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Abstract. The paper formulates a model of axisymmetric flow of an ideal fluid with n effectively inviscid
vortex zones, generalizing the well-known model of M.A. Lavrentiev on the gluing of vortex and potential
flows in a plane case. The possibility is shown within the framework of such a model of the existence in
space of a liquid sphere streamlined around by a potential axisymmetric flow, consisting of n spherical
layers of axisymmetric vortex flows. This model example generalizes the spherical Hill vortex with one
vortex zone, known in hydrodynamics. Such a vortex flow with n spherical layers is also possible in a
sphere, and, unlike a flow in space, such a flow is not unique. The problem of an axisymmetric vortex
flow in a limited region is considered; its formulation generalizes the plane flow of an ideal fluid in a field
of Coriolis forces.
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Introduction. Setting of the problem

A large number of works and monographs are devoted to the study of vortex flows. The topic
of vortex flows is presented in every hydrodynamics course. The monographs by M. A.Gol’dshtik
"Vortex Flows" [1], M. A. Lavrentiev, B. V. Shabat "Problems of Hydrodynamics and Their Math-
ematical Models" [2] can be considered fundamental in this research area. The monographs
indicate various examples of vortex flows in nature and technology, present a study of prob-
lems of signifit scientific and practical interest, and formulate various mathematical problems for
research.

The paper examines one of them, related to the existence and non-uniqueness of axisymmetric
flows according to the scheme of M. A. Lavrentiev [1, 2] with n effectively inviscid vortex zones
in an unbounded and limited region.

The stationary vortex flow of an ideal incompressible fluid in the plane case is described by
the equation

∆Ψ =
∂Ψ(x, y)

∂x2
+

∂Ψ(x, y)

∂y2
= F (Ψ), vx =

∂Ψ

∂y
, vy = −∂Ψ

∂x
, (1)

LΨ(z, r) =
∂2Ψ(z, r)

∂z2
+

∂2Ψ(z, r)

∂r2
− 1

r

∂Ψ(z, r)

∂r
= H ′(Ψ)r2 − Γ′(Ψ)Γ(Ψ), (2)
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vr = −1

r

∂Ψ

∂z
, vz =

1

r

∂Ψ

∂r
in axisymmetric. Functions F (Ψ), H ′(Ψ), Γ(Ψ) are arbitrary functions

of the flow function Ψ[1]. Various approaches to defining the functions F (Ψ), H(Ψ), Γ(Ψ) when
solving specific problems are also available in [1].

The right-hand sides of equations (1), (2) determine the value of vorticity ω(x, y), ω(z, r).

When the vorticity is zero, the flow is potential.
Thus, equations (1), (2) of the motion of an ideal fluid in terms of the flow function make it

possible to study the motion of an ideal fluid with potential and vortex zones. With the natural
requirement of continuity of the velocity field, one should require the continuity of the first partial
derivatives of the flow function when passing through the common boundary of these zones.

It is important to note that equation (2) in the appropriate notation is called the Grad-
Shafranov equation [3] in plasma theory, on the basis of which tokamaks are calculated and
built.

The paper considers flows with effectively inviscid vortex zones, where it is assumed that the
flow of an ideal fluid is the limiting flow of a viscous fluid when the viscosity tends to zero. In this
case, the vorticity in the plane case is equal to a constant, in the axisymmetric case ω(z, r) = ω0r,
ω0 is a constant [1, 2, 4]. Respectively

∆Ψ(x, y) = ω0, LΨ(z, r) = ω(z, r)r = ω0r
2. (3)

In this case, the M.A. Lavrentiev scheme of plane flows with n vortex zones [1, 2, 5] for
axisymmetric flows with n effectively inviscid vortex zones in unbounded and bounded regions
can be formulated as follows: given a flow region D with a boundary Γ, numbers ωi, i = 1, . . . , n.

The value of the flow function Ψ(z, r) on the boundary Γ of the region D or its behavior at infinity
is specified. It is required to construct disjoint flow zones Di,

∪
Di = D and find in the region D

a continuously differentiable flow function Ψ(z, r), which in each zone Di satisfies the equation
LΨ = ωir

2. At all points of the boundaries Γi of zones Bi not belonging to the boundary Γ of
area D, it is equal to zero. The possibility of the existence of zones in which the values of ωi

coincide or ωi = 0 cannot be excluded. In the latter case, the flow in the zone Di is potential.
Note that, taking into account corrections associated with viscosity, M.A. Lavrentyev, using

a plane flow model with three flow zones in a deep trench (two vortex zones with constant
vorticities ±ω, and in the third — potential flow), substantiated the unacceptability burial of
radioactive residues in ocean depressions [1, 2].

The formulated problem with n vortex zones is nonlinear, and here an important role is played
by the consideration of model problems, the results of which can be used in the formulation and
solution of general problems. This will be seen when solving problem (31).

Let us formulate a simple property related to the geometry of zones Di and the signs of ωi.

Property 1. If the boundaries of the zones Di, Dj are zero streamlines and ωiωj > 0 then the
two zones have no common point which can be touched with circles both from the region Di and
the region Dj.

