v)) ̸= 0 ∀u, v ∈ Q, u ̸= v,
2) θ(0, 0, . . . , 0) = 0 is zero matrix, θ(1, 0, . . . , 0) = E is identity matrix.
Define the multiplication law on Q by the rule

u ∗ v = uθ(v), u, v ∈ Q,

then ⟨Q,+, ∗⟩ is a right quasifield of order pn. The multiplicative neutral element θ−1(E) is
denoted as e. The image

R = {θ(u) | u ∈ Q} ⊂ GLn(p) ∪ {0} (2)

is called a spread set. And inversely, the right multiplication Ra : x→ x ∗ a in a right quasifield
Q is a linear transformation of the linear space Q over the prime subfield Zp. The set of Ra
for all a ∈ Q is the spread set of Q. For more information see [6], the well-known properties is
presented by following preposition:

1) Q is a semifield iff its spread set R is closed under addition;
2) Q is a semifield iff R is closed under multiplication;
3) Q is a field iff R is a field.
Evidently, the matrix representation of the spread set depends on the base of Q as a vector

space. Another base choice with the transition matrix T leads to the new spread set TRT−1, so
different spread sets can define the isomorphic quasifields. Next, we will choose the appropriate
matrix representation of a spread set up to the matrices conjugation. As a rule, we will assume
the first basic vector e1 = e and we will construct the base of Q such that the matrix θ(a) (for
the chosen element a) be of more convenient form – Jordan normal form or close to it.

Some properties of one-side-ordered minimal polynomials in a finite semifield Q correspond
to similar results in finite fields, see [5]. The right- or the left-ordered minimal polynomial of an
element a ∈ Q∗ is not necessarily irreducible, but µra(0) ̸= 0, µla(0) ̸= 0. The right-(left-)ordered
minimal polynomial is a factor of the polynomial xk − 1, where k = |a|r (k = |a|l). The minimal
polynomial of a has the degree 1 or 2 iff a belongs to a subfield of order p2 in Q, see [7].

Let a ∈ Q∗ and A = θ(a) is the corresponding matrix from the spread set R ⊂ GLn(p)∪{0}.
Then the right-ordered minimal polynomial of an element a is factor of the minimal polynomial
of the matrix A. Moreover, the right order of a is a factor of the order of the matrix A in the
general linear group GLn(p) (proved in [8]).

For completeness, we will prove the following simple but useful result.

– 43 –



Olga V. Kravtsova, Ilya K. Kuzmin On Spectra and Minimal Polynomials . . .

Lemma 1. Let Q be a semifield of order pn with the spread set R (2). If an elelment a ∈ Q does
not belong to the prime subfield Zp then the characteristic polynomial of the matrix A = θ(a) ∈ R
has no linear factors over Zp.

Proof. Assume that the statement is false and the polynomial det(A−λE) has the factor λ−α,
α ∈ Zp. Then the linear transformation with the matrix A has an eigenvector v ∈ Q∗ with the
eigenvalue α:

vθ(a) = αv ⇒ v ∗ a = v ∗ α,

it contradicts the definition of a loop Q∗. �

Evidently that the statement is true for any (right) quasifield too, if Zp ⊂ Z(Q).
Remind that for any square mathix A the characteristic matrix A−λE can be transform, by

equivalent tranformations, to the normal diagonal form:

A− λE ∼


E1(λ) 0 . . . 0

0 E2(λ) . . . 0

. . . . . . . . . . . .

0 0 . . . En(λ)

 ,

where the non-zero invariant factors Ei(λ) ∈ Zp[λ] are monic polynomials, and Ei(λ) is a divisor
of Ei+1(λ), 1 6 i < n. Moreover, the characteristic polynomial of A is

det(A− λE) = (−1)nE1(λ)E2(λ) . . . En(λ),

and the last invariant factor equals to the minimal polynomial of A: En(λ) = µA(λ).

3. Main results

We will prove the main Theorem 1 by the sequence of lemmas each of them can be considered
as an independent result. These lemmas represent the necessary partial cases, and the theorem
proof can be constructed by evident induction.

Consider the right-ordered minimal polynomial µra(x) for an element a ∈ Q∗, this polynomial
is a divisor of µA(x) for A = θ(a). It is clear that the right order of a is uniquely defined by
the polynomial µra(x); |a|r equals to the length of the neutral element orbit under the linear
transformation ψ = Ra : y → y ∗ a. When the degree of the polynomial µra(x) is m < n, we
can consider the map ψ, instead of n-dimensional linear space Q, in the m-dimensional linear
sub-space La ⊂ Q with the base e, a, a2, a3), . . . , am−1).

