Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования «СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Институт фундаментальной биологии и биотехнологии Кафедра водных и наземных экосистем

‹ ‹	>>	2024 г.
		М.И. Гладышев
Заг	ведую	щий кафедрой
УТ	КЧЗВ.	КДАЮ

МАГИСТЕРСКАЯ ДИССЕРТАЦИЯ

Накопление тяжёлых металлов в тканях и органах щуки среднего течения реки

Енисей

06.04.01 Биология

06.04.01.04 Гидробиология и ихтиология

Выпускник			Т. В. Фетисова
	подпись, дата	-	инициалы, фамилия
Рецензент		зав. лаб. гидробиологии,	
		канд. биол. наук	Ю. К. Чугунова
	подпись, дата	должность, ученая степень	инициалы, фамилия
Руководитель			И.В.Зуев
		доцент, канд. биол. наук	Т. А. Зотина
	подпись, дата	должность, ученая степень	инициалы, фамилия

Красноярск 2024

Реферат

Магистерская диссертация по теме «Накопление тяжёлых металлов в тканях и органах щуки среднего течения реки Енисей», содержит 40 страниц текстового документа, 77 использованных источника.

ТЯЖЕЛЫЕ МЕТАЛЛЫ, ЩУКА, НАКОПЛЕНИЕ, HEAVY METALS, ESOX LUCIUS, ACCUMULATIONS.

Объект исследования - щука обыкновенная среднего течения реки Енисей.

Целью данной работы является оценка зависимости накопления тяжёлых металлов (Cu, Zn, Mn, Ni, Cr, Pb, Cd) в тканях и органах щуки среднего течения реки Енисея.

В ходе работы были определены средние концентрация тяжелые металлов в мышцах и печени щуки реки Енисей. В печени концентрации металлов выше, чем в мышцах: медь в 9,5; цинк в 7; марганца в 4 и хром в 2,5. По степени убывания концентраций тяжелых металлов в мышцах можно построить следующий ряд: Zn>Cu>Mn>Cr>Pb>Ni>Cd. Для печени он аналогичный. Концентрация тяжелых металлов, таких как кадмий, цинк и хром превышает ПДК только в печени. В мышцах концентрация ТМ не превышает ПДК и других нормативных показателей.

Содержание

Введение4
Глава 1. Обзор литературы7
1.1 Тяжелые металлы
1.1.1 Загрязнение водных ресурсов тяжелыми металлами 8
1.1.2 Токсичность ТМ для ихтиофауны11
1.1.3 Накопление и распределение ТМ по органам и тканям рыб 14
1.2 Характеристика объекта исследования
1.2.1 Биологическая характеристика щуки обыкновенной (Esox lucius) 17
Глава 2. Материалы и методы Ошибка! Закладка не определена.
2.1 Район исследованияОшибка! Закладка не определена.
2.2 Биологический анализ Ошибка! Закладка не определена.
2.3 Определение содержания металловОшибка! Закладка не
определена.
Глава 3. Результаты и обсуждение Ошибка! Закладка не определена.
3.1 Концентрация тяжелых металлов в рыбеОшибка! Закладка не
определена.
3.2 Концентрация тяжелых металлов в рыбе от массы телаОшибка!
Закладка не определена.
3.3 Оценка опасности по ПДК Ошибка! Закладка не определена.
Заключение Ошибка! Закладка не определена.
Литература31

Введение

вблизи Мониторинг содержания элементов В водных объектах агломераций и крупных промышленных предприятий является актуальной проблемой из-за постоянного ухудшения качества вод ввиду загрязнений их тяжёлыми металлами (Дементьев и др., 2015). Они относятся к классу консервативных загрязняющих веществ, которые не разлагаются в природных водах, а только изменяют форму своего существования, сохраняются в ней длительное время, даже после устранения источника загрязнения. Анализ показывает, что подобные загрязнения неразрывно связаны с проблемами качества воды, подвергаемой воздействию металлических токсинов (Давыдова и др, 2014).

Токсическое влияние тяжелых превышающих своё металлов, естественное распределение, распространяется на индивидуальные водные организмы – гидробионты, оказывая негативное воздействие на структуру целого водного экосистемного комплекса. Обладая способностью накапливаться в биологических компонентах экосистем, посредством переноса по трофическим сетям, тяжелые металлы представляют потенциальную опасность для возникновения риска здоровью человека, поскольку последствия такого накопления часто проявляются при потреблении рыбы – одного из основных компонентов пищевой цепи (Анищенко и др., 2009; Трофимова и др., 2012).

Рыбы выступают в роли важнейшего и наиболее чувствительного компонента водных экосистем. Они занимают в биоценозах водных экосистем верхний трофический уровень и обладают ярко выраженной способностью, наряду с другими гидробионтами, накапливать металлы. Рыбы обладают длительным жизненным циклом, благодаря чему способны накапливать информацию об антропогенном влиянии, в том числе о техногенном загрязнении водоемов. Повышенное содержание в организме рыб тяжелых металлов свидетельствует об их значительной концентрации в водной среде,

возможном функциональном нарушении во всех звеньях экосистемы (Вундцеттель, Кузнецова, 2013; Лопарева и др., 2016).

Содержание тяжёлых металлов в мышцах рыб определяется в результате интенсивности трёх физиологических процессов: ассимиляции (поглощения с пищей), выделения и роста рыбы, а также зависит от количества биодоступного металла в водоёме (Rowan, Rasmussen, 1994; Sundbometal., 2003; Зотина и др., 2013). В процессе онтогенеза интенсивность физиологических процессов у рыб может изменяться, что иногда приводит к установлению зависимости содержания металлов в мышцах от размерных характеристик рыб — «размерного эффекта».

В литературе известны работы, показывающие зависимость содержания тяжёлых металлов в мышцах от размера и возраста рыб (Погодаева и др., 1998; Гомбоева, Пронин, 2007; Yi, Zhang, 2012; Зотина и др., 2016).Так же была обнаружена сезонная зависимость содержания тяжелых металлов в рыбе (Ololadeetal., 2008; BurcuBaşyiğit, SeldaTekin-Özan, 2012; Бойченко, 2015; Аринжанов, 2017).