Let there be such a point M∗. Since the flow function Ψ(z, r) vanishes at the boundaries of
the zones Di, Dj , then in the case ωi > 0, ωj > 0 the function Ψ(z, r) at this point attains
its maximal value in the zones Di, Dj , for ωi < 0, ωj < 0 smallest. In such a situation, the
derivatives of the solution at the point M∗ along the external normals from the zones Di, Dj

are of the same sign [6], which contradicts the continuous differentiability of the solution when
passing through the common boundary of the zones.
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Using the known relation

L(r2U(z, r)) = r2L∗U(z, r), L∗U(z, r) =
∂2U(z, r)

∂z2
+

∂2U(z, r)

∂r2
+

3

r

∂U(z, r)

∂r
,

to obtain solutions to the equation LΨ = ω0r
2, in (3), it is convenient to pass to the equation

L∗U = ω0, after replacing Ψ(z, r) = r2U(z, r).

In the equation L∗U = ω0 it is already possible to look for a solution depending only on R

(R2 = r2 + z2), U(z, r) = U(R). In this case

L∗U(R) =
∂2U(R)

∂R2
+

4

R

∂U(R)

∂R
= ω0.

Its solution is the function

U(R) =
ω0

10
R2 +

c

R3
+ d, R ̸= 0, (4)

c, d — arbitrary constants. Note that
(

∂2

∂R2
+

4

R

∂

∂R

)
1

R3
= 0.

After returning to the function Ψ(z, r) = r2
(
ω0

10
R2 +

c

R3
+ d

)
we have a solution to the

equation L Psi(z, r) = ω0r
2.

For further purposes, let us formulate what can be verified by direct differentiation:

Property 2. Let Ψi = r2
(
ωi

10
R2 +

ci
R3

+ di

)
. If the constants ci, di, cj , dj are such that the

functions Ψi, Ψj vanish for R = a, then the condition for their continuous differentiability for
R = a is written in the form

1

10

(
2ωia− ci

a4

)
=

1

10

(
2ωja− cj

a4

)
.

1. Hill vortex with n vortex spherical layers

Let us consider the possibility of the existence in the entire space of an axisymmetric flow
with n vortex zones with a given geometry of the vortex zones: (D1 : R6a1, Di : ai−16R6ai,
a1 > 0, ai−1 < ai, i = 2, . . . , n). In the zone (Dn+1 : R > an, ωn+1 = 0) the flow is potential.

For a given flow case, the problem can be written in analytical form

LΨ(z, r) =


ω1r

2 if R < a1,

ωir
2 if ai−1 < R < ai, i = 2, . . . , n,

0 if R > an,

(5)

given that

Ψ|R=ai
= 0, i = 1, . . . , n, lim

R→∞

Ψ

r2
= A > 0. (6)

Given such a geometry of zones, according to Property 1, the signs of numbers ωi must alternate
if none of them is zero,

In accordance with (4), we look for a solution to problem (5), (6) in the form

Ψ(z, r) =



r2

10
ω1(R

2 − a21) if 0 6 R 6 a1,

r2

10
(ωiR

2 +
ci
R3

+ di) if ai−1 6 R 6 ai, i = 2, . . . , n,

Ar2(1− a3n
R3

) if R > an.
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Satisfying the boundary conditions (6) and the continuous differentiability of the solution
when passing through the boundaries of the zones, in accordance with Property 2, we obtain the
system

ωia
2
i−1 +

ci
a3i−1

+ di = 0, ωia
2
i +

ci
a3i

+ di = 0, i = 2, . . . , n, (7)

2ω1a1 = 2ω2a1 −
3c2
a41

, 2ωiai −
3ci
a4i

= 2ωi+1ai −
3ci+1

a4i
, i = 2, . . . , n− 1, (8)

2ωnan − 3cn
a4n

=
30A

an
. (9)

From (7–9)

ωi(a
2
i−1 − a2i ) + ci(

1

a3i−1

− 1

a3i
) = 0, i = 2, . . . , n− 1, (10)

c2 =
2(ω2 − ω1)

3
a51, ci+1 =

2

3
(ωi+1 − ωi)a

5
i + ci, c1 = 0, i = 2, . . . , n− 1, (11)

cn =
2ωn

3
a5n − 10Aa3n. (12)

From (11)

i∑
j=2

cj =
2

3

i∑
j=2

(ωj − ωj−1)a
5
j−1 +

i∑
j=2

cj−1, ci =
2

3

i∑
j=2

(ωj − ωj−1)a
5
j−1, i = 2, . . . , n. (13)

Let us prove a property of system (10), (11), which will be used further.

Property 3. If the signs ωi, i= 1, . . . , n, alternate, then ai−1= ti−1ai, i = 2, . . . , n 0 < ti−1<1

is a root of the equation

t4 + t3 + t2 + γi−1t+ γi−1 = 0, (γi−1 =
3ωi

2(ω̄i−1 − ωi)
), (14)

ω̄i = (1− t5i−1)ωi + t5i−1ω̄i−1, ω̄1 = ω1, ci =
2(ωi − ω̄i−1)

3
t5i−1a

5
i , i = 2, . . . , n, (15)

sign(ω̄i) = sign(ωi), i = 1, . . . , n. (16)

We assume i = 2. Considering ω̄1 = ω1, c2 =
2(ω2 − ω̄1)

3
a51, from (10)

ω2(a
2
1 − a22) +

2(ω2 − ω̄1)

3
a51(

1

a31
− 1

a32
) = 0.