Lemma 2. If the right-ordered minimal polynomial µra(x) ∈ Zp[x] of an element a ∈ Q∗ is an
irreducible polynomial of the degree m then the right order of a is a divisor of the number pm−1.

Proof. Consider the right-ordered polynomial µra(x) (1) and construct the matrix A of the linear
transformation ψ : y → y ∗ a of the linear space La using the base above:

eψ = e ∗ a = a = (0, 1, 0, 0, . . . , 0),

aψ = a ∗ a = a2 = (0, 0, 1, 0, . . . , 0),

(a2)ψ = a2 ∗ a = a3) = (0, 0, 0, 1, . . . , 0),

. . . ,

(am−1))ψ = am−1) ∗ a = am) = −cm − cm−1a− · · · − c1a
m−1) = (−cm,−cm−1, . . . ,−c1);
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A =


0 1 0 . . . 0

0 0 1 . . . 0

0 0 0 . . . 1

−cm −cm−1 −cm−2 . . . −c1

 .

It is the companion matrix of µra(x), and the set

F = Zp(A) = {b0E + b1A+ b2A
2 + · · ·+ bm−1A

m−1 | bi ∈ Zp, i = 0, 1, . . . ,m− 1}

is the field of order pm, see [9]. So, the orbit length of the element e ∈ La under ψ equals to the
order of the matrix A in the cyclic group F ∗, |a|r is a divisor of pm − 1. �

As can be seen, the lemma proven generalizes the corollary from Lagrange’s theorem that the
element order is a divisor of the finite group order. For any nonzero element a of an arbitrary
finite semifield Q, the result is incorrect, see examples below. The result of the lemma is trivial
when a belongs to the simple subfield Zp: the minimal polynomial is linear and the right (and
left) order of the element divides p − 1. It is clear that the result is also valid for an element
from any subfield of a finite semifield Q.

Note that the transition from the semifield Q = (Q,+, ∗) to the opposite semifield
Qop = (Q,+, ◦) with the multiplication x ◦ y = y ∗ x interchanges the right order and the left
order of a, also the right-ordered minimal polynomial and the left-ordered minimal polynomial.
Thus, all results proved for the right spectrum can be transferred to the left spectrum.

Lemma 3. If the right-ordered minimal polynomial of an element a ∈ Q∗ is µra(x) = φ2(x),
where φ(x) is irreducible polynomial of degree m, n = 2m, then the right order of a is a divisor
of the number p(pm − 1).

Proof. Clear that the normal diagonal form of the matrix θ(a) − λE is diag(1, 1, . . . , 1, φ2(λ)).
Choose the base of Q such that the matrix θ(a) be of the form

A =

(
B E

0 B

)
,

where all the blocks are (m × m)-dimensional, so the normal diagonal form of B − λE is
diag(1, 1, . . . , 1, φ(λ)). For instance, we can write the matrix B as the companion matrix of
the polynomial φ(x) by the manner above. Such the base choice is possible because the matrices
A and θ(a) are conjugated, see the previous section.

Evidently, for any k ∈ N we have

Ak =

(
Bk kBk−1

0 Bk

)
.

The image of the neutral element e = (1, 0, 0, . . . , 0) under the linear transformation ψk : y → yAk

coincides to e iff k ≡ 0 (mod p) and Bk = E. The second condition follows from the irreducibility
of the polynomial φ(x), because the set Zp(B) of (m×m)-matrices is the field of order pm. So,
the order of matrix A in the group GLn(p) is a divisor of p(pm − 1), the lemma is proved. �

Additionally, we note that this reasoning shows the need for the divisibility of |a|r by the
number p. We will not focus on this condition because of the complexity in the general case.

Lemma 4. If the right-ordered minimal polynomial of an element a ∈ Q∗ is the product of two
different irreducible polynomials µra(x) = φ1(x)φ2(x) of orders m1 and m2, n = m1 +m2, then
the right order of a is a divisor of the least common multiple of numbers pm1 − 1 and pm2 − 1.
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Proof. The normal diagonal form of the matrix θ(a) − λE is diag(1, . . . , 1, φ1(λ)φ2(λ)), so, up
to conjugation, the matrix θ(a) can be chosen as

A =

(
B 0

0 C

)
.

