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An algebraic subgroup of a group G is a subgroup endowed with an algebraic variety structure,
i.e. defined by means of a system of polynomial equations. A natural example of the algebraic
group is a set of solutions of a system of binomial equations: 27252 ... 25" = zlﬂlzg? coo2bn

The following theorem shows that such groups in fact exhaust all algebraic varieties globally
inheriting the group structure of the torus (K> )™.

For vectors a = (aq,...,ay) € Z" and z = (z1,...,2,) € G™ (where G is a group) we write

a . 01 a2 «,
2T =21 R et 2™

Theorem (Schmidt) [1]. Let K be a field. Every algebraic subgroup H of the group (K*)™
is defined by a system of some number N of binomial equations, namely, there are N indices
i, Bi € Z" such that H = {z € (K*)" | V1 <i < N: 2% = 2Fi}

Next, we’ll give a self-contained (independent of other major theorems) proof of this theorem.
For this purpose, we need an auxiliary statement.

1. Artin’s theorem

We denote the set of homomorphisms between groups G and H by Hom(G, H).

Let G be a group, K be a field, and K* be its multiplicative group. Then an arbitrary
homomorphism f € Hom(G, K*) is called a character. The characters fi, fo,..., f are linearly
independent if Vaq,as,...,a, € K:anfi+asfo+...+anfn=0=2a01=a=...=a, =0.
Theorem (Artin) [2]. Any n pairwise distinct characters are linearly independent.

Proof. Let us prove by induction on the number of characters n.

Take an arbitrary character f. Since it is a homomorphism, f(1g) = 1 where 14 is an identity
element in the group G. But then if af = 0, then @ = a-1 = - f(1¢) = 0, which proves the base
case.

Now let the statement of theorem be true for any n distinct characters. Let us prove it for
n + 1 characters. Let a1 f1 + asfo + ...+ anfn + anst1fonr1 = 0.
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Fix an arbitrary y € G. The for any € G we have:

Oélfl(yx) + a2f2(yx) +...+ anfn(?/x) + an+1fn+1(ya?) =0. (1)

Since all f; are homomorphisms, f;(yx) = f;(y)fi(z), and therefore:

arf1(y) fi(x) + aafa(y) fo(x) + ...+ o fr(y) fu (@) + Qng1 fros1 () fagi () = 0.

On the other hand, for x € G it is also true that: ayfi(x) + asfa(z) + ... + anful(x) +

Qny1frri(z) = 0.
Multiplying this equation by f,,+1(y), we’ll get:

a1 for1(W) f1(2) + a2 fn1 () fa(@) + o+ an fror1 () fr(2) + ang1 for1 (U) frga(z) = 0. (2)

Subtracting (1) from (2), we obtain: a1(fnt1(y) — filw)fi(x) + ... + an(fos1(y) —
fa(y))fa(x) = 0. x was chosen arbitrarily, so we get a linear combination of n characters:
o1 (for1(y) = i) i+ -+ an(fari(y) — fu(y)) fo = 0.

But then, using the inductive hypothesis, o;(fn+1(y) — fi(y)) = 0. Now, choosing y for each
i=1,...,n such that f,1(y) # fi(y) (it’s always possible because all f; are pairwise distinct),
we obtain that o1 = as = ... = «,, = 0.

Thus, given the above, ap41 frnt1 = a1f1 +aofo + ... + anfn + @nt1fnte1 = 0. According
to the base case again, a1 = 0. O

2. Proof of Schmidt’s theorem

Proof. Let I C Z™ be a finite set of indices, and let Pj(z) = Y aj;z* be the k polynomials
defining the subgroup: H = {z € (K*)" | V1 < j < k: Pj(z) = 0}’

Since 2{25 = (2122)%, the mapping z + z* defines character x; € Hom(H, K*).