Hence a1 = a2, or

ω2(a1 + a2) +
2(ω̄1 − ω2)

3
a21

a22 + a2a1 + a21
a32

= 0. (17)

d Equation (17) is homogeneous. Denoting t1 =
a1
a2

< 1, γ1 =
3ω2

2(ω̄1 − ω2)
, ω1 ̸= ω2, we obtain

an equation for finding the value t1

t4 + t3 + t2 + γ1t+ γ1 = 0. (18)

For the existence of a root 0 < t < 1 it is necessary γ1 < 0. From the resulting equation

γ1(t) = −(t3 + t− 1 +
1

t+ 1
), 0 6 t 6 1, γ1(0) = 0, γ1(1) = −3

2
< 0,

– 668 –



Isaak I. Vainshtein Axisymmetrical flow of an ideal liquid with effectively inviscosity . . .

γ′
1(t) = −(3t2 + 1− 1

(t+ 1)2
).

For t > 0, γ′
1(t) < 0, the function γ1(t) decreases monotonically as t > 0. Hence, for

−3

2
<

3ω2

2(ω̄1 − ω2)
< 0 (19)

equation (18) has a single root t1 on the interval (0,1). Note that inequality (19) is satisfied, if
ω1, ω2 have different signs. We got a1 = t1a2. For ω2 = ω1, equation (17) implies ω2 = 0, and
hence ω1 = 0, or a2 = a1. Zones D1, D2 are combined into one — the number of zones with such
geometry should be reduced by one when setting the problem.

For what follows we set i = 3. From relation (13) it follows

c3 =
2

3
(ω3 − ((1− t51)ω2 + t51ω̄1))a

5
2 =

2

3
(ω3 − ω̄2)a

5
2.

From (17), similarly to the case i = 2, we obtain equation (14) with γ2 =
3ω3

2(ω̄2 − ω3)
.

Let us show that sign(ω̄2) = sign(ω2). Let’s write it down

sign(ω̄2) = sign(λ(t1)(1− t51) + t51)sign(ω̄1), λ(t1) =
ω2

ω̄1
=

2γ1
3 + 2γ1

. (20)

From equation (14) with γi−1 = γ2 we express γ2 and after substitution into (20)

λ(t1)(1− t51) + t51 =
2(t41 + t31 + t21)

2(t41 + t31 + t21)− 3t1 − 3
(1− t51) + t51 = −t21

3t31 + 6t21 + 4t1 + 2

2t31 + 4t21 + 6t1 + 3
< 0.

We got sign(ω̄2)=−sign(ω̄1)=−sign(ω1)=sign(ω2). Since ω1, ω2 by assumption have different
signs. This implies that inequality (19) holds for ω3, ω2 of different signs. Then a2 = t2a3.

Increasing i successively by one, similar to the previous one, we obtain ai−1 = ti−1ai and

ci =
2(ωi − ω̄i−1)

3
a5i−1 =

2(ωi − ω̄i−1)

3
t5i−1a

5
i , sign(ω̄i) = sign(ωi).

Let us return to the problem under consideration (5), (6). Let in some zone Di, ωi = 0, and
in the zone Di−1, ωi−1 ̸= 0, i = 2, 3, . . . , n, The function Ψ(z, r) and its partial derivatives in the
zone Di are identically equal to zero, which contradicts the inequality of the normal derivative
from the zone Di−1 to zero at points R = ai−1 of the common boundary of the zones Di−1, Di,

since the function Ψ(z, r) in the zone Di−1 at boundary points R = ai−1 takes either the largest or
smallest value, depending on the sign of ωi−1[6]. Further continuing these arguments, successively
decreasing the index i, and then successively increasing it, we arrive at all ωi = 0, i = 1.2, . . . , n.

Thus, a flow with the considered geometry of vortex zones cannot have a single internal zone
with potential flow, and the alternation of signs of ωi in zones Di is a necessary condition for
the existence of a solution to the problem under consideration.

Let the signs of ωi alternate in the statement of the problem. Substituting cn =
2(ωn − ω̄n−1)

3
t5n−1a

5
i (Property 3) into (12 ), we obtain the equation for finding an

ω̄na
2
n = 15A, ω̄n = (1− t5n−1)ωn + t5n−1ω̄n−1.

Requiring ωn > 0, in the problem statement by Property 3, we obtain sign(ω̄n) = sign(ωn) > 0.
Then

an =

√
15A

(1− t5n−1)ωn + t5n−1ω̄n−1
.
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Next, ai are determined inversely through an, ai−1 = ti−1ai, i = n, n− 1, . . . , 2.

Note that if ωn > 0, is required, ω1 must be less than zero when n is even and ω1 > 0 when
n is odd.

Thus, we have obtained that in space, within the framework of an ideal fluid, it is possible
to move a liquid sphere of radius an, streamlined around by a potential flow, inside which there
are n vortex zones with vorticities ωir, with alternating signs ωi, at ωn > 0.

Let us write down the solution to problem (5), (6) (the signs of ωi alternate, ωn > 0).

Ψ(z, r) =



r2

10
ω1

(
R2 − a21

)
if 0 6 R 6 a1,

r2

10
ωi

(
R2 − a2i

)
+

2(ωi − ω̄i−1)

3
t5i−1a

5
i

(
1−

(
a1
R

)3)
if ai−1 6 R 6 ai, i = 2, . . . , n,

Ar2
(
1− a3n

R3

)
if R > an.