Here the block B is (m1 × m1)-matrix and B − λE ∼ diag(1, 1, . . . , 1, φ1(λ)), the block C is
(m2 ×m2)-matrix and C − λE ∼ diag(1, 1, . . . , 1, φ2(λ)). The order of the matrix A evidently
equals to the least common multiple of the orders of B and C in general linear groups GLm1(p)

and GLm2(p), or, more precisely, in cyclic multiplicative groups of associated fields

F1 = {f(B) | f(x) ∈ Zp[x]} ≃ GF (pm1) and F2 = {f(C) | f(x) ∈ Zp[x]} ≃ GF (pm2).

The lemma is proved. �

Remark 1. It is clear that the case of more than two irreducible factors in the polynomial µra(x)
decomposition is considered by induction. Moreover, in the case when m1 +m2 < n, we must
replace the linear space Q with its linear subspace La.

It remains to consider the case when the irreducible polynomial φ(x) is s-times factor of
µra(x), s > 2. It is easy to show, that in this case, the choice of the base allows us to write the
corresponding (ms×ms)-dimensional block in the form:

A =



B E 0 0 . . . 0

0 B E 0 . . . 0

0 0 B E . . . 0

. . . . . . . . . . . . . . . . . .

0 0 0 0 . . . E

0 0 0 0 . . . B


.

Now we can raise it to the k-th degree using Newton’s binomial:

Ak =



Bk C1
kB

k−1 C2
kB

k−2 C3
kB

k−3 . . . 0

0 Bk C1
kB

k−1 C2
kB

k−2 . . . 0

0 0 Bk C1
kB

k−1 . . . 0

. . . . . . . . . . . . . . . . . .

0 0 0 0 . . . C1
kB

k−1

0 0 0 0 . . . Bk


.

The image of the neutral element e = (1, 0, . . . , 0) equals to eAk = e when two condition hold:
1) the order of the matrix B in GLm(p) (or in multiplicative group of the associated field

GF (pm)) is a divisor of the number k and
2) the characteristic p is a divisor of the binomial coefficients C1

k , C
2
k , . . . , C

s−1
k .

These arguments, together with the lemmas and the remark, complete the proof of the The-
orem 1.

Remark 2. The result of the theorem remains valid for the right order and right-ordered minimal
polynomial in a finite right quasifield, as well as for the left order and left-ordered minimal
polynomial in a finite left quasifield (including a semifield).

The following corollary represents some important cases of small-rank semifield.
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Corollary 1. Let Q be non-associative semifield of order pn, a ∈ Q∗. The right order and the
left order of an element a are divisors of:

1) p3 − 1, when n = 3;
2) p4 − 1 or p(p2 − 1), when n = 4;
3) p5 − 1 or (p2 − 1)(p3 − 1), when n = 5.

Thus, any three-dimensional finite semifield satisfies to the corollary of Lagrange’s theorem.
We can not guarantee it for arbitrary four- and five-dimensional semifield. In the case of n = 6

the listing of all the variants is too complicated.

4. Examples

1. Illustrate the results by the example of a semifield of order 16. It is known that there
exist 23 pairwise non-isomorphic semifields of order 16, see enumeration by E. Kleinfeld and
results of PK. Shtukkert and V.M. Levchuk, see [3]. The detailed table in that review contains
the information on spectra, subfields and automorphisms. All the semifields of order 16 are
right and left primitive, that is the multiplicative loop Q∗ is the set of left-ordered and right-
ordered degrees of some element a. So, the right and left spectra contains the number 15,
these spectra are the following (for different semifields): {1, 3, 15}, {1, 3, 6, 15}, {1, 3, 5, 6, 15},
{1, 5, 6, 15}. The number 6 in the spectra is not the divisor of |Q∗| = 15, but from corollary
we have p(p2 − 1) = 2 · 3 = 6, in this case we see the right- or left-ordered minimal polynomial
(x2 + x+ 1)2.

2. The results on 3-primitive semifield projective planes of order 81 are presented in [10].
There exist exactly 8 non-isomorphic semifield planes of order 81 that admit an involution auto-
morphism which fixes pointwise a subplane of order 9. Corresponding 8 non-isotopic semifields of
order 81 have the right and left spectra containing only divisors of |Q∗| = 80: {1, 2, 4, 8, 16, 40, 80}
or {1, 2, 4, 8, 16, 80}.

Another example of semifields of order 81 is the commutative Cohen–Ganley semifield [11]

Q = {(x, y) | x, y ∈ F ≃ GF (9)}

with the multiplication

(x, y) ◦ (u, v) = (xv + yu+ x3u3, yv + ηxu+ η−1xu), x, y, u, v ∈ F,

η is non-square in F . The spread set of this semifield considered as 4-dimensional linear space
over Z3 consists of matrices

θ(x1, x2, x3, x4) = x1E + x2


0 1 0 0

0 0 1 0

0 0 0 1

2 0 1 0

+ x3


0 0 1 0

0 0 0 1

2 0 2 2

1 2 0 1

+ x4


0 0 0 1

2 0 1 0

1 2 0 1

0 1 0 0

 ,

x1, x2, x3, x4 ∈ Z3. The next two tables present the elements a ∈ Q∗, their minimal polynomials
µra(x) = µla(x) and their right (left) orders |a|r = |a|l calculated by the second author.

