Федеральное государственное автономное образовательное учреждение высшего образования «СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Институт фундаментальной биологии и биотехнологии Базовая кафедра биотехнологии

УTI	верждаю	
Зав	едующий	й кафедрой
		Т.Г. Волова
«	>>	2024 г.

МАГИСТЕРСКАЯ ДИССЕРТАЦИЯ

Технология биосинтеза микробных полигидроксиалканоатов на гидролизатах топинамбура и мелассы

06.04.01 - Биология 06.04.01.01 - Микробиология и биотехнология

Научный руководитель	доцент, к.т.н.	Е.Г. Киселев
Выпускник		А.А. Будник
Рецензент	доцент, к.т.н.	Н.Ю. Демиденко

РЕФЕРАТ

Магистерская диссертация по теме «Технология биосинтеза микробных полигидроксиалканоатов на гидролизатах топинамбура и мелассы» содержит 44 страниц текстового документа, 14 иллюстрации, 10 таблиц, 38 использованных источника.

Ключевые слова: полигидроксиалканоаты, полимер, биомасса бактерий, гидролизаты, *Cupriavidus necator B-10646*, культивирование.

Цель работы — определить технологические основы биосинтеза ПГА на гидролизатах топинамбура (*Helianthus tuberosus*) и мелассы

Задачи:1. Определить наиболее оптимальный способ подготовки гидролизатов топинамбура и мелассы. Исследовать свойства и химический состав полученных гидролизатов. 2. Исследовать процесс биосинтеза и продукционные характеристики бактерий штамма *Cupriavidus necator B-10646* на гидролизате топинамбура и мелассы, а также сахарозе. 3. Определить физико-химические свойства образцов ПГА, синтезированных на различных гидролизатах топинамбура и мелассы, а также сахарозе.

Актуальность: исследования направлены на разработку технологии биосинтеза микробных полигидроксиалканоатов на альтернативных субстратах.

Основные выводы и результаты исследования:

Определен наиболее подходящий способ подготовки гидролизатов топинамбура и мелассы. Установлено, что гидролиз клубней топинамбура ферментативным способом максимально снижает образование побочных продуктов, а выход фруктозы достигает 41%. Также установлено, что гидролиз сахарозы ферментативным способом позволяет обеспечивает выход фруктозы более 88%. Показано, что наиболее подходящим является гидролиз мелассы при осветлении в нейтральной среде и позволяет достигать глубины гидролиза до 82% при равном выходе мономеров глюкозы и фруктозы. Сравнение химического состава гидролизатов мелассы и клубней топинамбура со средой Шлегеля показало, что в них содержатся практически все макро- и микроэлементы необходимые для микробного биосинтеза. Культивирование бактерий Cupriavidus necator B-10646 на гидролизатах мелассы и топинамбура позволяет получить урожай биомассы более 5 г/л с содержанием ПГА более 60%. Таким образом, полученные данные свидетельствуют, что полученные субстраты на основе мелассы и топинамбура по эффективности биосинтеза бактерий на гидролизате сахарозы несколько уступают в урожайности, но практически сопоставимы по содержанию ПГА. Результаты исследования физико-химических свойств образцов ПГА, синтезированных на гидролизатах мелассы и клубней топинамбура, в сравнении с образцами ПГА, полученных на сахарозе, показали схожие свойства, но более низкую молекулярную массу и кристалличность.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	5
1 Литературный обзор	7
1.1Общая характеристика полигидроксиалканоатов	7
1.1.1 Многообразие полигидроксиалканоатов	8
1.2 Биосинтез ПГА	10
1.3 Источники С-субстрата для синтеза ПГА	11
1.3.1. Топинамбур как источник углерода	13
1.3.2 Меласса как источник углерода	15
1.3.3. Гидролизаты из растительного сырья	16
2. Материалы и методы исследования	18
2.1. Объект исследования	18
2.2. Культивирование бактерий	18
2.3 Анализ проб	18
2.3.1 Определение сухой биомассы клеток	
2.3.3 Определение количества клеток	19
2.3.4 Определение концентрации фруктозы	20
2.3.5 Определение концентрации глюкозы	21
2.4 Расчет кинетических параметров роста культуры	21
2.5 Определение процентного содержания полимера в клетках	21
2.6 Выделение полимера.	22
2.7 Метод наработки опытной партии гидролизата	23
3 Результаты исследований	26
3.1 Подготовка С-субстратов.	26
3.1.1 Гидролиз мелассы и сахарозы	26
3.1.2. Гидролиз клубней топинамбура	29
3.2.1. Культивирование штамма бактерий <i>Cupriavidus necator</i> B-10646 на мелассе и сахарозе	30
3.2.2 Культивирование штамма бактерий Cupriavidus necator B-10646 на	
гидролизате из клубней топинамбура	33
3.3 Сравнение кинетических параметров	35
3.4. Физико-химические свойства полученного полимера	36

ЗАКЛЮЧЕНИЕ И ВЫВОДЫ	40
СПИСОК ЛИТЕРАТУРЫ	41

ВВЕДЕНИЕ

Глобальный экономический рост и повышение уровня жизни привел к увеличению потребительской способности населения и, таким образом, способствовал увеличению производства пластика [1]. Производство пластмассы составляет более 380 миллионов тон в год, но перерабатывается всего 9%, большая часть оказывается на свалках, создавая экологическую проблему [2].

Пластмассовые материалы, имеющие нефтехимическое происхождение, обладают высокой устойчивостью к воздействию температуры, солнечной радиации, воды и микроорганизмов. Но несмотря на огромный список преимуществ синтетические пластмассы устойчивы к деградации, а сжигание приводит к образованию токсичных продуктов [3]

Переработка возможна, но это очень трудоемкий и дорогостоящий процесс. Поэтому в последнее время ученые активно занимаются поиском безопасной и нетоксичной альтернативы небиоразлагаемому пластику с использованием возобновляемого сырья [4].

Поиск новых материалов для замены пластмасс из ископаемых видов топлива направлен в сторону получения биополимеров с похожими свойствами и способными к биологической деградации. Биополимеры представляют собой пластмассы биологического происхождения, которые могут быть получены из возобновляемых источников или отходов, что в свою очередь позволит сократить расход топлива.