For n = 1 (one vortex zone with ω > 0) we have the spherical Hill vortex, known in hydro-
dynamics [7], in plasma theory after "spherical plasmoid" [8]

Ψ(z, r) =

 ωr2(R2
0 −R2) if 0 6 R 6 R0,

Ar2
(
1− R3

0

R3

)
if R > R0,

R0, ω, A are related by the relation ω =
15A

R2
0

. The Hill vortex represents a liquid sphere moving

in the direction of the OZ axis in a potential flow around it with a speed of A
2 at infinity, inside

which there is a vortex motion with a vorticity of ωr. It was shown in [9] that in the vicinity
of the spherical Hill vortex there is no other axisymmetric vortex with one vortex zone, which
differs little from it.

Note that the resulting solution to problem (5), (6) describes a natural axisymmetric gener-
alization of the Hill vortex with n vortex zones. This structure of the vortex flow can be called
a composite spherical Hill vortex.

Let us write the flow function for a composite Hill vortex with two vortex zones (ω1<0, ω2>0)

Ψ(z, r) =



ω1

10
r2(R2 − a21) if R 6 a1,

r2

10
ω2(R

2 − a22) +
3(ω2 − ω1)

2
a51

(
1− a32

R3

)
if a1 6 R 6 a2,

Ar2
(
1− a32

R3

)
if R > a2,

a2 =

√
15A

((1− t51)ω2 + t51ω1)
, a1 = a2t1 =

√
15A

((1− t51)ω2 + t51ω1)
t1. (21)

It is important to note that we wrote the general problem of axisymmetric flow in space with
n vortex zones in analytical form for a specific particular case of the geometry of vortex zones in
the form of spherical layers, assigning each zone its own vorticity from a given set of vorticities
ωir. Since the existence of such a solution requires only that the vorticities alternate signs in
adjacent zones (the numerical values of ωi determine the radii of the layers) and ωn > 0, then

the specified ωi must have
n

2
positive and

n

2
negative ωi, if n is even, and

n+ 1

2
positive,

n− 1

2
negative ωi, if n is odd.
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Thus, given a set of vorticities with the properties specified above, there is the possibility of

the existence of
(n
2

)
!
(n
2

)
! in space if n is even and

(n− 1

2

)
!
(n+ 1

2

)
! if n is odd, composite

Hill vortices with n vortex zones in the form of spherical layers.
Let us note an interesting fact that, along with the composite Hill vortex with two vortex

zones at ω1 < 0, ω2 > 0 of radius a2 (21), there is a Hill vortex with the same radius a2, but
with one vortex zone with vorticity ω(z, r) =

(
(1− t51)ω2 + t51ω1

)
r with the same value A.

Let’s consider the inverse problem. Given a Hill vortex with a given value A and one vortex
zone of radius R0. It is required to find a composite Hill vortex with two vortex zones with the
same values R0, A.

In accordance with (21), we arrive at the problem of finding the numbers ω1 < 0, ω2 > 0

satisfying the relation

(1− t5)ω2 + t5ω1 = ω =
15A

R2
0

, 0 < t < 1,

where t is an implicit function of ω1, ω2, given by equation (18) with γ1 =
3ω2

2(ω1 − ω2)
.

From γ1 =
3ω2

2(ω1 − ω2)
we write ω2 =

2γ

3 + 2γ1
ω1, and then from (1 − t5)ω2 + t51ω1 = ω, we

get

ω1 =
3 + 2γ1
2γ1 + 3t5

ω, ω2 =
2γ1

2γ1 + 3t5
ω, ω =

15A

R2
0

. (22)

From equation (18) we find γ1 = − t4 + t3 + t2

t+ 1
, and after substitution into (22), we find

ω2 =
−2(t2 + t+ 1)

(t− 1)(3t3 + 6t2 + 4t+ 2)
ω > 0, ω1 = − 2t3 + 4t2 + 6t+ 3

(3t3 + 6t2 + 4t+ 2)t2
ω < 0, 0 < t < 1.

Next, setting t, 0 < t < 1, arbitrarily, we find ω1, ω2, and then using formulas (21) for t1 = t

the values a1, a2. By construction a2 = R0. Note that due to the arbitrariness of the value of
t, 0 < t < 1, the inverse problem under consideration has an infinite number of solutions.

2. Flow in a sphere with vortex spherical layers

Let us consider the possibility of axisymmetric flow in a sphere of radius R0 with a given
geometry of n vortex zones in the form of spherical layers (D1 : R 6 a1, Di : ai−1 6 R 6 ai,

i = 2, . . . , n) and with one selected zone (Dn+1 : an 6 R 6 R0), adjacent to the boundary
R = R0, only in which vorticity can become zero, i.e. the flow may be potential. This flow
design for ωn+1 = 0 is an analogue of a composite Hill vortex in a sphere.

Just as in point 1. the problem can be written in analytical form

LΨ(z, r) =


ω1r

2 if R < a1,

ωir
2 if ai−1 < R < ai, i = 2, . . . , n,

ωn+1r
2 if an < R < R0,

given that

Ψ|R=ai = 0, i = 1, . . . , n, Ψ|R=R0 = A > 0. (23)
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In accordance with (4), we look for a solution to the problem in the form

Ψ(z, r) =



r2

10
ω1(R

2 − a21), 0 6 R 6 a1,

r2

10
(ωiR

2 +
ci
R3

+ di), ai−1 6 R 6 ai, i = 2, . . . , n,

r2

10

(
ωn+1(R

2 − a2n) +
(10A− ωn+1(R

2
0 − a2n))R

3
0

(R3
0 − a3n)

(
1− a3n

R3

))
, an 6 R 6 R0.

