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1. Introduction and preliminaries

Special functions are used in many applications of physics, engineering, and applied mathe-
matics and statistics, also they play important roles in geometric function theory. The wide use of
these functions has attracted many researchers to obtain geometric properties of special functions
such as hypergeometric functions, Bessel functions, Struve functions, Mittag—Leffler functions,
Wright functions, and some other related functions. We refer to some geometric properties of
these functions [2,7,34,35,42| and references therein.

In 1948, Rabotnov [33] introduced a special function applied in viscoelasticity. This function,
known today as the Rabotnov fractional exponential function or briefly Rabotnov function, is
defined as follows

_ane_ (Bt
Rap(z) =2 T;)P((n+1) 1+ a)’

(a,B,z€ C). (1.1)

Rabotnov function is the particular case of the familiar Mittag—Leffler function [28] widely used
in the solution of fractional order integral equations or fractional order differential equations. The
relation between the Rabotnov function and Mittag—Leffler function can be written as follows

R p(2) = ZaElJra,lJra(ﬁZl—m)v

where E' is Mittag-Leffler function and «, 3,z € C. Several properties of Mittag—Leffler function
and generalized Mittag—Leffler function can be found in [4,5,21,22].
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Let A denote the class of the normalized functions of the form
z) = z—l—Zakzk, (1.2)
k=2

which are analytic in the open unit disk A = {z € C: |z| < 1}. Further, with S we denote the
class of all functions in A which are univalent (or schlicht) in A.

It is clear that the Rabotnov function R, g(z) does not belong to the family A. Thus, it is
natural to consider the following normalization of Rabotnov function

R 5(z) = 27T (1 + @) Ra p(274%)

BT (14 «) 41
- n A. 1.3
z+zr Ita)nt1)° 7€ (13)

Geometric properties including starlikeness, convexity and close-to-convexity for the normalized
Rabotnov function R, g (%) were recently investigated by Eker and Ece in [16]. Furthermore,
in [1] Amourah et al. introduced a new class of normalized analytic functions and bi-univalent
functions associated with the normalized Rabotnov function.

Whilst formula (1.3) holds for complex-valued «, 5 and z € C, however in this paper, we shall
restrict our attention to the case of real-valued a > —1, 8 € C and z € A.

Observe that the function R, g contains many well-known functions as its special case, for
example,

ol

Ry _1(z) =2yzsin §7
Ry1(2) = V/2zsinh \/g,
Ry 1(z) = v/zsinh {/z,

1
RLQ(Z) = EmSIHh \/E

R07_%(z) =ze~

Recently, many mathematicians have set the univalence criteria of several integral operators
which preserve the class S (see for example [8-11,18,19]). Baricz and Frasin [6] first used a
special function (the Bessel function) to introduce a single family integral operator and studied its
univalency conditions. This operator was further studied by Frasin [17], Ularu [39], Arif and Raza
[3] and. Recently, some authors have studied the families of one parameter integral operator using
certain special functions, such as Mittag—Leffler functions [38], Struve functions [14], Lommel
functions [29], Dini functions [15] and generalized Bessel function [36] (see also, [12,13]).

The main object of this article is to introduce and study the univalence criteria for integral
operators that involve Rabotnov function R, g and defined as follows:

VPV RIS
Faiﬁ,xi,c(z):{ /Otc 1H< a8t ) dt} ) (1.4)

o 1/(nA+1)
Faopan(?) = {<m+1> / H(Raiﬁ(twt} , (15)
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and

z 1/~
Fop(2) = {7/ i (eRaﬁ(t))’ydt} , (1.6)
0

where the parameters A\, A1,...,Ap, A, ¢ and v are complex numbers such that the integrals in
(1.4)—(1.6) exist. Here and throughout in the sequel every many-valued function is taken with
the principal branch.

In this paper, we are mainly interested in the above integral operators (1.4)—(1.6). More
precisely, we would like to show that by using some inequalities for the normalized Rabotnov
function the univalence of the integral operators given by (1.4)—(1.6) which involve Rabotnov
functions .

In the proofs of our main results we need the following univalence criteria.