Note that the elements with minimal polynomials of degree 1 and 2

{(1, 0, 0, 0), (2, 0, 0, 0), (0, 1, 2, 0), (0, 2, 1, 0), (1, 1, 2, 0), (1, 2, 1, 0), (2, 1, 2, 0), (2, 2, 1, 0)},

together with zero vector form the subfield of order 9. It is so-called middle nucleus of Q:

Nm = {b ∈ Q | (a ∗ b) ∗ c = a ∗ (b ∗ c) ∀b, c ∈ Q}.
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Table 1. Right order is a divisor of p4 − 1 = 80

Element a ∈ Q∗ µra(x) |a|r
(1, 0, 0, 0) x− 1 1
(2, 0, 0, 0) x− 2 2

(0, 1, 2, 0), (0, 2, 1, 0) x2 + 1 4
(2, 0, 1, 0), (2, 1, 0, 2), (2, 1, 1, 0), (2, 1, 1, 1) x4 + x3 + x2 + x+ 1 5

(1, 1, 2, 0), (1, 2, 1, 0) x2 + x+ 2 8
(2, 1, 2, 0), (2, 2, 1, 0) x2 + 2x+ 2 8

(1, 0, 2, 0), (1, 2, 0, 1), (1, 2, 2, 0), (1, 2, 2, 2) x4 + 2x3 + x2 + 2x+ 1 10
(0, 0, 0, 1), (0, 0, 0, 2), (0, 1, 2, 2), (0, 2, 1, 1) x4 + x2 + 2 16
(0, 0, 1, 0), (0, 1, 0, 2), (0, 1, 1, 0), (0, 1, 1, 1) x4 + x2 + x+ 1 40
(0, 0, 2, 0), (0, 2, 0, 1), (0, 2, 2, 0), (0, 2, 2, 2) x4 + x2 + 2x+ 1 40
(1, 0, 0, 1), (1, 0, 0, 2), (1, 1, 2, 2), (1, 2, 1, 1) x4 + 2x3 + x2 + 1 40
(2, 0, 0, 1), (2, 0, 0, 2), (2, 1, 2, 2), (2, 2, 1, 1) x4 + x3 + x2 + 1 40
(1, 0, 1, 0), (1, 1, 0, 2), (1, 1, 1, 0), (1, 1, 1, 1) x4 + 2x3 + x2 + x+ 2 80
(2, 0, 2, 0), (2, 2, 0, 1), (2, 2, 2, 0), (2, 2, 2, 2) x4 + x3 + x2 + 2x+ 2 80

Table 2. Right order is a divisor of p(p2 − 1) = 24

Element a ∈ Q∗ µra(x) |a|r
(0, 1, 1, 2), (0, 2, 2, 1) (x2+ 2x+ 2)(x2+ x+ 2) 8
(1, 1, 1, 2), (1, 2, 2, 1) (x2 + 1)(x2 + 2x+ 2) 8
(2, 1, 1, 2), (2, 2, 2 ,1) (x2 + 1)(x2 + x+ 2) 8

(0, 0, 1, 1), (0, 0, 1, 2), (0, 0, 2, 1), (0, 0, 2, 2), (0, 1, 0, 0), (x2 + 1)2 12
(0, 1, 0, 1), (0, 1, 2, 1), (0, 2, 0, 0), (0, 2, 0, 2), (0, 2, 1, 2)
(1, 0, 1, 1), (1, 0, 1, 2), (1, 0, 2, 1), (1, 0, 2, 2), (1, 1, 0, 0), (x2 + x+ 2)2 24
(1, 1, 0, 1), (1, 1, 2, 1), (1, 2, 0, 0), (1, 2, 0, 2), (1, 2, 1, 2)
(2, 0, 1, 1), (2, 0, 1, 2), (2, 0, 2, 1), (2, 0, 2, 2), (2, 1, 0, 0), (x2 + 2x+ 2)2 24
(2, 1, 0, 1), (2, 1, 2, 1), (2, 2, 0, 0), (2, 2, 0, 2), (2, 2, 1, 2)

The feature of this example is the number of «right roots» of the polynomials. This number
equals m for irreducible polynomials of degree m (see Tab. 1), and it does not equal m for
reducible ones (see Tab. 2).