Here, the boundary conditions are satisfied in the zone D1 with R = a1, in the zone Dn with
R = an, in the zone Dn+1 with R = an, R = R0. Satisfying the remaining boundary conditions
(23) and the continuous differentiability of the solution when passing through the boundaries of
the zones, we obtain system (10–12), in which equation (12) should be replaced by the equation

1

10

(
2ωnan − 3cn

a4n

)
=

1

10

(
2ωn+1an +

3R3
0(10A− ωn+1(R

2
0 − a2n))

(R3
0 − a3n)an

)
. (24)

In accordance with Property 3, the signs of ωi must alternate and an−1 = tn−1an, cn =
2(ωn − ω̄n−1)

3
t5n−1a

5
n. Taking this into account, from (24) the equation for determining the value

of an follows

a5n −R3
0a

2
n

(
1− 3ωn+1

2(ω̄n − ωn+1)

)
+

3R3
0(10A− ωn+1R

2
0)

2(ω̄n − ωn+1)
= 0. (25)

We set ωn > 0, ωn+1 6 0. Then ω̄n > 0 and
3R3

0(10A− ωn+1R
2
0)

2(ω̄n − ωn+1)
> 0. Consider the function

f(an) = a5n −R3
0a

2
n

(
1− 3ωn+1

2(ω̄n − ωn+1)

)
+

3R3
0(10A− ωn+1R

2
0)

2(ω̄n − ωn+1)
.

We have f(0) > 0, f(R0) > 0. At point a∗n =

(
2

5

(
1 − 3ωn+1

2(ω̄n − ωn+1)

)) 1
3

R0, f ′(a∗n) = 0. It is

checked that if ωn, ωn+1 have different signs, then 0 <

(
2

5

(
1− 3ωn+1

2(ω̄n − ωn+1)

)) 1
3

R0 < R0 and

f ′′(a∗n) > 0. So at point a∗n the function f(an) has a minimum.
Demanding f(a∗n) 6 0, we obtain the condition under which equation (25) on the interval

0 < an < R0 has a root (in the case of a strict inequality, there are two roots)

10A

R2
0

6 2(ω̄n − ωn+1)

3

(3
5

(2
5

) 2
3

(1− γn)
5
3 + γn

)
, γn =

3ωn+1

2(ω̄n − ωn+1)
. (26)

From Property 3. it follows −3

2
< γn < 0.

On the interval (− 3
2 , 0) the function F (γn) =

3

5

(2
5

) 2
3

(1−γn)
5
3 +γn is positive, monotonically

increasing and 0 < F (γn) <
3

5

(2
5

) 2
5

, F
(
− 3

2

)
= 0, F (0) =

3

5

(2
5

) 2
5

. Taking into account that
ω̄n − ωn+1 > 0, we found that the right part of the inequality in (26) is greater than zero.

Note that the right-hand side of condition (26) does not depend on A and R0, therefore
condition (26) is satisfied. In the case of strict inequality in condition (26), there are two solutions.
If condition (26) is not met, there is no solution.
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Let us write down condition (26) when in the zone Bn+1, adjacent to the boundary of the
ball R = R0, the flow is potential (ωn+1 = 0)

A

ω̄nR2
0

6 1

25

(2
5

) 2
3

.

Let us write down the solutions to the problem (ωn > 0, ωn+1 6 0, signs of ωi, i 6 n alternate)

Ψ(z, r) =



r2

10
ω1(R

2 − a21), 0 6 R 6 a1,

r2

10
ωi(R

2 − a2i ) +
2(ωi − ω̄i−1)

3
t5i−1a

5
i

(
1−

(a1
R

)3)
, ai−1 6 R 6 ai, i = 2, . . . , n,

r2

10
ωn+1(R

2 − a2n) +
(10A− ωn+1(R

2
0 − a2n))R

3
0

(R3
0 − a3n)

(
1− a3n

R3

)
, an 6 R 6 R0,

ai−1 = t5i−1an, ti−1 — root of equation (14), corresponding to the i − 1 zone, an — root of
equation (25).

Let us note an interesting fact: if a flow with a given number of vortex zones in space exists,
for example, a composite spherical Hill vortex, and in it the geometry of the layers is determined
uniquely, then a similar flow in the sphere does not always exist, and if it does exist, then two
different geometries are possible spherical layers.

Let us consider the possibility of the existence of two zones at ω1 6 0, ω2 > 0. We will need
this model example later. For this case, equation (25) for finding the value a1 takes the form

f(a1) = a51 −R3
0a

2
1

(
1− 3ω2

2(ω1 − ω2)

)
+

3R3
0(10A− ω2R

2
0)

2(ω1 − ω2)
= 0 (27)

We have f(0)=
3R3

0(10A−ω2R
2
0)

2(ω1−ω2)
, f(R0)=

15R3
0A

(ω1−ω2)
<0. At point a∗1=

(2
5

(
1− 3ω2

2(ω1− ω2)

)) 1
3

R0

its only extremum is the minimum, since f ′′(a∗1) =
6ω1 − 15ω2

ω1 − ω2
> 0. And only for f(0) > 0 does

equation (27) have a root on the interval (0, R0), and this root is unique. The condition f(0) > 0

is satisfied for ω2 >
10A

R2
0

. For ω1 = 0 in each meridian plane in the zone R 6 a∗1 the flow function

Ψ(z, r) is identically equal to zero.