Lemma 1.1 (Pescar [31]). Let ¢ and s be complex numbers such that Re¢ > 0 and |s| < 1,
s # —1. If the function h € A satisfies the inequality

zh'(z)

S ‘Z|2< + (1 - |Z|2C) Ch’(z)

<1

for all z € A, then the function F¢ € A, defined by

Fe(z) = {g/o tc_lh’(t)dt}l/c, (1.7)

is in the class S, i.e. is univalent in A.
Lemma 1.2 (Pascu [30]). Let A € C such that Re X > 0. If h € A satisfies

1 _ ‘Z|2R,C>\
Re A

zh'"(2)
h'(2)

for all z € A, then for all ¢ € C such that Re( > Re A, the function, defined by (1.7), is in the

class S.

Lemma 1.3 (Pescar [32]). Let v € C and \ € R such that Rey > 1, A > 1 and 2\|y| < 3v/3. If
h € A satisfies the inequality |zh'(2)| < X for all z € A, then the function F, : A — C, defined

by
z 1/~
Fy(z):{v/ tv-l(eh@)w} 7
0

Furthermore, we need the following result which is mainly based on [16] (see also, [23]).

is in the class S.

Lemma 1.4. Let o > —1 and B € C with 0 < || < (1+«)In2. Then the function Ry g : A — C
defined by (1.3) satisfies the following inequalities:

I8l 15k

zR! 4(2) elta
a,f3 1+
7Ra,8(2’) 1‘ §72_ae%, z € A, (1.8)
and "
1 1fa
2R, 4(2)] < ( +O‘1++|i|)e . zEA. (1.9)

- 712 —



Basem A. Frasin Univalence of some Integral Operators Involving Rabotnov . ..

2. Univalence of some integral operators involving
Rabotnov functions

Our first main result is an application of Lemma 1.1 and contains sufficient conditions for an
integral operator of the type (1.4).

6]

Theorem 2.1. Let § € C and oy, as,...,a, > —1 with a; > 2 —1 forallie {1,2,...,n}
n

and consider the normalized Rabotnov functions R, g defined by

Ra,p(2) = 2/ 0F4ID(1 + i) Ra, 5 (21 (F0). (2.1)

iy

Let o = min{ay,ag,...,an}, € C with Re¢ > 0, s € C with s # —1 and let A1, Ao, ..., A, be
nonzero complex numbers. Moreover, suppose that these numbers satisfy the following inequality

Then the function Fo, gz, ¢ defined by (1.4) is in S, i.e. is univalent in A.
Proof. Define the function F,, g 1, by

Fo, o (2) = /0 ’ ﬁ (R“f(t)) g (2.2)

=1

!

First observe that, since for all i € {1,2,...,n} we have Ry, g € A, i.e. Ry, 5(0)=R], 5(0)—1=0,
clearly Fo, s\, € A, ie. Fo, 5, (0) =F;, 5,.(0) —1=0. From (2.2), we see that

B (Ra, 5\
F _ a;,B
Oéi,ﬁ,)\i(z) H( t >

i=1
and 1! n !
Fapald) g~ 1 ('ZRM(Z) _ 1)
o) 2% \(Rus(e)
Now, by using the inequality (1.8) for each «;, 5, where i € {1,2,...,n}, we obtain
ZIFgérnﬂ,)\i (Z) _ — 1 ZR:x'iv’ﬁ(Z) - ‘
F/OtL,B,A’L (Z) i=1 |>\2| Ranﬂ(’z)
181
< "1 [ et
=il 2 - T
n 18] 145
< 1 1+ael @
Al \ 92— eite
for all z € A and oy > % —1,8€Cforallie{l,2,...,n}. Here we used that the function
n
P (ﬂ —1,00) = R, defined by
In2 "
18]
eltz
w(x) = e B
2 —el+=
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is decreasing. Therefore, for i € {1,2,...,n} we have
Bl ot I8l 12k
1+a; elre < 1+a e
EIEA L
2 — eTtog 2 —