Consider an equivalence relation ¢ ~ j < x; = Xx; on the set I. It partitions I into m classes
I, I, ..., I,. Then for all 71,45 € I; it is true that x;, = xs,. Let us denote this character
corresponding to each I by xx = Xi; = Xi»-

Combining like terms at each xj, in the polynomials P;, we obtain:

Pp=7) ajxi= i (Z aji> X-

i€l k=1 \i€ly

m
But P; vanishes on the whole H, so: > | > aj; | xx =0.
k=1 \i€l}
All i are pairwise distinct by their definition, so Artin’s theorem applies. We conclude that:
Z Qj; = 0.
i€l
m
Finally, let Ny be the cardinality of I, Iy = {ik1,%k2,--- %N}, and N = > (N — 1).
I}, were taken such that the characters x;, , and x;, ; coincide on H for fixed k and any ¢ and
j. In other words, this means that any element »z € H satisfies the equations 2% = 2% for all
1<i< Nyand 1< j < Ny.
Since the equality is reflexive, symmetric, and transitive, the system of all equations
2k = 2.3 is equivalent to the system of N equations composed of consecutive indices:

i i i 41,3
21’1221‘272’1’2221’5

11,Ny -1 — 5%1,N Q2,1 _ 02,2 im,Npp—1 — ~%m,N
s, 2 UTITE = P TS = TS, m T = e m
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We denote the set of solutions of this system by A.

Let us show that A coincides with H. Indeed, let z € H. Then, as noted before, by definition
of Ij, it is true that 2% = i (2) = 2'J+1; that is, 2 € A and H C A.

Conversely, let z€ A. Then by definition of A we have 2% = 2+l =, | = zikia—1 = ztki2
for all 1 < j1 < j2 < Ng. Choose a representative i € I in each I and combine like terms:

Pi(z) =3 (Z%‘z‘) 2t Z;O-Z“ =0,

k=1 \i€l,

which means z € H, that is, A C H.
Thus, H = A, so it suffices to take all the consecutive indices from I} as a; and S;. O

3. Injectivity of monomial parameterizations

For an abelian group G and vectors ai,...,q, € ZF consider the mapping ¢o(t) =
(tor ¢ . t%n) from GF to G™ where « is a matrix with rows ;. Since (t1-t2)% =t - 157, ¢,
is a homomorphism. Further we will see that if K is a field, then the mapping ¢, for the group
G = K* defines a parameterization of some algebraic group.

Proposition. ¢ = 1gr» where E is an n X n identity matriz, 1x is an identity function on X.
Proposition. Va € ZK*™, 3 € ZM*": ¢, 0 g = dagp-

Proof. Indeed, consider ¢t € G". Then the i-th component of ¢4 (¢s(t)) is equal to ¢5°(t) =
(tﬂl)()é% . (tﬁm)a’(” _ tlﬁ%ai#»*‘rﬂ,lna;" o tg;’od«k#*ﬂ:'na;n _ t(aﬁ)z -

i

Together these two propositions constitute a condition for functoriality. More precisely, con-
sider the category Matr(R) of matrices over the ring R whose objects are the natural numbers
and the arrows between the numbers m and n are the matrices R"*", and the category Grp
of small groups with small groups as objects and homomorphisms between them as arrows. Then
the functor ¢ : Matr(Z) — Grp is defined:

= ki Gk,
a— Gg.
As Lemma 2 shows, in fields of characteristic zero this functor is faithful.

Lemma 1. Let K be a field such that char(K) = 0. Then K* contains an element of infinite
order.

Proof. Indeed, consider 2 =1+ 1 € K*. Then for any n > 0:

2”—1:(1+1)”—1:2%0,31’@"—’6—1:2”:0,?-1—1: (ZC,?) 1.
k=0 k=0

k=1
n
On the right side we have the sum of ) C} > 0 units. Since char(K) = 0, this sum is not
equal to zero, that is, 2" — 1 # 0. k=1 O

We denote a standard basis over Z* by e;, that is, a vector with one on the i-th place and
zeroes on the others. We denote the j-th component of the vector a; by «) and the vector
consisting of the j-th components by o/ = (a7, a3, ..., ad).
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Lemma 2. char(K) =0 = Vo, € Z"F*: ¢, = ¢p & a = f.