We found that in a sphere with ω2 >
10A

R2
0

it is possible for two vortex zones with ω1 6 0,

ω2 > 0, and zones with the considered geometry are calculated uniquely.
It is obvious that problem (5), (6) for ωn > 0, ωn+1 = 0 is a generalization of the problem of

M.A. Gol’dshchik [1, 10] in M. A. Lavrentiev scheme of plane flow of an ideal fluid in the model
case of an axisymmetric flow with n+ 1 vortex zones.

For ω1 6 0, ω2 > 0 its formulation is an extension of the problem of plane motion of an
ideal fluid in the field of Coriolis forces [1, 11] to the axisymmetric case, as well as on the model
principle.

3. Vortex flows in an arbitrary limited axisymmetric region

Let D be an arbitrary bounded region adjacent to the axis r = 0 in variables z, r, r > 0. Its
boundary Γ consists of a smooth curve σ in the upper half-plane r > 0 and the segment [α, β] of
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the axis z = 0, α < 0, β > 0. The curve σ adjoins the points α, β at angles different from zero
and π respectively. Let us write the boundary condition for the flow function

Ψ|Γ = φ(s)r2 > 0. (28)

Since the flow region and boundary function are arbitrary, assumptions about the geometry of
vortex zones, as was done for flow in a sphere or in all space, are problematic. In this regard,
at the first stage a difficult problem arises in the analytical formulation of the problem. It is
natural to begin the study for a flow with two vortex zones.

For the analytical formulation of the problem in this case, the formulation of two dual prob-
lems by M. A.Gol’dshtik [1, 11] is well suited. This has already been discussed when constructing
flows in a sphere. Thus, in a flat bounded domain D, it is required to find continuously differen-
tiable solutions to problems (ω1 > 0, φ(s) > 0)

∆Ψ(x, y) =

{
ω1 if Ψ < 0,

0 if Ψ > 0,
∆Ψ(x, y) =

{
ω1 if Ψ > 0,

0 if Ψ 6 0,
Ψ|S = φ(s) > 0. (29)

They define flows with two zones, vortex and potential.
In accordance with these problems, to obtain a flow with two vortex zones in the axisymmetric

case, we come to two also dual problems, written in analytical form (ω1 > 0, ω2 6 0)

LΨ(x, y) =

{
ω1r

2 if Ψ < 0,

ω2r
2 if Ψ > 0,

Ψ|Γ = φ(s)r2 > 0, (30)

LΨ(x, y) =

{
ω1r

2 if Ψ > 0,

ω2r
2 if Ψ < 0,

Ψ|Γ = φ(s)r2 > 0. (31)

Let’s consider problem (30). A function Ψ0(z, r) satisfying the equation LΨ0(z, r) = ω2r
2

and boundary condition (30) in the domain D is positive in the domain D, and therefore is trivial
solution to this problem. At ω2 = 0 the flow is potential in the entire region D, at ω2 < 0 the
entire region D is a vortex zone. In [12], the existence of a nontrivial solution was proven.

Let us observe that the possibility of the existence of a second nontrivial solution with two
vortex zones, which exists in a model problem in a sphere, is a difficult, independent mathematical
problem. For the plane case with ω2 = 0, the existence of a nontrivial solution (flow with a vortex
and potential zone) was proven in [10, 13, 14], and the existence of a second nontrivial solution
in [5, 15]. For ω2 ̸= 0 the existence of a nontrivial solution was proven in [16].

Let’s consider problem (31). Note that its solution cannot take negative values in the region
D. We assume that at some point M∗ ⊂ D, Ψ(M∗) < 0. From the boundary condition in (31)
it follows that there is a subdomain D∗ ⊂ D on the boundary of which Ψ∗ = 0 , and inside it
LΨ(z, r) = ω2r

2 6 0. Hence Ψ > 0 in D∗. We obtain a contradiction.
From problem (31) we move on to the problem: we need to find a continuously differentiable

non-negative solution to the problem

LΨ(z, r) = ω1r
2 if Ψ(z, r) > 0, Ψ|Γ = r2φ(s) > 0. (32)

To construct a solution to the problem LΨ(z, r) = ωr2f(z, r), Ψ|Γ = r2φ(s) it is conve-
nient to go to the variables z = ξ, r = 2

√
t, after which LΨ(z, r) = SΨ = tΨtt + Ψξξ =

4ωtf(ξ, 2
√
t), L∗U(z, r) = S∗U = tUtt + Uξξ + 2Ut = ωf(ξ, 2

√
t). In the variables ξ, t we ob-

tained the equations (S(tU) = tS∗U) degenerate on the boundary of the region at t = 0, which
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are well studied in [17–19]. For example, for the equation SΨ = 0 the usual formulation of the
Dirichlet problem is correct, for the equation S∗U = 0 for the considered domain D the modified
formulation is correct — the solution is specified only on the curve σ and the solution is sought
in class of functions bounded at r → 0 [17]. Note that in the case under consideration such a
solution is continuous up to r = 0 and extreme values are reached at σ[19].