Альтернативной заменой синтетическим полимерам являются биоразлагаемые пластмассы, такие как полигидроксиалканоаты (ПГА). ПГА синтезируются микроорганизмами из возобновляемых ресурсов и являются более перспективным материалом в сравнении с пластмассами на нефтяной основе [5]. Так ПГА разлагается бактериями в активной микробиологической

среде (почва, вода) до безопасных для окружающей среды продуктов: углекислого газа, воды и гумуса[6]. Потенциальные области применения этих биополимеров включают медицинское оборудование, упаковку, формованные изделия, покрытия для бумаги, нетканые материалы, клеи, пленки и добавки для улучшения характеристик [7].

В настоящее врем высокие производственные затраты ограничивают производство ПГА. Стоимость ПГА в большей степени зависит от сырья, поэтому в настоящее время ученые работают над расширением сырьевой базы. Для этой цели хорошо подойдут сахаросодержащие отходы промышленности и гидролизаты различного происхождения. Перспективным сахаросодержащим субстратом являются гидролизаты растения топинамбур (Helianthus tuberosus) и меласса.

1 Литературный обзор

1.1Общая характеристика полигидроксиалканоатов

На сегодняшний день разработано большое количество биоразлагаемых материалов, которые способны конкурировать с синтетическим пластиком. Примером такого материала являются полигидроксиалканоаты (ПГА), который был идентифицирован французским ученым Морисом Лемуагинином в 1926 году [8]. ПГА представляют собой сложные полиэфиры гидроксиалкановых кислот, запасаемые и синтезируемые бактериями в качестве резервного источника углерода и энергии в ответ на экзогенные раздражители или лимитирование питательных веществ (азота, фосфата, кислорода) [9].ПГА в бактериальной клетке накапливается в виде дискретных включений диаметром 0,2–0,5 мкм, локализованных в цитоплазме клеток и могут быть достаточно четко визуализированы с помощью фазово-контрастного светового микроскопа из-за их высокой рефракции [10].

На Рисунок 1 показаны электро-микроскопические снимки тонких срезов рекомбинантных клеток *R. eutrofa* PHB - 4, содержащих большие количества (90% от массы сухих клеток) P(3HB- со -5 мол.% 3HHx)

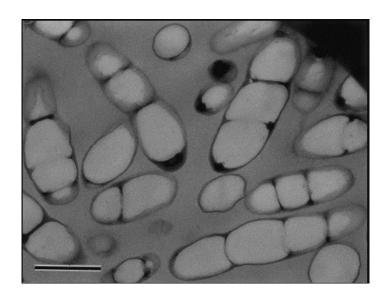


Рисунок 1- Электронно-микроскопические фотографии клеток R. eutrofa, богатых $\Pi\Gamma$ A[11].

На ПГА возложены большие надежды, так как он обладает рядом преимуществ:

- высокая биосовместимость ПГА обусловлено тем, что мономер из которого состоит данный полимер является естественным продуктом метаболизма клеток;

-ПГА не способны растворяться в жидких средах, поскольку деградация данного полимера происходит клеточным и гуморальными путями и является истинно биологической

- наличие широкой базы сырья, так для синтеза ПГА можно использовать различные возобновляемые источники сырья, что обеспечивает большую гибкость в выборе субстратов.
- Кристалличность, механическая прочность, температурные показатели и скорость биоразложение- это свойство ПГА, которыми можно управлять в процессе ферментации [12].

Полигидроксиалканоаты имеют огромное количество потенциальных обусловлено их биологической ПΓА применений ЭТО природой. Так пищевой промышленности, используется В сельском хозяйстве, радиоэлектронике и фармакологии. Одной из наиболее важных применения материалов, полученных из ПГА, является медицинский сектор, поскольку они биосовместимы. В частности, ПГА очень популярны в тканевой инженерии изза их антибактериальных и антиоксидантных свойств [13].

1.1.1 Многообразие полигидроксиалканоатов

Различные микроорганизмы продуцируют ПГА с разнообразной молекулярной структурой, соотношением мономеров и молекулярной массой. Полигидроксиалканоаты классифицируются в зависимости от набора мономеров, которые образуют полимер. Если полимер представлен одним мономером, то его принято называть гомополимером, в случае наличия различных мономеров говорят о гетерополимерах или сополимерах.

ПГА принято классифицировать в зависимости от длинны углеродной цепи, образующей полимер на 3 группы:

- 1. Короткоцепочечные $\Pi \Gamma A_{\kappa \mu}$ (short-chain-length, SCL), состоящие углеродной цепи от 3 до 5 углеродных атомов. К ним относят поли (3гидроксибутират)(ПГБ), и его сополимеры с гидроксивалератом. Поли (3гидроксибутират) синтезируемые многими бактериями, включая грамотрицательные Cupriavidus necator , Ralstonia eutrofa, Halomonas bluephagesesis и некоторые грамположительные Bacillus и Streptomyces spp., обладают высокой кристалличностью, а изделия на его основе имеют довольно низкую ударную прочность, но его сополимеры поли(3-гидроксибутират) и обладают более поли (3-гидроксивалерат) сниженной степенью кристалличности.
- 2. Среднецепочечные ПГ A_{cq} (medium-chain-length, MCL), в составе которых от 6 до 14 атомов углерода. К ним относится поли (3-гидроксиоктаноат) продуцирует *Pseudomonas mendocina* . ПГА со средней длиной цепи являются эластомерными, но имеют очень низкую механическую прочность, что ограничивает применение этих ПГА
- 3. Длинноцепочечные ПГА_{дц} (long-chain-length, LCL) с содержанием кислот С17 и С18. К ним относится поли (3-гидроксипентадеканоат) производит *Pseudomonas aeruginosa* [14].

ПГА имеют общую формулу представленную на рисунке 2.

$$n=1$$
 R = водород R = метил R = пропил R = пентил R = пентил R = нонил R = нонил R = водород R = водород R = поли (3-гидроксибутират), R = пентил R = поли (3-гидроксибитексаноат), R = поли (3-гидроксибитексаноат), R = поли (3-гидроксибитексаноат), R = нонил R = нонил R = водород R = водород

Рисунок 2- Структура полигидроксиалканоатов [15].