Proof. The left-to-right implication is obvious.
Conversely, let ¢o = ¢g. Using Lemma 1 we fix an element z € K* of infinite multiplicative
order. Then for all 1 < i < n it is true that (21, ..., 2%) = ¢u(2-¢;) = op(z-€;) = (2P1,...,2P%).
Thus, 2% = 2%, that is, 2% % = 1. z has infinite multiplicative order, so ozé — B} =0. O

We denote a Z-linear span of aq, ..., an by Spang(ay,...,a,) = {kiar + ... + knay | k1,
..., k, € Z}. We say that ay, ..., a, span the whole lattice Z* if Spany(ay,...,a,) = ZF.

It is easy to obtain a necessary condition for the injectivity of the mapping ¢,. For this
purpose, we note that the following proposition is obvious.

Proposition. Spang(ay,...,a,) = ZF < Vi: e; € Spang(ay, ..., ).
Lemma 3. If vectors o; € ZF span the whole lattice ZF, then ¢, is injective.

Proof. ¢, is a homomorphism, so it suffices to show that ker(¢,) = {1}. We'll take t € G* such
that ¢, (t) = 1 and prove that ¢ = 1.

Indeed, since «; span the whole lattice, each e; can be expressed as their linear combination:
e; = b{ozl + ...+ b%an

$a(t) = 1 means t* = 1 for all 1 < i < n. Fix 1 < j < k and raise both sides of this
equation to the power of bg : _tbio‘i = (tai)bg = 1% = 1. Finally, multiply the obtained equations:
t; =t = thotetbuon —gbien | ghnoan — 1. .1 =1, m

Now we will show that the obtained necessary condition is also sufficient for the group
G =C*.

We will use the existence of Smith normal form for integer matrices [3]. Let diag]" " (a1, ...,
x,) be a diagonal matrix diag(z1,...,x,) augmented (or cut off) from the bottom right by zeroes
to a matrix of size m x n.

Theorem (on the existence of Smith normal form).
Vo € Z™*": 3y € GL™(Z), B2 € GL™(Z): Jey,...,er € Z\ {0}: fraBs = diag] " (1, ... ,&r),

where €1 | €2 | ... | & (the so-called invariant factors) and r = rank(«).

Since the numbers €1, ..., &, are chosen in a unique way up to the invertible element, that is,
up to 1 in the case of Z, we can always choose them positive. For them we denote the matrix
diag]" " (e1,...,&r) by SNF(a).

In addition, since ¢ defines the functor, it is clear that ¢z is bijective if 3 € GL™(Z). Indeed,
(ﬁ/g o ¢5—1 = ¢ﬁ’ﬁ—1 = ¢E = 1(K><)n and (z)ﬁ—l o ¢5 = (b/g—l/g = ng = 1(K><)n. Therefore,
the following lemma holds.

Lemma 4. ¢, : (CX)* — (C*)" is injective if and only if
SNF(a) = diagy™*(1,1,...,1).

Proof. Using the theorem, let us take unimodular matrices 8, € GL"(Z) and By € GL*(Z) such
that Biaf2 = SNF(a). Then, a = B 'SNF(a)B3; ! and ¢, = Pp-tsnF(a)s;t = Ppot © PsNE(a) ©
Pgo1-

Since, by the remark above, qbﬁ;l and qbﬁ;l are bijective, ¢, is injective if and only if pgNF(a)
is injective.

PsNF (o) (t1s - tk) = (874,15, 1,...,1), but t — t° is injective over C* only if ¢ = *1
(otherwise ¢ = ¢ - 1 = ¢° - u® = (tu)® where u # 1 is a nontrivial e-th root of unity). By choice
of signs, ¢snr(a) is injective only if ey = ... =, =land r =k <n. o
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Let us formulate one more auxiliary theorem [4].

Theorem 1. Let o € Z™*F. The following statements are equivalent:
1. The rows of the matriz o span the whole lattice ZF.
2. The mazimal minors of the matrix o are coprime.
3. SNF(a) = diagl™*(1,...,1).

Thus, from Lemma 4 and Theorem 1 we obtain a necessary and sufficient condition for the in-
jectivity of ¢q.

Theorem. ¢, is injective over the field K = C if and only if a; span the whole lattice ZF.