Биодоступность тяжелых металлов, поступающих в водоем и депонированных в донных отложениях — одна из ключевых проблем водной экологии. Тяжелые металлы с разной эффективностью накапливаются биотой и переносятся в трофических сетях (Зотина и др., 2014; Зотина и др., 2012). Поэтому изучение накопления тяжелых металлов промысловыми рыбами является актуальным, так как рыба является основным и важным продуктом питания человека и сельскохозяйственных животных, особенно птицы и свиней. Рыба обеспечивает организм жирными кислотами, снижающими риск сердечных заболеваний и инсульта благодаря их вкладу в снижение уровня холестерина в крови, а также минералами и витаминами (Гостева, 2010; Guptaetal, 2009).

На данный момент, на участке Енисея постоянно обитает 31 вид рыб. Во многих водоемах бассейна Енисея щука является промысловым видом, и для

многих рыбаков-любителей излюбленный объект промысла — щука обыкновенная (*Esoxlucius*) (Гадинов, Долгих, 2008).

Рабочая тема диссертации: Накопление тяжёлых металлов в тканях и органах щуки среднего течения реки Енисея.

Целью данной работы является оценка зависимости накопления тяжёлых металлов (Cu, Zn, Mn, Ni, Cr, Pb, Cd) в тканях и органах щуки среднего течения реки Енисея.

Задачи исследования:

- 1. Сравнить накопление тяжелых металлов в мышечной ткани и печени щуки.
- 2. Определить ряд распределения концентраций металлов в мышцах и печени.
- 3. Определить содержание концентрации тяжёлых металлов в мышцах и печени рыб разной массы.
- 4. Сравнение содержания металлов в мышцах и печени рыб с нормативными показателями.

Глава 1. Обзор литературы

1.1 Тяжелые металлы

К тяжелым металлам (ТМ) относят химические элементы, имеющие плотность более 5 г/см3 и атомную массу свыше 50 атомных единиц. Тяжелые металлы — это элементы, активно участвующие в биологических процессах и входящие в состав многих ферментов. Тяжелые металлы могут влиять практически на весь организм, где играют двойную роль - положительную и отрицательную.

Тяжелые металлы, при условии низких концентраций, соответствующих физиологическим нормам, имеют важное значение, для жизнеобеспечения организма. Однако, превосходя эти концентрации, происходит нарушение физических и биохимических процессов на уровнях, как клеточном, так и тканевом. Такие перегрузки могут быть критическими, учитывая интенсивную токсичность тяжелых металлов, которая проявляется даже при умеренно повышенных уровнях. Накопление этих токсичных металлов в живых организмах и усиление их концентрации на вышестоящих уровнях пищевых цепей известно как биоаккумуляция и биомагнификация.

Многие металлы, входящие в эту классификацию, принимают активное участие в критически необходимых биохимических циклах и входят в состав многих ферментов. За исключениями свинца, ртути, кадмия и висмута – элементов с недостаточно изученными биологическими функциями (Третьякова, Панина, 2000; Теплая, 2013).

В понимании биологически значимых элементов произошёл значительный пересмотр. Расширился перечень металлов, где первоначально было всего десять: натрий (Na), калий (K), магний (Mg), кальций (Ca), цинк (Zn), марганец (Mn), железо (Fe), кобальт (Co), медь (Cu) и молибден (Мо), признанных ключевыми для биохимических процессов. Таковое расширение привнесло новое понимание рядов металлов – свинец (Pb), кадмий (Cd), ртуть

(Hg), хром (Cr), и мышьяк (As). Долгое время подобные элементы квалифицировались исключительно в качестве токсинов для биосистем. Определяющим критерием в этом вопросе является содержание того или иного металла в организме и окружающей среде, поскольку как избыток, так и недостаток металла приводят к различным негативным отклонениям от нормального состояния организма. Выявление определяющей роли металлов в жизненно важных биохимических реакциях послужило основанием для образного названия их «биометаллами» (Скальный, 2004; Давыдова, 2014).

Токсичные свойства тяжелых металлов, к которым относятся свинец, кадмий, стронций, медь, цинк и ртуть, влекут за собой серьезные последствия в виде канцерогенеза и, благодаря их способности к кумуляции, накоплению в живых организмах, в потенциале влияя на изменение генетической структуры. Экологический дисбаланс, вызванный увеличением содержания этих элементов в гидросфере, стоит в ряду значимых антропогенных проблем. Научное сообщество выражает обеспокоенность по данному вопросу и призывает к осознанию необходимости углубленного мониторинга такового загрязнения (Кузьмина, 2008; Теплая, 2013; Давыдова, 2014).

1.1.1 Загрязнение водных ресурсов тяжелыми металлами

Ввиду огромной роли, которую играет вода в жизни населения планеты и в прогрессировании технических инноваций, она признается бесценным природным богатством. Загрязнение гидросферы, определяется как прямое или косвенное попадание веществ в водную среду, что приводит к вредным последствиям. Ухудшение условий акваторий угрожает здоровью человека, несет убытки для рыбной отрасли и влечет за собой снижение качества воды, делая её непригодной для использования в домашних целях и питье.

Тяжелые металлы присутствуют в различной концентрации, что может способствовать благоприятным или наоборот, часто деструктивным последствиям для растительности, фауны и людей, в зависимости от степени их

насыщения. Механизмы их распространения многообразны и включают в себя испускаемые в воздух отработанные газы, коррозию коммуникаций, расплав руды и сжигание углеводородных источников, а также хлам, который производят тяжелая промышленность и коммунальные службы — все эти факторы формируют связку единой экологической угрозы. Особое внимание заслуживает химическое заражение из воздушного слоя Земли, проблематика которого с каждым годом обостряется(Флефель, 2019; Давыдова, 2014).

Антропогенная деятельность приводит к загрязнению водных систем, что ведет к ухудшению качества как прибрежных, так и внутренних водоемов, отражаясь на их физико-химических свойствах и температуре. Изменение климата зарекомендовало себя как фактор, способствующий вносу новых вариации в статус гидросферы, заставляя ее адаптироваться к изменчивым температурным режимам и концентрации различного рода растворенных субстанций. Окружающая нас среда оказывается под угрозой вследствие сельскохозяйственной деятельности, сопровождающейся использованием вредной химии, такой как пестициды И фертилизаторы, нарушений вытекающих из модификаций землепользования и проблем, связанных с непроницаемостью поверхностей, ответственной за естественные процессы обмена в гидросфере. Процессы сброса нефильтрованных сточных вод также играют значительную роль в деградации водных бассейнов, наталкиваясь на систематическое накопление загрязнителей в водной среде, которое влияет на температуру и химические характеристики водных объектов (Флефель 2019; Теплая, 2013).