Различие между группами главным образом связано с субстратной специфичностью ПГА синтетаз.

1.2 Биосинтез ПГА

Пути биосинтеза ПГА неразрывно связаны с метаболитическими путями бактерии, такими как цикл Кребса β -окисление, синтез жирных кислот de novo, катаболизм аминокислот, цикл Кальвина и сериновый путь [16].

Как правило, у бактерий существует три естественных пути биосинтеза ПГА.

1 Путь. По этому пути две молекулы ацетил-КоА (из цикла трикарбоновых кислот) конденсируются в молекулу ацетоацетил-КоА с помощью фермента β-кетотиолазы. Затем ацетоацетил-КоА превращается в 3-гидроксибутирил-КоА ферментом НАДФН-ацетоацетил-КоА-редуктазой. После этого молекулы 3-гидроксибутирил-КоА связываются с ПГБ-полимеразой; с последующим действием ПГА-синтазы, которая, наконец, катализирует образование сложноэфирной связи в 3-гидроксибутирил-КоА с образованием поли (3-гидроксибутират).

2 Путь. В этом пути субстраты происходят от пути β-окисления жирных кислот, поскольку жирные кислоты являются подходящим источником углерода для производства ПГА. Метаболизм жирных кислот генерирует различные мономеры гидроксиалканоата под действием (R) -еноил-КоА-гидратазы, ацил-КоА-оксидазы и 3-кетоацил-КоА-редуктазы. Затем фермент ПГА-синтаза катализирует полимеризацию мономеров гидроксиалканоата.

3 Путь. Микроорганизмы могут получать из окружающей среды (сточные воды, активный ил, животные жиры, углеводороды) такие источники углерода, как глюкоза, сахароза и лактоза. Начинается все с преобразования (R) - гидроксиацильных промежуточных продуктов из их формы белка-носителя ацила в КоА форма под действием ацил-АСР-КоА трансацетилазы, а затем гидроксиалканоатных мономеров в конечном итоге полимеризуется полимеразой РНА.

1.3 Источники С-субстрата для синтеза ПГА

Высокие производственные затраты представляют собой основную причину, препятствующую широкому производству и коммерциализации ПГА. Около 40–50% общих производственных затрат приходится на сырье, из которых 70–80% может составлять источник углерода. Поэтому для сокращения производственных затрат и увеличения коммерческой привлекательности ищут альтернативное углеродное сырье [17].

Чаще всего в качестве источника углерода используют чистое сырье, состоящее из чистых углеводов (глюкоза, сахароза, мальтоза, крахмал), жирных кислот и их производных, метанола и алканов, но в последнее время все больше сил направлено на изучение комплексных соединений, в том числе отходов различных производств.

Для снижения стоимости полимера проводят поиск более дешевых субстратов. Например, можно использовать побочные продукты биодизельного топлива и тогда стоимость продукта снижается до 1,1\$/кг [18]. В настоящее

время водород рассматривают как альтернативный субстрат по отношению к сахарам, но возникают сложности в его использовании, связанные с взрывоопасностью и плохой растворимостью газового субстрата. Эффективность биосинтеза ПГА на водороде очень высока, так экономический коэффициент равен 1, что указывает на перспективность данного субстрата [19].

В качестве потенциальных сахаросодержащих субстратов для биосинтеза ПГА рассматривают гидролизаты различного происхождения. Stanislav Obruca и коллеги исследовали процесс биосинтеза ПГА бактерией Burkholderia cepacia с использованием в качестве субстрата гидрозилатов из отработанной кофейной гущи, выход ПГА составил 57 % [20]. Гидролизаты, полученные из бурых водорослей, имели невысокий выход сахаров 5,9 г/л, при культивировании выход ПГА составил 49% [21]. В другом исследовании использовали лигниноцеллюлозу, полученную из древесины. Путем гидролиза проводили преобразование сахаров, затем использовали в качестве субстрата. Но при использовании гидролизатов из древесины в качестве единственного источника углерода выход ПГА относительно низок [22]. Индийские ученые проводили исследования биосинтеза ПГА бактериями Halomonas campisalis MCM B-1027 с использованием гидролизатов из кожуры багасса в качестве источника углерода, таким образом, выход ПГА составил 47 % [23]. При изучении использования гидролизатов пшеничной соломы в качестве субстрата для синтеза биополимера, было получено накопление ПГА 74% [24] и др.

Результаты исследований свидетельствуют о перспективе использования растительных гидролизатов для продуктивных процессов биосинтеза биопластика. Способ и условия гидролиза могут влиять на спектр и содержание сахаров, а также на количество примесей. Как правило, в состав гидрилизатов, кроме глюкозы и фруктозы, входят такие сахара, как галактоза, манноза (продукты гидролиза гексоз), арабиноза, ксилоза (продукты гидролиза пентоз)

1.3.1. Топинамбур как источник углерода

Перспективным субстратом для синтеза может служить сахара, экстрагированные из топинамбура. Топинамбур, также известный как земляная груша (Heliánthus tuberósus), является однолетним растением семейства Asteraceae с высокой урожайностью — до 40-70 т / га клубней [25] Используется как питание человека, корм для животных, и производство биоэнергетических и биохимических продуктов, и это культура, которую можно выращивать в различных условиях окружающей среды. Клубни топинамбура имеют неправильную сферическую или веретенообразную форму и содержат высокие уровни инулина.