Now, by using the triangle inequality and the hypothesis, we obtain

1+ (1= o) et g 1‘“’ - >
CFopin ()] etfe =
which in view of Lemma 1.1 implies that F,, g x, ¢ € S. With this the proof is complete. a
Choosing A\; = Xy =--- = A, = A in Theorem 2.1, we have the following result.
Corollary 2.2. Let the numbers (,s,a,aq,Qs,...,a, be as in Theorem 2.1 and let A be a

nonzero complex number. Moreover, suppose that the functions Ry, g € A are as in Theorem 2.1
and the following inequality

n 1+«
o+ e | T | <
IACI \ 9 — eits

is valid. Then, the function Fq, g.a.¢ defined by

n 1/C
s Re. 5(t)\"/*
- ¢-1 I | AN
Fai7/37)\»C(z) = {C/O t u < ¢ ) dt )

is in S, i.e. is univalent in A.

Taking n = 1 in Corollary 2.2, we immediately obtain the following result.

Corollary 2.3. Let g € C with a > ‘ﬂl —1,¢ € C withRe( >0, s € C with s # —1 and let

A #£ 0 be a complex number. Moreover suppose that these numbers satisfy the following inequality

Then the function Fo gz ¢ defined by

1/¢

z 1/
Fa,ga¢(2) = {C/O AR (W) dt} ;

In particular we have the following univalent functions in A:

isin S.

Wl

e

Fo—1ac(2) = {C/Oth—l (6_%)% dt}l/C7

— 714 —
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is univalent in A.

(2) If |s| +

1
es

8(2—e?) Ixc]
1/¢

/A

# 2 sin Yt
FLogacle) = ¢ [ (FHE) g
L—3.2¢ 0 Vi

(&

/A
z 1 \/isinh\/g

F, 1 z) = 5~ _— dt

ac(?) c/o =

< 1, then the function Fl,fi)\’c defined by

18 univalent in A.

(#i2) If |s| +

NG

< 1, then the function ]P’17%7,\7< defined by

18 univalent in A.

(i) If [s] +

1
ez

2(2-et) 1A
R . /X 1/¢
= o[ () "o}

The following result contains another sufficient conditions for integrals of the type (1.5) to be
univalent in the unit disk A. The key tools in the proof are Lemma 1.2 and the inequality (1.8).

Theorem 2.5. Let § € C and a1, as,...,q, > —1 with a; > 1|B|2
n

< 1, then the function Fq1 1 5 ¢ defined by

1s univalent in A.

1 forallie{1,2,...,n} and

consider the normalized Rabotnov function Ra,;,ﬁ defined by (2.1). Let « = min{aq, g, ..., an},
A € C with Re A > 0, and suppose that these numbers satisfy the following inequality

Then the function Fo, g xn defined by (1.5)is in S, i.e. is univalent in A.

Proof. Let us consider the auxiliary function F,, g, » defined by

= [T (0 o

Observe that Fq, g € A, ie. Fq, g, ,\( ) =T, 5..(0) =1 = 0. On the other hand, by using (1.8)
and the fact that for all 4 € {1,2,...,n}
Bl T Bl 2L
1‘+1Liel+ ‘< 1|+1x e
ET ﬂ’
2 — elta; 2 —
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we obtain that for all z € A

1— |Z|2Re)\
Re A

RYIRN
~ Re <
=1

ZFZ&A(Z)

< 1.
Fl&z‘,ﬁ’/\('z)

18]
2R () n [ 12k etes
B 14+a

— ]_‘ < 5

1
Ra.5(2) T Red | g eits

Now, since Re(nA + 1) > Re A and the function F,, g 1, can be rewritten in the form

n A 1/(nA+1)
z Ry, 5(t
Foi,p.n(2) = {(nﬂl)/ t"* 1 (f()) dt} :
0 i=1

applying Lemma 1.2, we have Fy, g n(2) € S,which completes the proof of Theorem 2.5. a

Now, by choosing n = 1 in Theorem 2.5 we obtain the following result.

6]

Corollary 2.6. Let p € C with a > e 1, and consider the normalized Rabotnov function
Ro. g defined by (2.1). Moreover, let A € C such that Re A > 0 and

181
1‘46»‘046 I+a
Al < 18]

+

—el

Re .

ey

\]

Then the function F 5 5 defined by

1/(A+1)

Fapn() = {04 1) [ @apPar}

1s univalent in A.