В пресноводных экосистемах нынче обнаруживается высокий уровень загрязнения. Машиностроительные и металлургические комплексы, а также средства передвижения вносят значительный вклад в аккумуляцию тяжелых металлов в водных ресурсах. По ходу испускания сточных вод, данные предприятия занимают первостепенное место. Заметное нарушение физико-химического равновесия воды вызывает загрязнение, влекущее за собой негативные последствия для гидробионтов и целостности экосистем. Следует

отметить, что мощный приток радиоактивных веществ, химикатов и других загрязнителей воды, существенно изменяет ее качества. Процессы вымывания токсичных элементов тяжелых металлов с поверхности грунтов, ускоряемые осадками и таянием снегов, приводят к внезапным изменениям концентрации этих металлов, что зачастую сопровождается нежелательным усилением их присутствия в водных объектах (Алабастер, Ллойд, 1984; Моисеенко, 2006; Теплая, 2013).

Необходимо отметить, что элементы Со, Си, Ni, Zn, в малых дозах оказывают благотворное воздействие на жизни микроорганизмов, но при увеличении концентрации обладают токсическим эффектом. Токсичность микроэлементов как Сd, Pb, Hg, не имеющих потребности в жизненных процессах организмов, усиливает их отрицательное воздействие на биологические и генетические функции. Живые организмы являются связующим звеном в переносе этих загрязнителей и их биологическом накоплении (Gupta, 2009; Голованова, 2008).

В экосистемах водоемов ионные формы тяжелых металлов демонстрируют высокую тенденцию к миграции, поскольку они присутствуют в виде взвешенных частиц, мелкодисперсных веществ, а также в виде растворимых соединений. Как в составных, так и в свободных ионных формах, они зафиксированы в растворах. Из всех форм, растворенные ионы, несомненно, показывают повышенную доступность для биоты, что делает их особенно токсичными.

Как только тяжелые металлы проникают в водную среду, они немедля становятся участниками сложных процессов миграции и трансформации, которые протекают на разных уровнях и под воздействием множественных факторов. При этом происходят процессы физические (механическое перемешивание, осаждение, адсорбция и десорбция), химические (диссоциация, гидролиз, комплексообразование, окислительно-восстановительные реакции), биологические (поглощение живыми организмами, разрушение и превращение

с участием ферментов и метаболитов), геологические (захоронение в донных осадках и породообразование) (Филенко, 2007; Леменовский, 1997).

Основная часть связанного вещества переходит в донные осадки, в результате чего донные грунты часто содержат необычайно высокие уровни загрязняющих веществ (Моисеенко, 2009). В донных осадках металлы содержатся в виде карбонатов, сульфидов и в связанном с органическими остатками состоянии. В условиях, когда усиливается кислотность среды, наблюдается дефицит кислорода или появляются комплексообразователи, металлы могут переходить из осадков обратно в водную среду, способствуя тем самым вторичному загрязнению. Повышенный уровень катионов металлов в водной толще часто связан с естественными явлениями, такими как паводки и ливневые осадки, что свидетельствует о взаимосвязи между изменением состояния среды и мобилизацией металлов из осадков.

Биоаккумуляция тяжелых металлов усиливает проблему, ведь они устойчивы к биологическому разложению. Такие металлы способны вызывать различные физиологические расстройства и даже онкологические заболевания, представляя опасность не только для людей, но и для фауны, самостоятельно накапливаясь в организмах живых существ, включая водных растений и гидробионтов, и приводя к генетическим аномалиям и нарушениям в развитии образом, плода. Таким последствия загрязнения тяжелыми экосистему на различных уровнях, пронизывают угрожая здоровью и биоразнообразию(Давыдова, Тагасова, 2002; Борисков и др., 2016).

1.1.2 Токсичность ТМ для ихтиофауны

Исследование влияния токсических элементов, наподобие тяжелых металлов, на акватические организмы предоставляет комплексные данные, варьирующиеся в зависимости от уязвимости видов. Гетерогенность реакций обусловлена эволюционным статусом, экосистемными требованиями и внутренним состоянием гидробионтов. Физические и химические

характеристики среды обитания, такие, как аэрация, кислотно-щелочной баланс и термальный режим, оказывают значительное воздействие на токсичные свойства металлов. Изменения одного элемента в биотическом контексте могут модулировать воздействие других, так, например, цинк может уменьшать токсический эффект кадмия и меди в организмах.

Сравнительный анализ показывает, что на уровне чувствительности к металлам, моллюски, ихтиофауна и водные растения занимают места в середине списка после бактерий и ракообразных, в то время как личинки определённых инсектов уступают по степени резистентности.

Исследования в области ихтиотоксикологии выявили способность некоторых металлов оказывать неодинаковое действие на разные возрастные группы одного и того же вида (онтогенетический принцип). Более того, эмбриональные стадии лососевых рыб проявляют повышенную чувствительность к действую цинка и никеля по сравнению с их зрелыми рыбами. Отсюда следует, что онтогенез гидробионтов тесно связан с их механизмами реакции на внешние токсические воздействия (Немова, Высоцкая, 2004).

Взаимодействие гидробионтов и токсических металлов (ТМ) выявляет определённые дисфункции в их биологических системах. Исследования учёных показывают, что повреждаются нервные, пищеварительные и дыхательные системы у водных животных и нарушается фотосинтез у водных растений под влиянием токсикантов. Токсические эффекты, вызванные на низших уровнях, обычно нивелируются на более высоких и поэтому не всегда обнаруживаются в видимых реакциях гидробионтов, хотя они могут играть очень существенную роль в процессах наследования генетических признаков и воспроизводства потомства в более отдаленный период (Куценко, 2004; Trautmannetal, 2001).

Концентрированные уровни меди, в качестве примера, вызывают у рыбных организмов атрофию тканей, нарушения метаболических процессов, эндемическую анемию и препятствуют нормальному кровообразованию,

газообмену, тогда как ионно-осмотическая регуляция и минерализация костей ослабляются, как подтверждено многочисленными научными работами.