Инулин, преимущественно находящийся в клубнях, представляет собой ß (2,1)линейный биополимер, связанный гликозидной связью оканчивающийся молекулой D-глюкозы, связанной с цепью фруктозы α (2,1) связью. Эмпирическая формула $(C_6H_{10}O_5)_n$ (рисунок 3) [26]. В клетке инулин локализуется в вакуолях в виде сферокристаллов. (рисунок 4) Длина цепи, состав и полидисперсность инулина зависят от вида растений, условий сбора урожая, а также процессов сушки, и эти параметры определяют его биологические и технологические свойства [27]. Инулин, извлеченный из природных источников, характеризуется степенью полимеризации (DP), которая колеблется от 2 до 60 единиц. Олигосахариды инулина с DP менее 10 единиц, называемые фруктоолигосахаридами (ФОС), являются одними из наиболее известных пребиотиков. Инулин и ФОС считаются функциональной пищей, которая полезна для здоровья человека за счет снижения риска некоторых заболеваний, таких как рак толстой кишки, кишечных инфекций, диабета, запоров, ожирения, и увеличения всасывания в кишечнике некоторых минералов, таких как кальций и магний, в тонком кишечнике. Инулин может быть полностью гидролизован до образующего его мономера- фруктозы. Перспективными субстратами являются экстракты клубней топинамбура, так как они содержат 55-77% инулина.

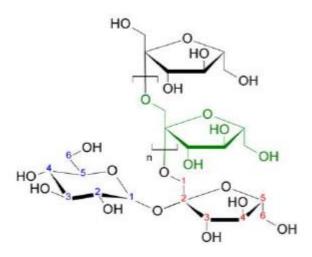


Рисунок 3-Химическая структура инулина (фрагмент).

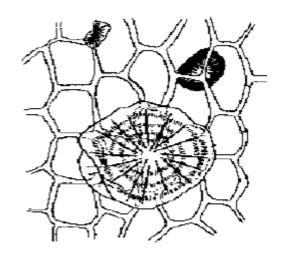


Рисунок 4-Локализация инулина в растительной клетке.

Топинамбур богат пектиновыми веществами, массовая доля которых может достигать 11 %, гемицеллюлозой, органическими кислотами, витаминами, минеральными веществами и микро-и макроэлементами. Таким образом, топинамбур является культурой многоцелевого использования с благоприятным биохимическим составом [28].

Биосинтез ПГА из сахаров топинамбура остаётся малоизученным, тем более что у многих продуцентов отсутствует фермент инулаза, необходимый для преобразования инулина в доступные бактерии фруктозу и глюкозу. Для решения этой проблемы существуют специальные подходы, например гидролиз или использование штаммов с различным метаболическим потенциалом. Так,

авторы работы [29] на первом этапе клубни подвергали твердофазной ферментации с использованием Aspergillus Awamori для получения ферментов (инвертазы, протеазы, инулиназы). После чего, оставшиеся твердые вещества, содержащие ферменты, переносили в водный раствор измельченных клубней топинамбура, для гидролиза инулина до усваиваемых питательных веществ. Полученные гидролизаты обеспечили Cupriavidus Necator DSM 4058 синтез П(3ГБ) до 51,9 %. В работе [30] интегрировали смесь грибной инулазы, полученной Penicillium lanosocoeruleum, в процесс получения полигидроксиалканоата штаммом Cupriavidus necator из инулина и обеспечило урожай полимера 82%.

1.3.2 Меласса как источник углерода

Меласса является побочным продуктом сахарного производства. Это густой коричневый сироп со специфическим запахом карамели, который остается после кристаллизации сахара. Основным сахаром в составе мелассы является дисахарид сахароза. Однако при использовании данного источника углерода в качестве субстрата, стоит учитывать его сложный и непостоянный химический состав.

Таблица 1 – Химический состав свеклосахарной мелассы [31]

Показатели	Содержание, % к массе		
	минимальное	максимальное	среднее
Сухие вещества	61	86	75-77
Сахароза	40	55	45
Инвертный сахар	0,1	10	0,5-1,2
Раффиноза	-	2,5	0,5-1
Сумма сбраживаемых	43	57	46-48
сахаров			
Доброкачественность	56	75	62-65
Зола (за вычетом	4	10	6,6-7,5
кальциевой)			
K ₂ O	1	5,5	2,5-3,5
MgO	0,001	1	0,1-0,24

CaO	0,1	2	0,5-0,8
Азот			
Общий	0,5	2,3	1,1-1,5
аминный до гидролиза	0,1	0,5	0,2-0,35
аминный после гидролиза	0,3	0,8	0,5-0,6
Летучие кислоты	0,3	1,8	0,5-1
SO ₂	0,01	0,05	0,03
Буферная емкость	14	40	22-27
Цветность	0,4	12	2,2-3,2

Меласса в основном состоит из сахаразы и меньшего количества глюкозы и фруктозы с небольшой концентрацией витаминов и микроэлементов. Как и многие агропромышленные отходы, меласса нуждается в предварительной обработке перед её применением в микробных ферментациях. Способов ферментации много среди них — химические, ферментативные и комбинированные. Для эффективного использования мелассы в качестве источника углерода важно удалить примеси, такие как полифенолы и неорганические соли, так как они способны подавлять рост микроорганизмов. Это возможно при использовании различных методов мембранной фильтрации.

Описано много способов применения мелассы для синтеза ПГА. Авторы работ [32]изучали гидролизаты мелассы сахарного тростника, предварительно обработанные кислотой, в качестве субстрата для R. eutrofa, выход ПГА при таком биосинтезе составил около 11,1 г/л. В работе российских ученых [33] штамм A. $Chroococcum\ 32B$ при использовании мелассы сахарной свеклы в качестве субстрата обеспечил урожай биомассы до $8,9\ г/л\ c\ 67\%$ содержанием ПГА.

1.3.3. Гидролизаты из растительного сырья

Существует множество способов проведения гидролиза растительного сырья. Так, по виду активности применяемого катализатора различают автогидролиз, гидролиз разбавленными и концентрированными кислотами

(органическими и неорганическими), солями и ферментами. В зависимости от концентрации катализатора различают гидролиз разбавленными кислотами, газообразными концентрированными кислотами, или жидкими галогеноводородами. По температурному фактору процесс гидролиз может замораживании (-10°C), низкотемпературный (25-40°C), при повышенной температуре (100-180°C), высокотемпературный (200-250°C). По способу подачи энергии и активации гидролиз может быть термический, механохимический, радиационный и каталитический. К тому же гидролиз может проходить в статистических условиях, в потоке, в режимах идеального вытеснения, перемешивания, в замкнутой или открытой, в стационарной или нестационарной системах. По величине отношения массы абсолютно сухого сырья к массе жидкости он может быть низко- или высокомодульным [34].