4. Monomial parameterizability of torus subgroups

As in the case of the theory of curves and surfaces, we say that a subgroup of an algebraic
torus is parameterizable if it can be expressed as an image of some mapping. Similarly, a subgroup
is monomially parameterizable if it can be expressed as an image of ¢, for some matrix «.

Since ¢, is the homomorphism, its image Im(¢, ) is a subgroup in (K*)". Next we’ll study
two questions: whether Im(¢,,) is an algebraic subgroup and whether any algebraic subgroup is
expressed by some ¢,.

For this, first of all, we note that the system of binomial equations Bi= 2" s equivalent
to the system 2Pi=B" =1, that is, exactly the kernel of the operator ¢g:_g:; therefore, the first
question is equivalent to whether a given homomorphism ¢, can be extended to the exact se-

quence (KX)* 22 (< )m 22, (< ym.
Lemma 5. Let G be a group, H be an abelian group, f € Hom(G, H), g € Hom(H,G), and

go f=1¢g. Then the sequence G Log 1297 | s eact.

Proof. Tndeed, (fog—1u)o f=fogof—f=f—f=0,thatis, Im(f) C ker(f o g — Lr).
Conversely, let h € ker(fog—1p). Then f(g(h)) —h =0 < h = f(g(h)), that is, h € Im(f) and
ker(fog—1g) CIm(f). |

Lemma 6. ¢, for a € Z"* can be expressed as some image Im(¢p) if the mappings g — g%
are surjective in G for all £; from SNF(«).

Proof. Let us again write o as a = 8 *ef3; * where ¢ = diangk(sl, ce s Er).
Consider § = diag]'*"(1,...,1) and o/ = B715. ¢, is injective since it is a composition of

injective functions. On the other hand, it is obvious that:
Im(¢a) = ¢5;1(¢5(¢5;1(Gk))) = Qsﬁfl(d)s(Gk)) = ¢5;1(¢6(GT)) = Im(¢a’)'

It is easy to see that 3/ = 8" 3 is a left inverse of the matrix o/, and hence ¢p is a left inverse
of ¢por. Since (dor © ¢p/)p—_E = ¢orp —E, we only need to apply Lemma 5. O

Theorem 2. Any parameterization ¢, for o € Z"** defines an algebraic subgroup of (K*)" if
the field K is algebraically closed.

The answer to the second question is somewhat more complicated. For example, the equation
2™ =1 defines an algebraic group for any n € Z consisting of n points on C*; but if n # 0, +1
it is easy to see that it cannot be parameterized by any ¢,.
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Indeed, notice that the group Im(¢,) is isomorphic to the group (C*)". In the proof of
Lemma 6 we saw that for any ¢, we can construct an injective ¢, : (C*)" — (C*)™ such that
Im(¢ps) = Im(¢y); but then ¢, defines the desired isomorphism. Thus, the following proposition
holds.

Proposition. For any matriz o € Z™** the group Im(¢,) is isomorphic to an algebraic torus
of dimension at mosk k.

Moreover, since the mapping ¢, is polynomial, it is, in particular, continuous in the standard
topology on K = C. The set (C*)" is connected, and, as we know, the continuous image of
a connected set is connected, so next proposition is also true.

Proposition. Im(¢,) C (C*)™ is connected.

Now notice that the group z™ = 1 is connected exactly when n = 0, £1. This indicates that
the criterion for the existence of a monomial parameterization for an algebraic torus subgroup is
connectedness.

We denote the group of n-th root of unity in the field K (given by the equation 2™ = 1)
by wr(n) C K*. For a vector x € Z* we denote wy (z) = wx (1) X ... x wi(zx) C (K*)*. For
brevity, we will write w(x) = wc(z). It is known that the group w(z) is isomorphic to the group
Z]x1Z X ... X LjxpZ.

To prove the criterion described before, consider the number () = |wk(g)| where |G| is
the order of the group G. |G x H| = |G||H]|, so II(a) = |wk(e1)| ... |wk(er)]- Since w(n) is
isomorphic to Z/nZ, in the case of the field K = C it is also true that II(a) = €1 ... &,.

Lemma 7. If II(3) = 1, then there is a such that ker(¢g) = Im(¢q).