Ответ на токсины гидробионтами представляет сложное взаимодействие переменных факторов, к которым причисляются вид, возраст, пол, функциональное состояние, численность популяции и концентрация кислорода в воде — все эти элементы, по литературным данным (Лесников (1971), Брагинский и др. (1987), Григорьев и др. (2005), Григорьев (2005)), имеют значение в адаптивных процессах гидробионтов к токсичным воздействиям (Остроумова, 2001).

Было выявлено, что ткани рыб отличаются по степени абсорбции и накопления токсических металлов, причем для метаболически активных органов, включая жабры, печень и почки, характерно более интенсивное удерживание этих элементов. Специфичные протеины - металлотионеины - синтезируются в этих же органах, способствуя связыванию металлических ионов. В то же время, заметно меньшее количество токсичных металлов (ТМ) фиксируется в коже и мышечной ткани. Едва ли не превалирующий интерес для научных исследований представляют мышцы, поскольку именно они употребляются человеком в пищу и имеют переменную способность к биоаккумуляции, колеблющуюся в зависимости от рыбного вида (МТ) (Бастанов, 2017; Байтимирова, 2016).

Мониторинги, рассматривающие вопрос биоаккумуляции ТМ в рыбной мускулатуре, открыли, что концентрация этих металлов может наибольшим образом отличаться от содержания в воде, осадке дна и питательных веществах в рационе. Токсинам присуще усиленное обогащение в рыбном организме через пищевые цепочки по сравнению с их уровнями в окружающей среде - в итоге их уровни в рыбе могут быть в сотнях, иногда тысячах раз выше концентраций в воде.

Рассмотрение воздействия ТМ проливает свет и на пути их попадания в рыб: активная абсорбция происходит через обширные поверхности жабр, а также такие внутренние органы, как почки, печень и кишечник. Важно

отметить, что рыба, используемая в качестве корма, представляет не только мышечную ткань, но и другие части, включая цельную тушку или рыбную муку, которые также могут иметь высокую концентрацией ТМ (Давыдова и др., 2014; Голованова, 2014; Мажайский, 2001).

1.1.3 Накопление и распределение ТМ по органам и тканям рыб

Ихтиофауна водоемов, находясь на апогее пищевой цепочки, представляет собой индикатор, отображающий антропогенные эффекты на экосистему. В качестве биомаркера, ихтиология использует рыб, которые обладают значительными возможностями накопления тяжелых металлов в своих тканях. Эта способность представляет несомненный интерес, поскольку концентрационное увеличение тяжелых металлов в их организме может превышать объемы содержания данных элементов в окружающей их среде в значительные количества, доходя даже до 1-3 порядков разницы.

Источники такого накопления тяжелых металлов являются загрязненная вода и пищи, что ведет к высоким уровням ТМ в организме рыб. По данным П, А, Попова (2001) и Т. И Моесеенко (2006), основной путь поступления тяжелых металлов – через пищевой рацион.

Гидробионты, составляющие диету ихтиофауны, способны аккумулировать тяжелые металлы, так, что даже при низкой концентрации воды, например 10-20 мкг/л меди, это накапливается в органах рыб. Содержание ТМ в органах и тканях рыб с разным типом питания может различаться более чем на порядок. При этом имеет значение скорость обменных процессов, пол и возраст гидробионтов. В ряде случаев большее накопление токсических элементов отмечено у рыб-бентофагов, в ряде случаев — у ихтиофагов по сравнению с планктофагами. Установлена прямая зависимость между содержанием ТМ в донных отложениях и в тканях рыб (Тарбенок и др., 2004, Гомбоев, Пронин 2007).

Стоит заметить, что ТМ разнятся по уровню воздействия на рыб, и в микродозах некоторые из элементов, такие как Со, Си, Ni и Zn, необходимы живому организму. Ряд исследований, включая труды Е. И. Терентьева и др. (2002), показывает, что повышение уровней этих же элементов до токсических концентраций вызывает пагубные последствия, примером которых служат патологии в жаберной системе сига, *Coregonuslavaretus*, из Чунозера в результате воздействия Сu, Ni и других тяжелых металлов. В публикации М. Г. Таликина и др (2004) отмечается, что ртуть в рационе у развивающейся молоди плотвы, *Rutilusrutilus*, приводит к замедлению их роста, блокирование раннего онтогенеза, изменение лейкоцитарной формулы, гистопатогенез эритроцитов периферической крови и отклонение от нормы гистофизиологического состояния клеток паренхимы печени. Отклонения в развитии личинок карпа были замечены В. И. Владимировым (1969) при избытке цинка в икре; а у взрослых особей этого же вида И. Л. Голованова и В. Т. Комов (2003) отметили снижение темпов роста из-за длительного воздействия ртути.

Механизмы поступления и токсического действия ТМ на организм рыб могут различаться. Так, например, медь и цинк могут поступать как с водой, так и с пищей. При высоком содержании меди в пище до 99% этого металла поступает именно с кормом, тогда как при низком содержании меди в пище значительная её часть (до 60%) может поступать через жабры. Интересно, что в пищевых объектах ТМ часто связаны с различными белками, в том числе с металлотионеинами и глутатионом. В желудочно-кишечном тракте рыб происходит сложный процесс расщепления этих комплексов, и освободившиеся ионы металлов всасываются в кровь (Buryetal., 2003; Кузьмина, 2008).

Цинк, в свою очередь, всасывается в переднем отделе кишечника. При этом существуют два основных механизма его поступления в клетки: при низкой концентрации цинка в кишечнике он транспортируется к клеткам слизью, выделяемой бокаловидными клетками, а при высокой концентрации цинка он поступает в клетки путём диффузии. В цитоплазме клеток избыток

цинка связывается с металлотионеинами, а остальная часть транспортируется в кровь. (Buryetal., 2003; Кузьмина, 2008; Давыдова, 2014).

Таким образом, концентрация цинка и меди в полости и на структурах эпителоцитов зависит не только от их содержания в воде, пище, панкреатическом соке и желчи, но и от скорости их транзита через эпителиальный барьер.