Наиболее распространенным в промышленности является кислотный гидролиз с использованием в качестве катализатора кислот (серная, соляная, щавелевая, лимонная и др.). Ускорение процесса происходит при жестких условиях гидролиза (рН от 1 до 2 и температуре от 80 °C до 100 °C), но при этом часть фруктозы деградирует с образованием фенолов и формальдегидов. При кислотном гидролизе растительной ткани происходит сложный комплекс различных реакций.

Вся технология получения готовых гидролизатов сводится к следующим операциям: подготовка и обработка сырья, прессование и/или экстрагирование, гидролиз, фильтрация, нейтрализация, упаривание, розлив. Как итог получается фруктозо-глюкозный сироп без осадка, посторонних включений и помутнений. На вкус готовый гидролизат сладкий, запах практически отсутствует.

2. Материалы и методы исследования

2.1. Объект исследования

В работе использовался штамм водородокисляющих бактерий *Cupriavidus necator* В-10646. Этот штамм зарегистрирован во Всероссийской коллекции промышленных микроорганизмов (ВКПМ). Штамм является одним из вариантов, выделенных из культуры Ralstonia eutropha В-8562 и способен синтезировать ПГА различного состава [35].

С. necator является грамотрицательной, палочковидной, факультативной хемолитоавтотрофной β-протеобактерией. Данный вид обладает широким органотрофным потенциалом и способен использовать в качестве источников углерода различные субстраты.

2.2. Культивирование бактерий

Бактериальную культуру получили методом ресуспендирования музейной культуры. Культивирование бактерий проводилось в стеклянных колбах объемом 1 литр, на 40% заполненных минеральной средой Шлегеля, которая содержит: Na₂HPO₄×H₂O - 9,1; KH₂PO₄ - 1,5; MgSO₄×H₂O - 0,2; Fe₃C₆H₅O₇×7H₂O - 0,025, NH₄Cl - 1, 0 (г/л). Микроэлементы готовились из расчета 3 мл стандартного раствора на 1 л среды. Стандартный раствор микроэлементов содержит: H₃BO₃ - 0,228, CoCl₂×6H₂O - 0,030, CuSO₄×5H₂O - 0,008, MnCl₂×4H₂O - 0,008, ZnSO₄×7H₂O - 0,176, NaMoO₄×2H₂O - 0,05, NiCl - 0,008 (г/л) [36]. В качестве источника углерода использовали гидролизаты топинамбура, мелассы и сахарозы.

Далее культивирование проходило в термостатируемом шейкереинкубаторе Innova «New Brunswick Scientific» (США) при температуре 30°С и 200 оборотах (рисунок-2). Время культивирования составило 48 и 72 ч.

2.3 Анализ проб

2.3.1 Определение сухой биомассы клеток

Урожай биомассы бактерий в культуре (X г/л) определяли согласно известной методике [37]. Для этого 15мл бактериальной суспензии

центрифугировали 5 мин при 6000 об/мин. После чего промывали осадок дистиллированной водой. Данную процедуру выполняли дважды. Полученный промытый осадок переносили в бюксы, предварительно доведенные до постоянного веса. Бюксы с биомассой сушили при температуре 105°С в сушильном шкафу в течение 24 часов. После этого бюксы охлаждали в эксикаторе и взвешивали на аналитических весах Adventurer, «ОНАUS», США. Вес биомассы бактерий определяли как разницу между весом бюкса с клетками и весом чистого бюкса.

2.3.3 Определение количества клеток

Для контроля роста культуры использовали метод прямого подсчета в камере Горяева, поскольку измерение оптической плотности было затруднено из-за темного цвета раствора.

Количество клеток в 1 мл суспензии рассчитывали по формуле:

$$M = \frac{A \times 10^3}{h \times S} n \tag{1}$$

где M — число клеток в 1 мл суспензии; A — среднее число клеток в 1 квадрате сетки; h — высота камеры, мм; S — площадь 1 квадрата сетки, мм;

 10^3 — коэффициент перевода кубических сантиметров в кубические миллиметры; n — разведение исследуемой суспензии [30].

В результате был построен график при контрольном культивировании на фруктозе для перехода от количества клеток к массовым единицам измерения (рисунок 5).

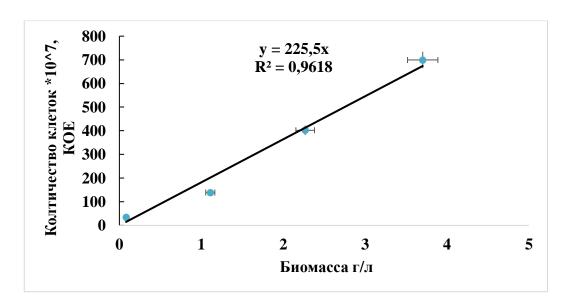


Рисунок 5 — Калибровочный график для перехода от количества клеток к биомассе.

График показывает линейную зависимость, вероятность аппроксимации составила 0,9618.

2.3.4 Определение концентрации фруктозы

Концентрацию фруктозы определяли резорциновым методом [31]. Оптическую плотность проб измеряли на спектрофотометре UNICO 2100 в кюветах с длиной оптического пути 5 мм при длине волны 540 нм. Концентрацию фруктозы рассчитали по калибровочному графику.

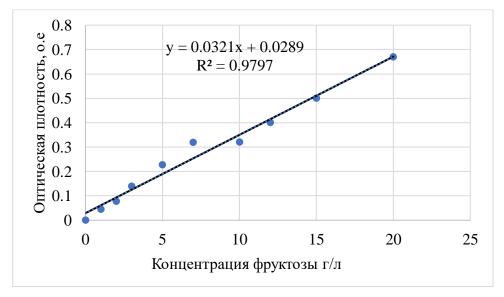


Рисунок 6 — Калибровочный график для определения концентрации фруктозы.

2.3.5 Определение концентрации глюкозы

Для определения концентрации глюкозы применяли набора «Глюкоза- Φ КД» .