Proof. Let H = ker(¢g). Without loss of generality, we assume that the rows of the matrix 3
are linearly independent over Z (it is clear that the rows expressed as a linear combination of
the other rows can be removed from the matrix 8 without changing the kernel).

Let us write the Smith normal form for 5: § = 51_1552_1. Since, according to the remark
above, f has full rank, the matrix ¢ has no zero rows. Furthermore, II(8) = 1, so |wk(&;)] = 1,
that is, the equations z°* = 1 have only z = 1 as a solution.

The kernel of € is given by vectors of the form (0,...,0,%g41,...,t,). Consider a matrix
§ € Z"*("=k) corresponding to the linear operator

(tl,...,tn,k) — (0,...,0,t1,...,tn,k).

Let also oo = B26. We'll prove that Im(¢,) = ker(¢g).

Indeed, by definition of § it holds that 6, € = 0, so ¢pgod, = ¢5;18[3;1526 = ¢/3f156 =¢o =1,
that is, Im(¢q) C ker(¢g).

Conversely, let 2 € ker(¢g). Then ¢3-1(d_5-1(2)) = dp(2) =1, 50 ¢=(P-1(2)) = d.5-1(2) =
¢s,(1) = 1. From the form of the matrix ¢ we obtain that gi)ﬁ;l(z) =(1,..., Ltkg1,. .oy tn) =
O5(tktt, ..., tn); that is, 2 = ¢g,(ds(tit1, .-, tn)) = Pa(tkt1,...,tn) for some t;. Thus, z €
Im(¢q) and ker(¢g) C Im(¢q). a

Theorem 3. The number of connected components of ker(¢g) C (C*)™ is equal to II(3).

Proof. Consider again the Smith normal form of 8: 8 = 8y 15B5 1 %fl is isomorphism, so
ker(¢g) = ker(¢€B;1).
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We denote the rows of 651 by b;. For a vector u € w(e) consider the set H, = {z €
(C)™ | V1 < i < r: 2% = u;}. The condition Pe(Pp (z)) = 1 is obviously equivalent to the con-
dition Ju € w(e): z € H,. Clearly, the sets H, are disjunctive, so ker(¢g) decomposes into
a disjunctive union: ker(¢g) = [l e () Hu- There are exactly II(3) vectors u € w(e), so it
suffices to show that each component H,, is connected.

Since, by definition, H; = ker(qﬁéﬂ;) where § = diagh*™(1,...,1) and T1(68; ') = 1, the com-
ponent Hj is connected by the remark.

Fix u and consider the matrix 7 = diag(1/u1,...,1/u,, 1,...,1) and the mapping ¢ = ¢, o
O (;SB;L 1 is a continuous bijection, moreover, Y1 = ¢g, 0 p,-1 0 gbﬁ;l.

By definition, ¢B2—1('(/)(Z)) = (bTB;l(Z). So if z € H,, then 1(z)% = 2% /u; = u;/u; = 1. Con-
versely, if z € Hy, then ¢v~1(2)% = ;2% = u;. Thus, ¢(H,) = Hy, that is, H, is homeomorphic
to Hy, but H; is connected. O

As we saw before, any algebraic subgroup H of the torus (K )™ can be expressed as ker(¢g)
for some (. Notice that II(3) does not depend on the choice of § for the group H.

Theorem 4. If char(K) = 0 and ker(¢g) = ker(¢p ), then II(5) = II(5’).

Proof. Let us write down the Smith normal forms: 8 = 8, 'ef; ' and ' = 6’1_15’6’2_1. So we
have: ker(gbsﬁ;l) = ker(¢g) = ker(¢p) = ker(cbs,ﬁ,;).

Let € = diag"™"(eq,...,2,) and & = diagh *"(e},...,€.). We write § = diag""(1,...,1)
and ¢’ = diagf:X"(L oo 1),

Since TI(68; ") = H(&’B'Q_l) = 1, both groups are parameterized according to Lemma 7
by some ¢, and ¢, respectively.