For the operator L∗ there is a fundamental solution[20]

E(z, r, z1, r1) =
4

π

∫ π

0

[(z − z1)
2 + r2 + r21 − 2rr1 cosβ]

− 3
2 sin2 βdβ,

which has a logarithmic singularity for r, r1 > 0

E(z, r, z1, r1) = − 2

π
(rr1)

− 3
2 ln((z − z1)

2 + (r − r1)
2) + Φ(z, r, z1, r1),

Φ(z, r, z1, r1) is a regular function.
Using Green’s formula [18, 19] with v = W, u = rG(z, z1, r, r1)∫∫

D

(uSv − vS∗u)dξ1dt1 =

∮
Γ

(vuξ1 − vξ1u)dt1 − (t1vut1 − t1vt1u− vu)dξ1,

we obtain a representation of the solution to the problem LW (z, r) = ωr2f(z, r), W |Γ = 0 in
the form

W (z, r) = −ω

8
r2

∫∫
D

r31f(z1, r1)G(z, z1, r, r1)dz1dr1. (33)

Here G(z, z1, r, r1) is the Green’s function for the problem L∗U = ωf(z, r), U |σ = φ(s) (the
solution is bounded for r → 0), which is standardly constructed using the fundamental solution
E(z, r, z1, r1). G(z, z1, r, r1) = E(z, r, z1, r1) − G1(z, z1, r, r1), where G1(z, z1, r, r1) in variables
ξ1 ̸= ξ, t1 ̸= t solution of problem S∗G1 = 0, G|σ = −E|σ bounded at t1 → 0 . From the
above extremum principle for the equation S∗U = 0 it follows that for z ̸= z1, r ̸= r1 the Green’s
function G(z, z1, r, r1) > 0 in D

∪
(α, β),

It is important to note that function (33) has all the properties of a logarithmic potential in
the D domain, since the Green’s function by construction has a logarithmic singularity inside
the D domain.

Let’s return to problem (32).
To prove the existence of a solution to this problem that goes to zero at points in the region

D, consider the sequence of problems

LΨn(z, r) = ω1r
2th(nΨn(z, r)), Ψn|Γ = r2φ(s) > 0. (34)

Just as before, it is easy to show that Ψn > 0.

Problem (34) is equivalent to the integral equation

Ψn(z, r) = −ω1

8
r2

∫∫
D

r31th(nΨn(z1, r1))G(z, z,r, r1)dz1dr1 +Ψ0(z, r). (35)

Similarly [1, 11, 12], taking into account the properties of the integral (33) with the introduced
Green’s function as a logarithmic potential, using Schauder’s theorem, we establish the existence
for each n > 0 of a solution Ψn > 0 continuous in D of the integral equation (35), and by
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Arzel’s theorem, the compactness of the sequence of solutions Ψn(z, r) in the space of functions
continuously differentiable in the domain D. Note that the solution to problem (34) is unique,

which follows from
∂th(nΨn)

∂Ψn
=

n

ch2(nΨn)
> 0. Let the subsequence Ψnk

(z, r) converge to a

continuously differentiable function Ψ(z, r) > 0.

Further, repeating the proof from [1, 11, 12], it is established that the limit function is a
solution to problem (34)

Here it is taken into account that for the right side of the equation in (34)

lim
nk→∞

th(nkΨnk
(z, r)) = 1 if Ψ(z, r) > 0.

Let us obtain the condition under which the resulting solution goes to zero in the region D.
Under the assumption that Ψ(z, r) > 0 at all points of the region D, it follows from equation (35)

Ψ(z, r) = Ψ0(z, r)−
ω1

8
r2

∫∫
D

r31G(z, r, z1, r1)dz1r1. (36)

Let D0 be a semicircle (r > 0) of the largest radius R0 that can be inscribed in the region D

(we can assume that its center is at the origin of coordinates z = 0, r = 0) and C = max(φ(s)r2).
For the model case D = D0, r2φ(s) = Cr2 in the second paragraph, if we go to the notation

of problem (31), redesignating ω2 by ω1, ω1 on ω2, it is found that if the inequality ω1 >
10C

R2
0

is

satisfied, the problem (31) under consideration has a solution ΨD0
(z, r), which in the semicircle

Da ⊂ D0, r2 + z2 6 a2, r > 0, a < R0 is identically equal to zero, and in D0 \ Da is greater
than zero. The value a is the root of equation (27) at A = C, ω1 = 0.

The function ΨD0
(z, r) for this case can be written as

ΨD0
(z, r) = C − ω1

8
r2

∫∫
D0\Da

r31GR0
(z, r, z1, r1)dz1r1.

GR0
(z, r, z1, r1), the Green’s function introduced in the work for the region D0.
Let us represent the function Ψ(z, r) (36) in Da in the form

Ψ(z, r) = (Ψ0(z, r)− C) +

(
C − ω1

8
r2

∫∫
D0\Da

r31GR0
(z, r, z1, r1)dz1r1

)
+

+
ω1

8
r2

∫∫
D0\Da

r31
(
GR0

(z, r, z1, r1)−G(z, r, z1, r1)
)
dz1dr1−

− ω1

8
r2

∫∫
D\D0

r31G(z, r, z1, r1)dz1dr1 −
ω1

8
r2

∫∫
Da

r31G(z, r, z1, r1)dz1dr1.

(37)

In the circle Da, the expression in the second bracket of equality (37) is equal to zero, the
remaining terms on the right side are negative. So, the function Ψ(z, r) is negative in Da ⊂ D,
which contradicts the assumption that it is positive in the entire domain D. We found that for

ω1 >
10C

R2
0

the function Ψ(z, r) goes to zero in the domain Da ∈ D.

Further, similarly to works [1, 11, 12], it is possible to prove that the problem (31) under
consideration has a unique solution and under the condition that the boundary set σ on which
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the boundary function φ(s) is nonzero is connected , the set on which the solution is positive is
a region.