Определяли концентрацию глюкозы по формуле:

$$K = \frac{\Pi_0}{\Pi_K} \times 9 , \quad (2)$$

где:

 $O\Pi_{o}$ - оптическая плотность опытной пробы, о.е.;

 $\mathrm{O}\Pi_{\mathtt{k}}$ - оптическая плотность калибровочний пробы, о.е.;

9 – концентрация глюкозы в калибраторе, г/л. [32]

2.4 Расчет кинетических параметров роста культуры

Удельную скорость роста культуры (μ , ч $^{-1}$), представляющую собой скорость роста единицы популяции определяли по формуле:

$$\mu = \frac{\ln\left(\frac{x_{\rm K}}{x_{\rm H}}\right)}{\Delta t} \ , \ (3)$$

где:

 $x_{\rm H}$ -начальная концентрация бактерий, г/л;

 $x_{\text{к}}$ - конечная концентрация бактерий, г/л;

2.5 Определение процентного содержания полимера в клетках.

Для определения внутриклеточной концентрации и состава ПГА использовали хроматографию метиловых эфиров жирных кислот после предварительного метанолиза образцов на газовом хроматографе Agilent Technologies 7820A. Метанолиз сухой биомассы проводили следующим образом: к навеске образцов (навеска 3-4 мг) добавляли 0,85 мл метанола, 1 мл хлороформа и 0,15 мл концентрированной серной кислоты. Выдерживали на водяной бане с обратным холодильником в течении 3 часов. По окончании метанолиза в колбу добавляли по 2 мл дистиллированной воды. Полученные пробы хроматографировали на хромато-масс-спектрометре.

2.6 Выделение полимера.

Исходный образец биомассы экстрагируют этанолом при 70°С, 250 об/мин в течение часа. При обработке этанолом происходит обезвоживание клетки и разрушение бислойной клеточной мембраны. Происходит агрегация липидов внутри нее и накопление воды, что приводит к снижению барьерных функций мембраны. Также происходит ослабление жесткости и структурной организации клетки, она становится менее вязкой и более текучей. В целом, экстракция этанолом позволяет повысить чистоту полимера, а также обеспечить максимальное высвобождение полимерных молекул при экстракции дихлорметаном.

После чего биомассу фильтруют от экстракта (этанол). Экстракт (этанол) отправляется в собирательную ёмкость и экстрагируется дихлорметаном при 40°C, 250 оборотах в минуту в течение суток. После полученный экстракт (ДХМ) фильтруется. Жидкая фракция экстракта заканчивается в осадитель. Затем в осадительной ёмкости к полученному экстракту добавляется этанол из расчета 2 части этанола на одну часть экстракта. Полученная смесь фильтруется.

После фильтрации полимер вместе с фильтром отправляется на сушку при комнатной температуре в течение суток.

Выход ПГА рассчитывали по следующей формуле:

$$\%\Pi\Gamma A = \frac{\text{Macca}\Pi\Gamma A(\Gamma/\pi)}{\text{биомаcca}(\Gamma/\pi)} * 100\%$$
(6)

2.7 Определение молекулярной массы полимера

Молекулярную массу ПГА определяли c применением высокоэффективной жидкостной гельпроникающей хроматографии Agilent 1260 Infinity (Германия) с использованием калибровочных Technologies AgilentPS-HEasiVial. Находили (Mw) стандартов средневесовую среднечисловую (Mn) молекулярную массу, а также полидисперсность (PD), растворяя образцы ПГА навеской 10-12 мг в 2 мл хлороформа с дальнейшей их фильтрацией.

2.8 Определение температурных характеристик полимера

Температурные характеристики полимеров были исследованы с использованием дифференциальной сканирующей калориметрии (ДСК) на DSC-1 («Mettler Toledo», Швейцария). Температуры плавления и кристаллизации регистрировали по пикам на термограммах с использованием программного обеспечения «STARe SW 11.00».

2.9 Метод наработки опытной партии гидролизата.

Предварительная обработка клубней включала размалывали в мясорубке и разбавление дистиллированной водой в соотношении 1:7.

Предварительная обработка мелассы включала разбавление дистиллированной водой в соотношении 1:1 и избавление от осадка при помощи центрифугирования.

Кислотный гидролиз сахарозы проводили с помощью раствора 1,5N соляной кислоты (HCl): в 100 мл раствора сахарозы (500г/л) добавляли 5 мл HCl и выдерживали при 90 °C на водяной бане в течение 60 минут. Затем раствор охлаждали до комнатной температуры в течение 30 минут и доводили значение рН до 7 с помощью 1M раствора КОН.

Ферментативный гидролиз мелассы, топинамбура и сахарозы проводили ферментом β-фруктофуранозидазой, полученным методом внеклеточным автолиза клеток дрожжей Saccharomyces Cerevisiae. Для этого 1г NaCl и 31,5 г прессованных дрожжей помещали в 50 мл дистиллированной воды и выдерживали сутки при 50°C, после чего центрифугировали при 6 000 об/мин. Полученный осадок добавляли к 250 мл предварительно обработанной мелассе топинамбура с рН экстракту 4,5 доведенной путем добавления концентрированной уксусной кислоты и выдерживали в течение 24 часов при 55°C .Далее гидролизаты центрифугировали при 6 000 об/мин и полученный супернатант нейтрализовали раствором КОН.

Для удаления несахаров из мелассы и снижения интенсивности окраски проводили её осветление. Меласса была очищена 2 способами. При первом способе в нейтрализованный раствор добавляли перекись водорода в соотношении 7% от объема к нагретому до температуры 55-65°C раствору, второй способ заключался в проведении нейтрализации после добавлением перекиси водорода [38]. После чего раствор оставляли на сутки и центрифугировали от выпавшего осадка.