Im(¢s) = ker(qﬁw;l) C ker(d)EB;l) = ker((bg,ﬁ,;l), S0 ¢og-1 © po = 1. Using Lemma 2,
s’ﬁ’gla = 0. Multiplying both sides of the equality by the matrix diag(1/e},...,1/el,1,...,1)
one obtains that 8’8’; 'a = 0; but this means that ker(¢65;1) = Im(¢po) C ker(q&ts,ﬁ,;l). Similarly
we get the converse inclusion. Thus, ker(%ﬂ;l) = ker(¢5,,8/;1).

Consider the quotient group ker(¢g)/ ker(gb(w;l) = ker(¢ga)/ ker(%,ﬁ,;l ), also called the com-
ponent group. The mapping gb(m;l : ker(¢pg) = wi(e) x {1} x ... x {1} induces an injective
homomorphism from the quotient. In addition, in the Theorem 3 the bijection between the com-
ponents H,, was constructed (it generalises unchanged to the case of an arbitrary field K), and
hence they are all nonempty. This means that ¢; 1 Is surjective, so the induced mapping is also
surjective. The reasoning is similar for the group wg (¢). Thus, we have a chain of isomorphisms:

w(e) = ker(gbg)/ker(qﬁéﬁ;l) = ker(qﬁg/)/ker(qﬁé,ﬁ/;l) =~ ().
Isomorphic groups have the same order, and hence II(8) = |wk (¢)| = lwk (") = II(8"). O

Finally, for any algebraic subgroup H of the torus we can define a number II(H) equal to II(53)
for any § such that H = ker(¢g).

Now for any algebraic subgroup H C (C*)™ we define the identity component H° as a con-
nected component containing an identity element of the group H. It follows from Theorem 3
that II(H°) = 1. Thus, the following statements are proved.

Theorem 5. An algebraic subgroup H of the torus (K*)™ is parameterizable if and only if
II(H) =1.

Consequence. An algebraic subgroup H of the torus (C*)™ is parameterizable if and only if it
is connected.
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Consequence. Every algebraic subgroup H of the torus (C*)™ contains a parameterizable sub-
group H® of the same dimension.

Proof. All components of H are homeomorphic, what immediately proves the theorem. a

5. Linear independence over an abelian group

In any abelian group G there is naturally defined multiplication by integers. For a vector

a = (a,...,a;) € Z¥ and element g € G we mean by ga the vector (ayg,...,arg) € GF. We
say that the collection of vectors a, ..., o, € ZF is linearly independent over an abelian group if
Vg1, s9n €EG 11+ ...+ gpa, =0=>¢g1 = ... =g, =0.

We see that the linear independence of vectors from Z* over the additive group of the field R
is equivalent to the ordinary linear independence in the vector space R¥. However, for example,
R/27Z, as it is known, has no ring structure, so it makes no sense to talk about the R/27Z-
module (R/277Z)¥, as well as about linear independence in it.

Let us immediately show how this definition is related to the studied parameterizations ¢,,.

Theorem 6. ¢, : G¥ — G" is injective if and only if o7 are linearly independent over
the group G.

Proof. It follows directly from the fact that the injectivity of a homomorphism is equivalent to
the triviality of its kernel. m]

Next, we need two general lemmas.

Lemma 8. Let G and H be abelian groups. ji1,. .., i € Z* are linearly independent over G x H
if and only if they are linearly independent over G and over H.

Proof. The elements of G x H can be expressed as pairs (g, h) where g € G and h € H, so linear
independence over G X H can be written as:

V(glahl) 7(gn7hn) E G X H: (gl,hl)/ll ++ (gn»hn),un = 0 :> (gl7h1) = ... = (gnahn) = 0

Furthermore, it is clear that

(917]7/1)//41 + ...+ (gnahn)//‘n =0& giHi +...+ gnln = 0A hl/fél +...+ hn/f"n - 07

as well as
By fixing g1 = ... = g, = 0 and then h; = ... = h, = 0, we’ll obtain the left-to-right
implication. The right-to-left implication is obvious. a

Lemma 9. Let G and H be abelian groups, f : G — H be an isomorphism. Then i, ..., i, € ZF
are linearly independent over G if and only if they are linearly independent over H.