Question. How many «right roots» and «left roots» does a polynomial f(x) ∈ Zp[x] have in a
semifield Q of order pn, if deg(f) = m?

3. The results of the first author on the semifield planes of order p4 with the special auto-
morphisms subgroup H ≃ Q8 in [12] were illustrated by the examples of semifield planes and
semifields of order 54 and 134. It was proved that all the coordinatizing semifields are both left
and right primitive, non-commutative. Each of them have 1, 2 or p + 2 maximal subfields of
order p2, the automorphism group is Z2 or Zp+1.

Let Mn be the set of all divisors of integer n. According to the corollary, the right spectrum
of semifields of order 625 above is contained in

M54−1 ∪ {15, 30, 40, 60, 120} ⊂M54−1 ∪M5·(52−1),

for the semifields of order 134 the right spectrum is the subset of

M134−1 ∪ {21, 91, 104, 182, 273, 312, 364, 546, 728, 1092, 2184} ⊂M134−1 ∪M13·(132−1).
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4. Consider two exceptional non-primitive semifields, for more information see [3]. In 1991
G.P. Wene wrote the hypothesis: any finite semifield is right or left primitive. In 2004 I.F. Rúa
gave the counter-example to Wene’s conjecture, using a Knuth semifield R of order 32. This
commutative Knuth-Rúa semifield is neither right nor left primitive. The second counter-example
is Hentzel-Rúa semifield H of order 64, which was constructed in 2007. These semifields have no
elements of one-sided order 31 and 63 respectively. Another counter-examples are still unknown.

Note that even non-primitive Knuth–Rúa and Hentzel–Rúa semifields are right-cyclic, these
semifields admit a Zp-base

{e, a, a2), . . . , an−1)},
for some element a.

It is known that any element a ∈ R \ {0, 1} has the right (and left) order 21. The direct
calculation presented in [5] shows that the right-ordered minimal polynomial µra(x) is

x5 + x4 + 1 = (x2 + x+ 1)(x3 + x+ 1) or x5 + x+ 1 = (x2 + x+ 1)(x3 + x2 + 1).

So, by the corollary, we obtain (p2 − 1)(p3 − 1) = 21, which is consistent with earlier results [3].
Now consider the Hentzel–Rúa semifield H of order 64, using the information from [5]. Note

that the right-ordered minimal polynomial of a ∈ H is not necessarily equal to the minimal
polynomial of the associated matrix A = θ(a).

The most interesting situation we see when the right-ordered minimal polynomial of a is
(x2 + x+ 1)3. According the main theorem 1 for m1 = 2 and s1 = 3, the right order of a must

be a divisor of the number lcm(22 − 1, k1), where k1 is the minimal with the conditions C1
k1

... 2,

C2
k1

... 2. From Pascal’s triangle
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1

we see that k1 = 4, lcm(22 − 1, 4) = 12 = |a|r. One can check the rest of the cases in the Tab. 3.

Table 3. Orders and minimal polynomials in H

|a|l = |a|r ml
a(x) = mr

a(x) mA(x)
7 (x3 + x+ 1)(x3 + x2 + 1) (x3 + x+ 1)(x3 + x2 + 1)
12 (x2 + x+ 1)3 (x2 + x+ 1)3

15 x4 + x+ 1 (x4 + x+ 1)(x2 + x+ 1)
6 (x2 + x+ 1)2 (x2 + x+ 1)3

7 x3 + x+ 1 (x3 + x+ 1)2

or or
x3 + x2 + 1 (x3 + x2 + 1)2

3 x2 + x+ 1 x2 + x+ 1
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О спектрах и минимальных многочленах
в конечных полуполях

Ольга В. Кравцова
Илья К. Кузьмин

Сибирский федеральный университет
Красноярск, Российская Федерация

Аннотация. Для исследования конечных полуполей применяется понятие односторонне-
упорядоченного минимального многочлена. Отсутствие ассоциативности умножения в собственном
полуполе приводит к аномальным свойствам его левого и правого спектра. Получено достаточное
условие делимости порядка мультипликативной лупы на правый (левый) порядок элемента. С
использованием регулярного множества полуполя описана связь минимального многочлена нену-
левого элемента и его правого (левого) порядка. Эта взаимосвязь дает исчерпывающее объяснение
наиболее интересным аномальным примерам полуполей малых порядков.

Ключевые слова: полуполе, правый порядок, правый спектр, правоупорядоченный минималь-
ный многочлен, регулярное множество.

– 50 –