Кадмий, являясь высокотоксичным элементом, накапливается преимущественно в печени, почках и жабрах рыб (Кumar, Singh, 2010; Annabietal., 2013). По другим исследованиям у карпа, *Cyprinuscarpio*, и плотвы, *RutilusRutilus*, наибольшие концентрации кадмия находились в почках, затем жабрах, кишечнике и печени (Annabietal, 2013). Он оказывает негативное влияние на работу почек, печени и щитовидной железы, а также нарушает кальциевый обмен, что приводит к нарушению роста и развития рыб. Кальций и кадмий, ввиду одинаковых по знаку электрических зарядов и схожести ионных радиусов, способны взаимно подавлять присущее каждому из них действие (Кumar, Singh, 2010; Annabietal, 2013).

Хром, в зависимости от валентности, может проявлять как жизненно важные, так и токсические свойства. Шестивалентный хром (Cr(VI)) является особо опасным загрязнителем, обладающим канцерогенными, мутагенными и тератогенными свойствами. Эта форма хрома стала распространенной в ходе изменений, вызванным антропогенным фактором. Он накапливается в печени, почках и жабрах рыб, вызывая различные патологические изменения в организме. Высокие концентрации хрома у рыб вызывают следующие эффекты: гематологические, гистологические И морфологические изменения, ингибирование (замедление роста), нарушение иммунной системы. Высокие Cr(VI) гемоглобин, концентрации снижает количество эритроцитов, лимфоцитов и лейкоцитов. После отравления у рыб меняется поведение; их движения становятся хаотичными, некоторые особи могут перестать питаться (Матвеева, 2018; Aslam, Yousafzai, 2017).

Никель, накапливаясь в жабрах рыб, нарушает их работу, что приводит к гибели от удушья. Кроме того, никель может вызывать нарушения в работе нервной системы и других органов (Аринжанов и др., 2016).

Свинец накапливается в различных органах и тканях рыб, в том числе в мышцах и печени. Он оказывает токсическое действие на нервную систему и кроветворные органы. Хроническое отравление приводит к изменению белков головного мозга. Было выявлено, что накопление свинца и кадмия в организме рыб усиливается в летний период, когда температура воды достигает максимальных значений (Голованова, Урванцев, 2014; Jezierska, Witeska, 2006).

Таким образом, тяжёлые металлы представляют серьёзную угрозу для водных экосистем и здоровья человека. Рыбы, будучи важным звеном пищевых цепей и объектом промысла, могут становиться источником поступления ТМ в организм человека, что делает проблему загрязнения водных экосистем ТМ актуальной и требующей принятия неотложных мер.

1.2 Характеристика объекта исследования

1.2.1 Биологическая характеристика щуки обыкновенной (*Esoxlucius*)

Класс Actinopterygii – Лучепёрые

Отряд Esociformes – Щукообразные

Семейство EsocidaeCuvier, 1816 – Щуковые

Род EsoxLinnaeus, 1758 — Щуки

Вид EsoxluciusLinnaeus, 1758 – Щука обыкновенная

Тело удлиненное. Окраска зеленовато-серая, серо-желтоватая, спина обычно темнее, чем бока тела. Плавники желтовато-серые, спинной, хвостовой и анальный плавники с темными пятнами. На боках тела крупные бурые или оливковые пятна. Окраска варьирует в зависимости от цвета воды или грунта водоема (Рисунок 1- 2).

Рисунок 1 – Обыкновенная щука (р. Большая Хета). Фото: С.М. Чупров

Рисунок 2 — Обыкновенная щука (Красноярское водохранилище). Фото: С.М. Чупров

Щука относится к числу облигатных ихтиофагов, является засадным хищником, обитает в основном в прибрежной зоне, в зарослях растительности, предпочитает тихие воды.

Самки щук обычно крупнее самцов. Половой зрелости щука достигает на четвертом-пятом году жизни при длине 35-40 см и массе 350-620 г. В северных водоемах созревает на год-два позже при более крупных размерах. Нерест происходит ранней весной, после схода льда. Икра крупная желтого цвета откладывается на подводную растительность либо на грунт на глубине до 1 м. Молодь щуки питается водными беспозвоночными и их личинками. При длине 2-5 см щука переходит на хищничество, поедает молодь гольяна, пескаря и ельца. Взрослая рыба в основном питается рыбой: гольяном, пескарем, хариусом, налимом, окунем, плотвой и собственной молодью. Как правило, в рационе щуки встречаются все животные данного водоема. В желудке щуки, кроме рыб, нередко обнаруживают червей, головастиков, лягушек, мелких водоплавающих птиц, грызунов (землероек, водяных крыс, белок). Огромная

пасть позволяет щуке заглатывать добычу, длина которой составляет до 70% длины самого хищника.

Максимальный возраст енисейской щуки не превышает 13-15 лет, достигает длины 130 см и массы 10,5 кг (р. Подкаменная Тунгуска), чаще от 0,5 до 2 кг. Максимальные размеры, которых может достигать щука, не превышают 180 см и возраста 30-35 лет.

Щука — важный и необходимый компонент экосистемы. Она является одним из представителей трофического звена хищников в Красноярском водохранилище. Щука — не только биологический мелиоратор, но и стабилизирующий фактор, который поддерживает сбалансированную структуру рыбного сообщества, поедая в основном малоценных рыб и уничтожая больных и ослабленных особей (Атлас пресноводных рыб России, 2003; Вышегородцев, 2000; Кистер, 2016; Попов, 2007; Чупров, 2015).