Thus, it was established that with ω1 >
10C

R2
0

and with the above requirement on the boundary

function φ(s), in the region D a flow is possible, which in some region vortex with vorticity ω1r,
and in addition to it the flow function Ψ(z, r) equals zero - the fluid is motionless.

Note that in the work the problem of the possibility of the existence of vortex axisymmetric
flows in a limited area was considered with only two vortex zones. Therefore, it is natural to
continue the study of the existence of flows with n (n > 2) vortex zones with questions of their
non-uniqueness, which occurs with model flows in a sphere.

References

[1] M.A.Gol’dshtik, Vortex flows, Novosibirsk, Science, 1981.

[2] M.A.Lavrentyev, B.V.Shabat, Problems of hydrodynamics and their mathematical models,
Moscow, Science, 1973.

[3] K.V.Braginsky, V.V.Savelyev, Magnetic traps for plasma confinement, Mathematical model-
ing, 11(1999), no. 5, 3–36.

[4] G.K.Bathelor, A proposal conserning laminar wakes behind bluff bodies at large Reynolds
humbers, J. Fluid Mech., 1(1956), no. 4, 388–398.

[5] I.I.Vainshtein, Solution of two dual problems on gluing vortex and potential flows us-
ing the variational method of M.A.Gol’dshtik, J. Sib. Fed. Univ. Math. Phys., (2011),
no. 4(3),320–331.

[6] R.Kurant, Partial differential equations, Moscow, World Soc., 1964.

[7] M.Thompson, Theoretical hydrodynamics, Moscow, World, 1964.

[8] V.D.Shafranov, On Magnetohydrodynamical Equilibrium Configurations, Journal of Exper-
imental and Theoretical Phisics, (1958), no. 3.

[9] I.I.Vainshtein, On a boundary value problem of vortex and potential flows of an ideal fluid
in the axisymmetric case, Differential equations, 6(1970), no. 1, 109–122.

[10] M.A.Gol’dshtik, Mathematical model of separated flows of incompressible fluid, Reports of
the USSR Academy of Sciences, 147(1962), no. 6, 1310–1313.

[11] I.I.Vainshtein, M.A.Gol’dshtik, On the motion of an ideal fluid in the field of Coriolis forces,
Reports of the USSR Academy of Sciences, 173(1967), no. 6, 1277–1280.

[12] I.I.Vainshtein, I.M.Fedotova, Goldshtik problem on gluing vortex flows of an ideal fluid in
the axisymmetric case, Bulletin of the Siberian State University named after Academician
M.F.Reshetnev, 3(1914), no. 55, 48–54.

[13] S.N.Antontsev, V.D.Lelyukh, Some problems of coupling vortex and potential subsonic
flows, Dynamics of a continuous medium, (1969), no. 1, 134–153.

– 677 –



Isaak I. Vainshtein Axisymmetrical flow of an ideal liquid with effectively inviscosity . . .

[14] P.I.Plotnikov, On the solvability of one class of problems on gluing potential and vortex
flows, Dynamics of a continuous medium, (1969), no. 3, 61–69.

[15] D.K.Potapov, On the number of solutions for one class of elliptic type equations with a spec-
tral parameter and discontinuous nonlinearity, Far Eastern Mathematical Journal, 12(2012),
no. 1, 86–88.

[16] I.I.Vainshtein, V.K.Yurovsky, On a problem of conjugation of vortex flows of an ideal fluid,
Journal of Applied Mechanics and Technical Physics, (1976), no. 5, 98–100.

[17] M.V.Keldysh, On some cases of degeneration of equations of elliptic type on the boundary
of a domain, Report of the USSR Academy of Sciences, 77(1951), no. 2, 181–183.

[18] S.A.Tersenov, On the theory of equations of elliptic type that degenerate on the boundary
of the domain, Sib. math. journal, 3(1973), no. 6, 1120–1143.

[19] I.L.Karol, On the theory of boundary value problems for equations of mixed elliptic-
hyperbolic type, Mathematical collection, 38(1956), no. 80, 261–282.

[20] A.Weinshtein, Jeneral Axially Simmetric Patenial teory, Bulletin of the Amer. Math.Sosiety,
59(1953), no. 1.

Осесимметрические потоки идеальной жидкости
с эффективно невязкими вихревыми зонами

Исаак И. Вайнштейн
Сибирский федеральный университет

Красноярск, Российская Федерация

Аннотация. В работе сформулирована модель осесимметрического течения идеальной жидкости
с n эффективно невязкими вихревыми зонами, обобщающая известную модель М.А.Лаврентьева
о склейке вихревых и потенциальных течений в плоском случае. Показана возможность в рамках
такой модели существования в пространстве жидкой сферы, обтекаемой потенциальным осесим-
метрическим потоком, состоящей из n шаровых слоев осесимметрических вихревых течений. Этот
модельный пример обобщает известный в гидродинамике сферический вихрь Хилла с одной вих-
ревой зоной. Такое вихревое течение с n шаровыми слоями также возможно и в сфере, причем
в отличие от течения в пространстве, такое течение неединственно. Рассмотрена задача об осе-
симметрическом вихревом течении в ограниченной области, по постановке обобщающая плоское
течение идеальной жидкости в поле кориолисовых сил.

Ключевые слова: идеальная жидкость, вихревые течения, сферический вихрь Хилла.
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