Глубину гидролиза мелассы (Г) определяли по формуле :

$$\Gamma(\%) = \frac{C_B}{C_0} * 100\%$$

где $C_{\rm B}$ — общее количество восстанавливающего сахара (глюкоза + фруктоза) (г/л); C_0 — начальная концентрация сахарозы

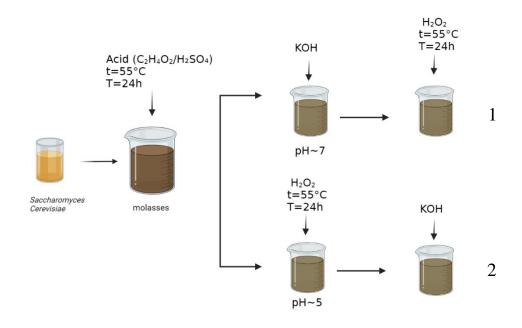


Рисунок 7- Схема получения гидролизатов из мелассы

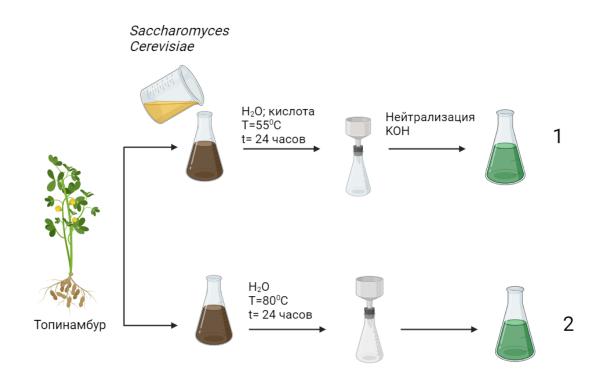


Рисунок 8- Схема получения гидролизатов из клубней топинамбура

3 Результаты исследований

Страницы 26-39 изъяты в связи с авторским правом

ЗАКЛЮЧЕНИЕ И ВЫВОДЫ

Исходя из полученных данных, можно сделать следующие выводы.

- 1. Определен наиболее подходящий способ подготовки гидролизатов топинамбура и мелассы. Установлено, что гидролиз клубней топинамбура ферментативным способом максимально снижает образование побочных продуктов, а выход фруктозы достигает 41%. Также установлено, что гидролиз сахарозы ферментативным способом позволяет обеспечивает выход фруктозы более 88%.
- 2. Показано, что наиболее подходящим является гидролиз мелассы при осветлении в нейтральной среде и позволяет достигать глубины гидролиза до 82% при равном выходе мономеров глюкозы и фруктозы.
- 3. Сравнение химического состава гидролизатов мелассы и клубней топинамбура со средой Шлегеля показало, что в них содержатся практически все макро- и микроэлементы необходимые для микробного биосинтеза. Культивирование бактерий *Cupriavidus necator B-10646* на гидролизатах мелассы и топинамбура позволяет получить урожай биомассы более 5 г/л с содержанием ПГА более 60% и удельной скоростью роста 0,03 ч⁻¹ и 0,06 ч⁻¹. Таким образом, полученные данные свидетельствуют, что полученные субстраты на основе мелассы и топинамбура по эффективности биосинтеза бактерий на гидролизате сахарозы несколько уступают в урожайности, но практически сопоставимы по содержанию ПГА и удельной скорости роста.
- 4. Результаты исследования физико-химических свойств образцов ПГА, синтезированных на гидролизатах мелассы и клубней топинамбура, в сравнении с образцами ПГА, полученных на сахарозе, показали схожие свойства, но более низкую молекулярную массу и кристалличность.

СПИСОК ЛИТЕРАТУРЫ

- 1. Narancic T. et al. Recent advances in bioplastics: application and biodegradation //Polymers. −2020.−T.12.−№.4.−C.920.
- 2. Nikiema J., Asiedu Z. A review of the cost and effectiveness of solutions to address plastic pollution //Environmental Science and Pollution Research. -2022. T. 29. No. 17. C. 24547-24573
- 3. Boey, J.Y.; Mohamad, L.; Khok, Y.S.; Tay, G.S.; Baidurah, S. A review of the applications and biodegradation of polyhydroxyalka-noates and poly(lactic acid) and its composites. Polymers 2021, 13, 1544
- 4.Boey J. Y. et al. A review of the applications and biodegradation of polyhydroxyalkanoates and poly (lactic acid) and its composites //Polymers. -2021. -T. 13. -N0. 10. -C. 1544.
- 5. Narancic T. et al. Recent advances in bioplastics: application and biodegradation //Polymers. -2020. T. 12. N $_{0}.$ 4. C. 920.
- 6 Киселев Е. Г. и др. Применение сахаросодержащих субстратов для повышения доступности «зеленых» биопластиков. 2022.
- 7 Bugnicourt E. et al. Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging. 2014.
- 8 DiGregorio B. E. Biobased performance bioplastic: Mirel //Chemistry & biology. 2009. T. 16. №. 1. C. 1-2.
- 9. Carvalheira M. et al. Polyhydroxyalkanoates from industrial cheese whey: production and characterization of polymers with differing hydroxyvalerate content //Current Research in Biotechnology. 2022.
- Yu, J. Bioprocessing for Value-Added Products from Renewable Resources / J.
 Yu. 2007. p. 585-610.
- 11. Sudesh K., Abe H., Doi Y. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters //Progress in polymer science. -2000. -T. 25. -N0. 10. -C. 1503-1555.

- 12. Биомедицинский потенциал разрушаемых полигидроксиалканоатов: экспериментально-клинические исследования/Т.Г. Волова, Ю.С. Винник, Е.И. Шишацкая, Н.М. Маркелова. Красноярск: Версо, 2014. 332 с.
- 13. Palmeiro-Sánchez T., O'Flaherty V., Lens P. N. L. Polyhydroxyalkanoate bio-production and its rise as biomaterial of the future //Journal of Biotechnology. 2022. T. 348. C. 10-25
- 14. Sharma V., Sehgal R., Gupta R. Polyhydroxyalkanoate (PHA): Properties and modifications //Polymer. 2021. T. 212. C. 123161.
- 15. Волова, Т.Г. Полиоксиалканоаты (ПГА) Биоразрушаемые полимеры для медицины: монография / Т.Г. Волова, В. И. Севастьянов, Е. И. Шишацкая. Новосибирск: Издательство СО РАН, 2003. 330 с.
- 16. Tan G. Y. A. et al. Start a research on biopolymer polyhydroxyalkanoate (PHA): a review //Polymers. -2014. T. 6. No. 3. C. 706-754.
- 17. Aslan A. K. H. N. et al. Polyhydroxyalkanoates production from waste biomass //IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2016. T. 36. №. 1. C. 012040.
- 18. Kachrimanidou V. et al. Techno-economic evaluation and life-cycle assessment of poly (3-hydroxybutyrate) production within a biorefinery concept using sunflower-based biodiesel industry by-products //Bioresource Technology. 2021. T. 326. C. 124711.
- 19. Киселев Е. Г., Шишацкий О. Н., Дж С. Э. Технико-технологические основы производства разрушаемых полигидроксиалканоатов //Журнал Сибирского федерального университета. Биология. 2012. Т. 5. №. 3. С. 300-310.
- 20. Obruca S. et al. Production of polyhydroxyalkanoates using hydrolysate of spent coffee grounds //Process biochemistry. $-2014. T. 49. N_{\odot}$. 9. -C. 1409-1414.
- 21. Muhammad M. et al. Production of polyhydroxyalkanoates and carotenoids through cultivation of different bacterial strains using brown algae hydrolysate as a