== Изъято в связи с авторскими правами (стр. 20-31)==

Литература

- 1. Алабастер Дж., Ллойд Р. Критерии качества воды для пресноводных рыб/ Дж.Алабастер, Р. Ллойд. М.: Легкая и пищевая промышленность. 1984. -344 с.
- 2. Анищенко О.В., Гладышев М.И., Кравчук Е.С., Сущик Н.Н., Грибовская И.В. Распределение и миграция металлов в трофических цепях экосистемы реки Енисей в районе г. Красноярска // Водные ресурсы 2009. Т. 36, № 5. С 623–632.
- 3. Анищенко О. В., Гладышев М. И., Кравчук Е. С. и др. Оценка антропогенного загрязнения р. Енисей по содержанию металлов в основных компонентах экосистемы на участках, расположенных выше и ниже г. Красноярска // JournalofSiberianFederalUniversity, Biology, 2010. V. 3. № 1. Р. 82-98.
- 4. Аринжанов, А. Е., Сарычева А. В. Загрязнение водоемов тяжелыми металлами // Университетский комплекс как региональный центр образования, науки и культуры. Материалы Всероссийской научно-методической конференции. Оренбургский государственный университет 2017. С. 1494-1499.
- 5. Аринжанов А. Е., Мирошникова Е. П., Килякова Ю. В., Лядова А. Ю., Кушнарев А. В. Оценка влияния наночастиц никеля на искусственные аквабиоценозы. В сборнике: Университетский комплекс как региональный центр образования, науки и культуры. Материалы Всероссийской научнометодической конференции. 2016. С. 1058-1062.
- 6. Атлас пресноводных рыб России. Т. 1 / под ред. Ю. С. Решетникова. М.: Наука, 2003. 379 с
- 7. Бастанов, Р.И. Содержание химических элементов в мышечной ткани рыб и в воде Аргазинского водохранилища Челябинской области / Р.И. Бастанов, С.Н. Яковлева // Аэкономика: экономика и сельское хозяйство. − 2017. №11 (23). С. 3.

- 8. Байтимирова Е.А., Михеева Е.В., Беспамятных Е.Н., Донник И.М., Кривоногова А.С. Оценка загрязнения рекреационных зон мегаполиса тяжелыми металлами (на примере Екатеринбурга) // Аграрный вестник Урала. 2016. № 04 (146). С. 71—77.
- 9. Бойченко Н.Б.Содержание и сезонная динамика тяжелых металлов в органах и тканях окуня обыкновенного, обитающего в реках красноярского края // Инновационные тенденции развития Российской науки, 2011. С. 126-129.
- 10. Борисков Д. Е., Кузьмин А. А., Зиновьев С. В., Блинохватов А. А. Накопление тяжелых металлов в донных отложениях и биоте в системе закрытого водоема. XXI век: итоги прошлого и проблемы настоящего плюс, 2016, №4 (32). С. 82-86.
- 11. Брагинский Л.П. Пресноводный планктон в токсической среде / Л.П. Брагинский, И.М. Величко, Э.П. Щербань.— Киев: Наукадумка, 1987. 180 с.
- 12. Ваганов, А.С. Сравнительная характеристика содержания тяжелых металлов в промысловых видах рыб Куйбышевского водохранилища / А.С. Ваганов // Изв. Самарского научного центра Российской академии наук. 2011. Т.13, No 5. С. 143–146.
- 13. Владимиров В.И. Зависимость эмбрионального развития и жизнестойкости карпа от микроэлемента цинка // Вопр. ихтиол. 1969. Т. 9. Вып. 5 (58). С. 904-916.
- 14. Владимиров В. А., Лазарев М. Ю. Накопление тяжелых металлов в мышечной ткани рыб различных трофических и топических групп. Вестник науки, 2020, 12 (33). С. 147-152
- 15. Вундцеттель М. Ф., Кузнецова Н. В. Содержание тяжелых металлов в органах и тканях рыб реки Яхрома // Вестн. Астрахан. гос. техн. ун-та. Сер.: Рыбное хозяйство. 2013. № 2. С. 155–158.
- 16. Вышегородцев, А. А. Рыбы Енисея: справочник / А. А. Вышегородцев. Новосибирск: изд. «Наука», Сибирская издательская фирма РАН, 2000. 188 с.

- 17. Гадинов А. Н. Пространственно-видовая структура ихтиоценоза, относительная численность и факторы, влияющие на распределение рыб р. Енисей / А. Н. Гадинов, П. М. Долгих // Вестник КрасГАУ. 2008. №. 3. С. 169-174.
- 18. Галатова Е. А. Особенности накопления тяжелых металлов в органах и тканях рыб различных семейств. Известия ТСХА, 2009, No 3. C. 157-168
- 19. Голованова И.Л., Комов В.Т. Влияние поступающей с кормом ртути на активность пищеварительных карбогидраз и их устойчивость к действию тяжелых металлов у сеголетков карпа // Проблемы патологии, иммунологии и охраны здоровья рыб и других гидробионтов. М. 2003. С. 27-29.
- 20. Голованова И. Л. Влияние тяжелых металлов на физиологобиохимический статус рыб и водных беспозвоночных // Биология внутренних вод, 2008, No1. C. 99-108.
- 21. Голованова, И.Л. Влияние тяжелых металлов (сu, zn) на пищеварительные гликозидазы рыб-бентофагов из районов рыбинского 152 водохранилища с разной антропогенной нагрузкой / И.Л. Голованова, А.А. Филлипов, Г.М. Чуйко // Биология внутренних вод. 2014. №3. С. 92-100.
- 22. Голованова И. Л., Урванцева Г. А. Влияние свинца на активность гликозидаз слизистой оболочки кишечника рыб //Труды Карельского научного центра РАН, 2014, №5. С. 195-199.
- 23. Гомбоева, С. В. Распределение тяжелых металлов в органах и тканях рыб с различным типом питания в прибрежно-соровой зоне Байкала / С. В. Гомбоева, Н. М. Пронин, В. Ж. Цыренов // Сибирский экологический журнал. 2003. Т. 10, N 5. С. 561-564.
- 24. Гомбоева С.В., Пронин Н.М. Возрастные изменения содержания тяжелых металлов (Cu, Zn, Cd, Pb) в органах и тканях плотвы сибирской и щуки селенгинского мелководья оз. Байкал // Экология. 2007. № 4. С. 314–316.
- 25. ГОСТ 30504-97. Корма, комбикорма, комбикормовое сырье. Пламенно-фотометрический метод определения содержания калия. Минск:

Межгосударственный совет по стандартизации, метрологии и сертификации, 1998. 11 с.