Proof. Since f is an isomorphic, we obtain a chain of equivalences:

Vo1, gn €EGqro1+ ...+ gnoy =0=9g1=... =g, =0
<V, 00 €G: fllar+ ...+ gnan) =0=>g1=...=¢, =0
S V91,90 € Gt flgr)oa + ...+ flgn)an =0= f(g1) = ... = f(gn) =0
< VYhy,...,hp, € H: hhay +...+ hpo, =0=h; =...=h, =0. O
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Applying the lemmas, we obtain the injectivity criterion for the case K = C.

Consequence. ¢, is injective if and only if o7 are linearly independent over the groups R and
R/27Z.

Proof. Let S = {z € C | |z| = 1} be a circle group, a subgroup in C*. From the trigonometric
¥ we see that the group C* is isomorphic to the product RZ, S1. The mapping

X
>0’

the isomorphism between R/27Z and S!; this proves a corollary by virtue of the previous two

form z = re

t — e’ defines the isomorphism of the groups R and R and the mapping 0 — € defines

lemmas. O
Consequence. If ¢, is injective over K = C, then rank(a) = k.

Proof. As noted before, linear independence over R is equivalent to linear independence in
the vector space R* over R, and this in turn is equivalent to having full rank. O

In particular, this means that a parameterization with the & > n variables is automatically
non-injective, which is to be expected.

Noticing that RZ, & R, x Z/1Z, R* 2 R%, x Z/2Z and H* = RZ; x S* (quaternions), it
is easy to obtain similar conditions for the injectivity of ¢, over the groups RZ,, R*, and H*.

It seems natural that, since the vectors o/ are integer-valued, their linear independence over
R must reduce to linear independence over Z. Let us prove this.

Lemma. ji1,...,u, € Z* are linearly independent over R if and only if they are linearly inde-
pendent over Q.

Proof. The left-to-right implication is obvious. Conversely, let u1, ..., t, be linearly independent
over Q. Consider their linear combination: r1p + ... + rpuy, = 0.

It is known that R is an (infinite-dimensional) vector space over Q, and any vector space has
a (Hamel) basis under the assumption of the axiom of choice [5]. Using this, let us fix a Hamel
basis B for R over Q. Let us decompose r; by this basis:

Tizqilb1+...+qus

where qf € Q and b; € B. There are finitely many vectors r;, so the set of basis vectors b;
for them can be chosen to be the same. Let us substitute the decomposition into the linear
combination:

Pipn A g, = (@b o @b A (G A @b i =
= (gt + -+ Gopn)by 4 (Gt Gpn)bs =
=0.

We obtain in each coordinate a rational linear combination of the numbers b; equal to zero.
By virtue of linear independence, all these coordinates are equal to zero, so we have: ¢ju; +. ..+

@ pn = 0.

However, all qg are rational, and p; are linearly independent over Q, so q{ = 0. Thus,
Lemma. j1,...,u, € Z* are linearly independent over Q if and only if they are linearly inde-

pendent over 7.
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Proof. The left-to-right implication is again obvious. Conversely, let ¢ + ... + gupin = 0
where ¢; € Q. We choose the common denominator ¢ € N\ {0} for the fractions ¢;. We denote
the numerators by p; € Z, that is, ¢; = p;/q.

Then (p1p1 + ...+ papin)/q =0, 80 prug + ... + puptn, = 0. All p; are integers, so using linear
independence over Z we obtain that p; = ... =p, = 0. Thus, ¢; = p;/q¢=0/q=0. O

Consequence. [i1, ..., [, € ZF are linearly independent over R if and only if they are linearly
independent over Z.

Let us study in more detail the corollaries of linear independence over R/27Z.

Proposition. puq,...,u, are linearly independent over R/27Z if and only if they are linearly
independent over R/Z.

Proof. This follows from that the groups R/277Z and R/Z are isomorphic. |

For a number d € Z and a vector z € Z* we mean by d | z that d | z; for all 1 < i < k or,
equivalently, d | ged(z1, ..., 2,).

Lemma. If u1,..., 1, are linearly independent over R/Z, then:
VdeZ: Ve eZ™: d|xipn + ...+ zppn = d | 2.