- carbon source //Biocatalysis and Agricultural Biotechnology. 2020. T. 30. C. 101852.
- 22. Li J. et al. Efficient and economical production of polyhydroxyalkanoate from sustainable rubber wood hydrolysate and xylose as co-substrate by mixed microbial cultures //Bioresource Technology. 2022. C. 127238.
- 23. Kulkarni, S.O.; Kanekar, P.P.; Jog, J.P.; Sarnaik, S.S.; Nilegaonkar, S.S. Production of copolymer, poly(hydroxybutyrate-co- hydroxyvalerate) by Halomonas campisalis MCM B-1027 using agro-wastes. Int. J. Biol. Macromol. 2015, 72, 784–789.
- 24. Saratale, G.D.; Saratale, R.G.; Varjani, S.; Cho, S.K.; Ghodake, G.S.; Kadam, A.; Mulla, S.I.; Bharagava, R.N.; Kim, D.S.; Shin, H.S. Development of ultrasound aided chemical pretreatment methods to enrich saccharification of wheat waste biomass for polyhydroxybutyrate production and its characterization. Ind. Crops Prod. 2020, 150, 112425
- 25. Volova T. G. et al. Production and Properties of Microbial Polyhydroxyalkanoates Synthesized from Hydrolysates of Jerusalem Artichoke Tubers and Vegetative Biomass //Polymers. -2021. -T. 14. -N. 1. -C. 132 -a
- 26. Rubel I. A. et al. Inulin rich carbohydrates extraction from Jerusalem artichoke (Helianthus tuberosus L.) tubers and application of different drying methods //Food Research International. 2018. T. 103. C. 226-233.:
- 27. Alabadi A. M. D., Abood S. C. MICROWAVE-ASSISTED EXTRACTION OF INULIN FROM JERUSALEM ARTICHOKE AND PARTIAL ACID HYDROLYSES //The Iraqi Journal of Agricultural Science. -2020. T. 51. No. 1. C. 401-410.
- 28. Холькин Ю.Н Технология гидролизных производств. М.: Лесн.пром-сть, 1989.-496 с.

- 29 Koutinas A. A. et al. Production of fermentation feedstock from Jerusalem artichoke tubers and its potential for Polyhydroxybutyrate synthesis //Waste and Biomass Valorization. -2013. -T. 4. -C. 359-370.
- 30 Corrado I. et al. Optimization of inulin hydrolysis by Penicillium lanosocoeruleum inulinases and efficient conversion into polyhydroxyalkanoates //Frontiers in bioengineering and biotechnology. 2021. T. 9. C. 616908.
- 31 Яровенко, В.Л. Технология спирта / В.Л. Яровенко, В.А. Маринченко, В.А. Смирнов. Москва : Колос-пресс, 2002. 465 с.
- 32 Yu J., Stahl H. Microbial utilization and biopolyester synthesis of bagasse hydrolysates //Bioresource technology. 2008. T. 99. №. 17. C. 8042-8048.
- 33 Myshkina V. L. Effect of Growth Conditions on the Molecular Weight of Poly-3-hydroxybutyrate Produced by Azotobacter Chroococcum 7B / V. L. Myshkina, D. A. Nikolaeva, T. K. Makhina et al. // Applied Biochemistry and Microbiology. 2008. V. 44. № 5. P. 482–486.
- 34. Киселев Е. Г., Васильев А. Д., Волова Т. Г. Синтез и характеристики многокомпонентных ПГА //Журнал Сибирского федерального университета. Биология. -2021. Т. 14. №. 1. С. 97-113.
- 35 Obruca S. et al. Production of polyhydroxyalkanoates using hydrolysate of spent coffee grounds //Process biochemistry. 2014. T. 49. № 9. C. 1409-1414
- 36 Park, S. J. Metabolic Engineering of Ralstonia eutropha for the Production of Polyhydroxyalkanoates From Sucrose / S. J. Park, Y. A. Jang, W. Noh // Biotechnology and bioengineering. 2015. № 3. p. 38-43.
- 37 Пименова М. Н., Гречушкина Н. Н., Азова Л. Г. Руководство к практическим занятиям по микробиологии: Малый практикум: Учебное пособие. МГУ, 1971.
- 38 Славянский А. А. Способ очистки мелассы: патент РФ № 2 301 266, МПК51 С 13 J 1/02

Федеральное государственное автономное образовательное учреждение высшего образования «СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Институт фундаментальной биологии и биотехнологии Базовая кафедра биотехнологии

УТВЕРЖДАЮ

Заведующий кафедрой

Ли Колеве Т.Г. Волова

подпись инициалы, фамилия

« 24 » MOUS 20 24 r.

МАГИСТЕРСКАЯ ДИССЕРТАЦИЯ

Технология биосинтеза микробных полигидроксиалканоатов на гидролизатах топинамбура и мелассы

06.04.01 Биология

06.04.01.01 Микробиология и биотехнология

Научный руководитель

доцент, к.т.н. Е.Г. Киселев

Выпускник

А.А. Будник

Рецензент

Deneng

доцент, к.т.н.

Н.Ю. Демиденко

Красноярск 2024