- 26. ГОСТ 30692-2000. Корма, комбикорма, комбикормовое сырье. Атомно-абсорбционный метод определения содержания меди, свинца, цинка и кадмия. Минск: Межгосударственный совет по стандартизации, метрологии и сертификации, 2000. 8 с.
- 27. Гостева, С.Р. Экологическая безопасность России и устойчивое развитие / С.Р. Гостева //Вестник Тамбовского государственного технического университета. 2010. №3. С. 704-718.
- 28. Григорьев Ю.С. Влияние связывания тяжелых металлов на результаты биотестирования токсичности природных и сточных вод / Ю.С. Григорьев, В.Н. Бурмакин, Н.С. Бондарев // Вест. красн. гос. ун-та, сер. Естественные науки. -2005. N = 5. c. 125 128
- 29. Григорьев Ю.С. Биодоступность тяжелых металлов в природных и сточных водах / Ю.С. Григорьев [и др.] // Современные проблемы водной токсикологии: Сборник тезисов международной конференции памяти д.б.н. проф. Б.А. Флерова. Борок, 2005. с.33
- 30. Давыдова О.А, Лукьянов А.А., Ваганова Е.С. и др. Физико-химические аспекты загрязнения и очистки поверхностных вод от тяжелых металлов и нефтепродуктов природными сорбентами // Известия Самарского научного центра Российской академии наук. 2014. Т. 16, № 4(3). С. 523–525.
- 31. Давыдова С.Л. Тяжелые металлы как супертоксиканты XXI века / С.Л. Давыдова, В.И. Тагасова. М.:Изд-во РУДН. 2002. 140с.
- 32. Давыдова О.А, КлимовЕ.С., Ваганова Е.С, Ваганов А.С. Влияние физико-химических факторов на содержание тяжелых металлов в водных экосистемах // Монография. –2014. Ульяновск. С. 167.
- 33. Дементьев Д.В, Болсуновский А.Я., Борисов Р.В., Трофимова Е.А. Содержание тяжёлых металлов в донных отложениях реки Енисей в районе

- Красноярска // Известия Томского политехнического университета. 2015. Т. 326. № 5. С. 91-98.
- 34. Змачинский А.С. Содержание тяжелых металлов в мышечной ткани карася серебряного из водных объектов г. Минска// Вопросы рыбного хозяйства Беларуси. 2012;(28):202-211.
- 35. Зотина Т. А., Трофимова Е. А., Болсуновский А. Я., Анищенко О. В. Эффективность трофического переноса радиоактивных и стабильных изотопов металлов к рыбам бентофагам р. Енисей // JournalofSiberiaFederalUniversity, Biology. 2013. V. 6. № 1. Р. 96–107.
- 36. Зотина Т. А., Трофимова Е. А., Дементьев Д. В., Болсуновский А. Я. Возрастная зависимость накопления ¹³⁷Сѕ щукой *Esoxlucius*в р. Енисей // Доклады Академии Наук. 2016. № 4. С. 474–477.
- 37. Кистер А.А. Промысел и размерно-возрастная характеристика щуки в Красноярском водохранилище // Вестн. КрасГАУ. -2016. № 12. С. 153-157.
- 38. Кузьмина В.В. Физиология питания рыб. Влияние внешних и внутренних факторов/ В. В, Кузьмина // Борок: ИБВВ РАН. 2008. 276 с.
- 39. Куценко С.А. Основы токсикологии /С.А. Куценко. М.: Фолиант, 2004. 570 с.
- 40. 77. Лесников Л.А. Методика оценки влияния воды из природных водоемов на Daphniamagna S./ Методики биологических исследований по водной токсикологии./ Л.А. Лесников М.: Наука. 1971. с. 157–166.
- 41. Лопарева Т. Я., Шарипова О. А., Петрушенко Л. В. Уровень накопления токсикантов в мышечной ткани рыб в водных бассейнах Республики Казахстан // Вестн. Астрахан. гос. техн. ун-та. Сер.: Рыбное хозяйство. 2016. № 2. С. 115–122.
- 42. Леменовский Д.А. Соединения металлов в биологии и медицине / Д.А. Леменовский // Соросовский образовательный журнал. 1997. Т.9, с.48—53.

- 43. Мажайский, Ю.А. Тяжелые металлы в экосистемах водосборов малых рек растений: учеб. метод, пособие / Ю.А. Мажайский. Москва: Издво МГУ. 2001. С. 138.
- 44. Матвеева А. Ю., Кутлин Н. Г., Кардапольцева Д. Г., Муллагалиева А. Т. Влияние антропогенной нагрузки на аккумуляцию тяжелых металлов в органах и тканях промысловых рыб. Природообустройство, 2018, № 2. С. 132-136.
- 45. Моисеенко Т.И., Кудрявцева Л.П., Гашкина Н.А. Рассеянные элементы в поверхностных водах суши: Технофильность, биоаккумуляцияиэкотоксикология. М.: Наука. 2006, 261 с.
- 46. Моисеенко Т.И. Водная экотоксикология. Теоретические и прикладные аспекты. Наука, 2009. 400 с.
- 47. Немова Н.Н., Высоцкая Р.У. Биохимическая индикация состояния рыб/ Н. Н. Немова, Р. У. Высоцкая. М.: Наука. 2004. 210 с.
- 48. Остроумова И.Н. Биологические основы кормления рыб/ И. Н. Остроумова. СПб.: ГОСНИОРХ. 2001. 372 с.
- 49. Погодаева Т.В., Смирнов В.В., Смирнова Залуми Н.С., Титова Е.Ю. Тяжелые металлы (Zn, Fe, Cu, Mn, Pb) в тканях и органах байкальского омуля // Сиб. экол. журн. 1998. Т. 5, № 5. С. 477-483.
- 50. Попов П.А. Содержание и характер накопления металлов в рыбах Сибири // Сиб. экологич. журн. 2001. Т.8. №2. С. 237-247.
- 51. Попов П. А. Рыбы Сибири: распространение, экология, вылов. Издво. Новосиб. гос. ун-та. Новосибирск, 2007. 526 с.
- 52. Попов П.А., Андросова Н.В., Попов В.А. Содержание металлов в органах обыкновенной щуки (EsoxLucius) из реки Томи (Верхняя Обь) // Известия АО РГО. 2021. №4 (63). С. 76–87.
- 53. Правдин, И. Ф. Руководство по изучению рыб (преимущественно пресноводных) / И. Ф. Правдин. Изд. «Пищевая промышленность», 1966. 267 с.