Proof. Indeed, consider ¢; = x;/d € R/Z. The divisibility of x1u1 + ...+ Tpp, by d means that
in R/Z it holds that (z1p1 + ...+ xpp,)/d =0, ie. g1 +...+ gupn = 0. However, by virtue of
linear independence, it is true that g1 = ... = ¢, = 0, but this means d | z; forall 1 <i < n. O

A simple non-injectivity criterion follows immediately.
Lemma. If ¢, is injective, then ¥j: ged(a’) = 1.
Consequence. If 3j: ged(al) # 1, then ¢, is not an injective mapping.
Proof. Choosing z; =1and z1 =... =21 = Tj41 = ... = x; = 0, we obtain that:
VdeZ:Vr € ZF: d |z + ...+ o = d |z
=ViVdeZ:d| o =d|1e V) ged(a?) = 1. O
We denote the set of prime numbers by P C Z.
Lemma. For arbitrary integer vectors pi1, ...,y it is true that:
VdeZ:VNx eZ™: d|xiu+ ...+ zppn = d| x

@VpEP:VBENsVI€Z":pB\x1u1+...+xnun:>p6|:c
SVpeP: Ve eZ plaijpr+ ...+ Tppn = 0| T

Proof. The left-to-right implications are obvious. Let us prove the right-to-left ones. Fix an ar-
bitrary d € Z and some vector x € Z*. Factor d into prime numbers: d = p?l coopBm

Since i1 + ... + Tpuy is divisible by d, it is also divisible by every p;*. Using premise, we
obtain that p;* | z for all 1 < i < m; but then d = plﬁ1 ...pBm | x as required.

Next, fix a power 8 € N and a prime number p. Since x1p1 + ... + 2,y is divisible p?, it is
also divisible by p, so it follows from the premise that p | .
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But this means that x;/p are integers, so (z1/p)us + ... + (2n/p)i, is divisible by p#~1.
Applying the premise again, we obtain that p | 2/p. Repeating this procedure 5 times, we finally
conclude that p | z/p®~; but this is equivalent to p? | z. O

The last condition can be rewritten as linear independence of vectors p; over the fields Z/pZ
for all primes p, which is equivalent to having the full rank for the matrix u.

Consequence. For arbitrary integer vectors i1, . . ., by it is true that:
VdeZ:Ne eZ™: d|xipu+ ...+ zppn = d|
S VpelP: Ve e (Z/pZ)": v1p1+ ...+ Zpptn =0=2=0
& Vp € P: ranky 7 (1) = max(n, k).
Finally, we can re-prove the already mentioned sufficient condition.
Consequence. If ¢, is injective, then «; span the whole lattice.

Proof. Assume that a; do not generate the lattice. Then the maximal minors of the matrix «
have a common divisor d > 1.

Take some prime divisor p of the number d. Since the maximal minors are divisible by d,
they are also divisible by p; therefore in the field Z/pZ all maximal minors of « are equal to zero.
So we have that rankz,z(«) < max(n, k) [5], but this contradicts the corollary. O
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AnrebpanvdecKkue MOATPYIIIGI KOMIIJIEKCHOTO TOPAa

Hwukounait A. Muinko
Cubupckuii dheiepajbHbIil YHUBEPCUTET
Kpacnosipck, Poccuiickas Peepariust

Amnnorarusi. B pabore usydarorcsi MOHOMUAJIBHBIE TAPAMETPU3AINN aIrebpanvdecKux MOArPYIIT TOpa
HaJ[ IPOU3BOJIbHBIM II0JIEM M OTIEJbHO HaJl IOJIeM KOMILJIEKCHBIX Yucesl. JloKa3bIBaeTCsi, YTO BCIKAS
MOHOMHUAJIbHAsI ITapaMeTPU3alMsl OlpeiesiseT ajaredbpandeckyro rpyiiry. [losydaersr Heobxoumble U J0-
CTATOYHBIE YCJIOBUAS MHBEKTUBHOCTHU U CYIIECTBOBAHUS TaKOTO POJia ITapaMeTPHU3AINil.

KiroueBble ciioBa: ajrebpandeckue MOATrPYIIbI, MOHOMHAAJIbHAS TapAMETPU3allis, KOMILIEKCHBIN aJl-
reOpanvecKuii Top.
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