In particular we have the following univalent functions in A:

Example 2.7. (i) If |\| < —> 1< Re\, then the function Fo

3(2—6%)

2 1/ 1/(A+1)
Fy _1,(2) = {(A+1)/ (te—%) dt} ,
1 ;

Re A, then the function ]Fl,—%,)\ defined by

; 1/2 1/(A+1)
Fi_15(2) = {()\—1—1)/ (2\/£sin‘f) dt} ,
0

1
e4

4 (2 — ei)
1/(A+1)

A
Fi1a(2) = (>\+1)/0 (x/%smh\/D dt ,

- 716 —

L ) defined by

3

18 univalent in A.

(id) If |Al <
8

1s univalent in A.

(#i) If [N < Re A, then the function F 1 \ defined by
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is univalent in A.

(i) If Al <

(NI

e
2(2—e

)
F11a(2) = {(AH)/OZ (\/Esinh\/i)kdt}l/(ﬂrl),

Re A, then the function Fi 1\ defined by

Nl

1s univalent in A.

Finally, by applying Lemma 1.3 and the inequality (1.9), we easily get the following result.

Theorem 2.8. Let g € C with a > |ﬂ|

defined by (2.1). If Rey > 1 and

—1 and consider the normalized Rabotnov function R, g

< BVBLTa)e ~(:%5)
NS TR a )
then the function F, g~ defined by (1.6)is univalent in A.

9\/367(%)
Example 2.9. (i) If v € C such that Rey 2 1 and || < S—% then F0’7%’7 defined by

Fo1,(2) = {7/0 -1 (e(te_at))Fydt}l/W’

12¢/3e~(32)
(#3) If v € C such that Rey > 1 and || < \[e - ; then By 1 defined by

z VAN 1/~
IFl —zv’Y(z) — {,7/ t’Y*l (6(2\/fsm Pl )) dt} ,
0

6v/3e (1)
)

z Y 1/"/
_ 2t sinh /%
Py = [0t (LT
18 univalent in A.

(iv) If v € C such that Rey > 1 and |y| < V/3e (%), then Fy 1, defined by

z _ 1/~
Fi14(2) = {7/ 1 (e(\/ismh\/i))vdt} ’
0

is univalent in A.

18 univalent in A.

(#it) If v € C such that Rey > 1 and |v| < ; then Fy 1 defined by

18 univalent in A.

Conclusions

In this present paper, we have introduced three new integral operators involving normalized
Rabotnov fractional exponential functions R, g(2) and find sufficient conditions for these integral
operators. In particular, we obtain simple sufficient conditions for some integral operators which
involve the exponential and hyperbolic sine functions.
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OaHOJIMCTHOCTh HEKOTOPBIX MHTErPaJIbHbIX OIIEpaTOpOB,
BKJIFOYAIOMINX JAPOOHYIO IIOKa3aTeJbHYI0 PYHKIIIIO
PaborHOBA

Bacem A. ®peiizun

DakyJsibTeT eCTeCTBEHHBIX HayK, Kadeapa maremaruku
VYuusepcurer Asb-Baiir

Madpak, Nopnanus

Wccnenosarennckuit nientp lxkamapa, Yuusepcurer /Ixkamapa
Wpbuy 21110, Uopmanus

Annporanus. B s10if cTaTbe MBI BBOJUM TPU HOBBIX MHTETDAJIBHBIX OIIEPATOPA, BKJIIOYAIOIINX HOPMa-
JIN30BaHHBIE IPOOHO-9KCIOHEHInabHbIe hyHkunn PaborHoBa R, g(z). Kpome Toro, Mbr Haiiem mocra-
TOYHBIE YCJIOBUSA ISl 9TUX MHTErPAJILHBIX onepaTopoB. HakoHerr, BEIBOAATCS HEKOTOPBIE OCOObIE CIIydan
JUTsl PA3/INYHBIX 3HAYEHUH o U 3.

KuroueBnble cijioBa: aHaJIMTUYECKIE d)yHKI_LI/II/I, UHTEerpaJibHbI€ OIlepaTOpPbI, (I)yHKL[I/IH Pabornosa.

- 720 -