- 54. Скальный А.В., Рудаков И.А. Биоэлементы в медицине. М. :Издательский дом «ОНИКС 21 век» : Мир, 2004. 272 с
- 55. Таликина М.Г., Комов В.Т., Чеботарева Ю.В., Гремячих В.А. Комплексная оценка длительного воздействия ртути на молодь плотвы Rutilusrutilus в экспериментальных условиях // Вопр. ихтиологии. 2004. Т. 44. № 6. С. 847-852.
- 56. Тарбенок А.А., Аршаница Н.М., Перевозников М.А., Светашова Е.С. Исследование содержания тяжелых металлов в экосистеме реки Волхов // Проблемы экологической безопасности промысла рыб на внутренних водоемах. СПб.: ГосНИОРХ. 2004. Вып. 330. С. 144-148.
- 57. Теплая Г. А Тяжелые металлы как фактор загрязнения окружающей среды // Астраханский вестник экологического образования № 1 (23) 2013. с. 182-192.
- 58. Терентьев П.М., Кашулин Н.А., Кудрявцева Л.П. Ответы организмов сига *Coregonuslavaretus* (L) озера Чунозеро (Лапландский биосферный заповедник, Кольский полуостров) на продолжительное воздействие малых доз загрязнения // Биология внутренних вод: проблемы экологии и биоразнообразия. Борок: ИБВВ РАН. 2002. С. 148-149.
- 59. Третьякова Е.И., Папина Т.С. Особенности распределения тяжелых металлов по компонентам водоемов различной минерализации // Химия в интересах устойчивого развития. 2000. № 8. С. 429-438.
- 60. Трофимова Е.А., Зотина Т.А., Болсуновский А.Я. Оценка переноса техногенных радионуклидов в трофических сетях реки Енисей // Сиб. Экол. Журн. 2012. 4: 497-504.
- 61. Филенко О.Ф. Основы водной токсикологии/ О.Ф. Филенко, И.В. Михеева. М.: Колос, 2007.–144с.
- 62. Флефель, Х.Э. Оценка концентрации тяжелых металлов fe, zn, cd и pb в природных водоисточниках / Х.Э. Флефель, М.О. Гутова, И.М. Донник, Ю.Г. Грибовский // Аграрный вестник Урала. 2019. No6(185). С. 44-47.

- 63. Чупров, С. М. Атлас бесчелюстных и рыб водоемов и водотоков Красноярского края / С. М. Чупров. – Красноярск – 2015. – 144с.
- 64. Annabi A., Said K., Messaoudi I. Cadmium: bioaccumulation, histopathology and detoxifying mechanisms in fish // American Journal of Research Communication, 2013, Vol 1 (4): pp. 60-79.
- 65. Aslam S., Yousafzai A. M. Chromium toxicity in fish: A review article // Journal of Entomology and Zoology Studies 5(3). 2017, pp. 1483-1488.
- 66. BurcuBaşyiğit, SeldaTekin-Özan / Concentrations of Some Heavy Metals in Water, Sediment, and Tissues of Pikeperch (Sander lucioperca) from Karataş Lake Related to Physico-Chemical Parameters, Fish Size, and Seasons // Pol. J. Environ. Stud. 2013. Vol. 22, p. 633-644.
- 67. Bury N.R., Walker P.A., Glover Ch. N. Nutritive metal uptake in teleost fish // J. Exp. Biol. 2003. V. 206. P. 11-23.
- 68. Gupta Preeti, Monika Vishwakarma, and Puspa M Rawtani. Assessment of Water Quality Parameters of Kerwa Dam for Drinking Suitability // International Journal of Theoretical & Applied Sciences 2009.1 (2): 53.
- 69. Gupta D P, Saharan J P Sunita, and J P Saharan. Physiochemical Analysis of Ground Water of Selected Area of Kaithal City (Haryana) India // Researcher, Vol. 1, No. 2, 2009, pp. 1-5.
- 70. Jezierska B., Witeska M. The metal uptake and accumulation in fish living in polluted waters. In: Soil and Water Pollution Monitoring, Protection and Remediation. Eds.: I. Twardowska et al., 2006, pp. 107-114.
- 71. Jia Y., Wang L., Qu Z., Wang C., Yang Z. Effects on heavy metal accumulation in freshwater fishes: species, tissues, and sizes // Environ Sci Pollut Res Int. 2017 Apr;24(10):9379-9386.
- 72. Kumar P., Singh A. Cadmium in fish: an overview // Bulletin of Biosciences 1(1), 2010, pp. 41-47.
- 73. Ololade I. A., Lajide L., Amoo I. A. and Oladoja N. A. Investigation of heavy metals contamination of edible marine seafood // African Journal of Pure and Applied Chemistry 2008. Vol. 2 (12), pp. 121-131.

- 74. Rowan, D.J., and J.B. Rasmussen. Bioaccumulation of radiocesium by fish: the influence of physicochemical factors and trophic structure // Can. J. Fish. Aquat. Sci. 1994. V. 51. P. 2388-2410.
- 75. Sundbom M., Meili M., Andersson E., Östlund M. and Broberg A. Longterm dynamics of Chernobyl ¹³⁷Cs in freshwater fish: quantifying the effect of body size and trophic level// Journal of Applied Ecology 2003. V.40. P. 228-240.
- 76. Trautmann S. Fission yeast Clp1p phosphatase regulates G2/ Mtransition and coordination of cytokinesis with cell cycle progression. /S. Trautmann [et al] //Curr.Biol. 2001. 11. –P. 931–940.
- 77. Yi Y.J., Zhangc H. The relationships between fish heavy metal concentrations and fish size in the upper and middle reach of Yangtze River // Procedia Environmental Sciences 2012. V.13. P.1699-1707.

Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования «СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Институт фундаментальной биологии и биотехнологии Кафедра водных и наземных экосистем

УТ	ВЕРЖ	ДАЮ
Зав	едую	ций кафедрой
		М.И. Гладышев
((>>	2024 г.

МАГИСТЕРСКАЯ ДИССЕРТАЦИЯ

Накопление тяжёлых металлов в тканях и органах щуки среднего течения реки Енисей 06.04.01 Биология

06.04.01.04 Гидробиология и ихтиология

Выпускник 49-21.06.24			Т. В. Фетисова
	иодпись, дата		инициалы, фамилия
Рецензент	.11	зав. лаб. гидробиологии,	
	Though 24.06.2	канд. биол. наук	Ю. К. Чугунова
V	подпись, дата	должность, ученая степень	инициалы, фамилия
Руководитель	.3		И. В. Зуев
	At 21.06.24	доцент, канд. биол. наук	Т. А. Зотина
	подпись, дата	должность, ученая степень	инициалы, фамилия