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Abstract. The paper formulates a model of axisymmetric flow of an ideal fluid with n effectively inviscid
vortex zones, generalizing the well-known model of M. A. Lavrentiev on the gluing of vortex and potential
flows in a plane case. The possibility is shown within the framework of such a model of the existence in
space of a liquid sphere streamlined around by a potential axisymmetric flow, consisting of n spherical
layers of axisymmetric vortex flows. This model example generalizes the spherical Hill vortex with one
vortex zone, known in hydrodynamics. Such a vortex flow with n spherical layers is also possible in a
sphere, and, unlike a flow in space, such a flow is not unique. The problem of an axisymmetric vortex
flow in a limited region is considered; its formulation generalizes the plane flow of an ideal fluid in a field
of Coriolis forces.
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Introduction. Setting of the problem

A large number of works and monographs are devoted to the study of vortex flows. The topic
of vortex flows is presented in every hydrodynamics course. The monographs by M. A. Gol’dshtik
"Vortex Flows" [1], M. A. Lavrentiev, B. V. Shabat "Problems of Hydrodynamics and Their Math-
ematical Models" [2] can be considered fundamental in this research area. The monographs
indicate various examples of vortex flows in nature and technology, present a study of prob-
lems of signifit scientific and practical interest, and formulate various mathematical problems for
research.

The paper examines one of them, related to the existence and non-uniqueness of axisymmetric
flows according to the scheme of M. A. Lavrentiev [1,2] with n effectively inviscid vortex zones
in an unbounded and limited region.

The stationary vortex flow of an ideal incompressible fluid in the plane case is described by

the equation
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10V 10V
v, = ———, v, = ——— in axisymmetric. Functions F'(¥), H'(¥), ['(¥) are arbitrary functions

of the ﬂgv??unctionTW[ﬁ. Various approaches to defining the functions F'(¥), H (), I'(¥V) when
solving specific problems are also available in [1].

The right-hand sides of equations (1), (2) determine the value of vorticity w(z,y), w(z,r).
When the vorticity is zero, the flow is potential.

Thus, equations (1), (2) of the motion of an ideal fluid in terms of the flow function make it
possible to study the motion of an ideal fluid with potential and vortex zones. With the natural
requirement of continuity of the velocity field, one should require the continuity of the first partial
derivatives of the flow function when passing through the common boundary of these zones.

It is important to note that equation (2) in the appropriate notation is called the Grad-
Shafranov equation [3] in plasma theory, on the basis of which tokamaks are calculated and
built.

The paper considers flows with effectively inviscid vortex zones, where it is assumed that the
flow of an ideal fluid is the limiting flow of a viscous fluid when the viscosity tends to zero. In this
case, the vorticity in the plane case is equal to a constant, in the axisymmetric case w(z,r) = wor,
wp is a constant [1,2,4]. Respectively

AV (z,y) = wo, LY(z,7)=w(z,r)r=wer?. (3)

In this case, the M. A.Lavrentiev scheme of plane flows with n vortex zones [1,2,5| for
axisymmetric flows with n effectively inviscid vortex zones in unbounded and bounded regions
can be formulated as follows: given a flow region D with a boundary I', numbers w;, i = 1,...,n.
The value of the flow function ¥(z, ) on the boundary T" of the region D or its behavior at infinity
is specified. It is required to construct disjoint flow zones D;, | J D; = D and find in the region D
a continuously differentiable flow function ¥(z,r), which in each zone D; satisfies the equation
LU = w;r?. At all points of the boundaries I'; of zones B; not belonging to the boundary I' of
area D, it is equal to zero. The possibility of the existence of zones in which the values of w;
coincide or w; = 0 cannot be excluded. In the latter case, the flow in the zone D; is potential.

Note that, taking into account corrections associated with viscosity, M. A. Lavrentyev, using
a plane flow model with three flow zones in a deep trench (two vortex zones with constant
vorticities +w, and in the third — potential flow), substantiated the unacceptability burial of
radioactive residues in ocean depressions [1,2].

The formulated problem with n vortex zones is nonlinear, and here an important role is played
by the consideration of model problems, the results of which can be used in the formulation and
solution of general problems. This will be seen when solving problem (31).

Let us formulate a simple property related to the geometry of zones D; and the signs of w;.

Property 1. If the boundaries of the zones D;, D; are zero streamlines and w;w; > 0 then the
two zones have no common point which can be touched with circles both from the region D; and
the region D;.

Let there be such a point M*. Since the flow function ¥(z,r) vanishes at the boundaries of
the zones D;, Dy, then in the case w; > 0, w; > 0 the function ¥(z,r) at this point attains
its maximal value in the zones D;, D;, for w; < 0, w; < 0 smallest. In such a situation, the
derivatives of the solution at the point M* along the external normals from the zones D;, D;
are of the same sign [6], which contradicts the continuous differentiability of the solution when
passing through the common boundary of the zones.
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Using the known relation
02U (z,7)  0%U(z,r)  30U(z,7)

022 + or? t or
to obtain solutions to the equation LY = wyr?, in (3), it is convenient to pass to the equation
L*U = wy, after replacing ¥(z,r) = r2U(z,r).

In the equation L*U = wy it is already possible to look for a solution depending only on R
(R? =r%+2%), U(z,7) = U(R). In this case

_PPU(R)  40U(R)

L(r’U(z,r)) = r*L*U(z,r), L*U(z,r) =

L*U(R = = wp.
W =38 "R or

Its solution is the function

_Yop2y ©
U(R)_lOR +R3+d’ R#0, (4)
2 4 1

¢,d — arbitrary constants. Note that (881%2 + R88R> i

After returning to the function W(z,r) = r? (TSRQ + % + d) we have a solution to the

equation L Psi(z,r) = wor?.

For further purposes, let us formulate what can be verified by direct differentiation:
Property 2. Let ¥; = 12 (%R2 + % +d; |. If the constants c;,d;, c;,d; are such that the
functions ¥;, ¥; vanish for R = a, then the condition for their continuous differentiability for
R = a is written in the form

1 Ci 1 C;
7 (20 = 5) = 75 (2000 = ).
1. Hill vortex with n vortex spherical layers

Let us consider the possibility of the existence in the entire space of an axisymmetric flow
with n vortex zones with a given geometry of the vortex zones: (D1: R<ai, D;: a;—1 < R<ay,
ay >0, a;—1 < aj, i=2,...,n). In the zone (D41 : R > ay,, wyy1 = 0) the flow is potential.

For a given flow case, the problem can be written in analytical form

wir? if R < aq,

LU(z,r) =< wir? if a1 <R<a;i=2,...,n, (5)
0 if R>ay,
given that
; 4
Ulpeq, =0, i=1,...,n, Iggrlwr—z—A>0. (6)

Given such a geometry of zones, according to Property 1, the signs of numbers w; must alternate
if none of them is zero,
In accordance with (4), we look for a solution to problem (5), (6) in the form
2

I—Owl(R2—a%) if 0<R<ay,
2 )
\I/(Z,T): %(w1R2+%+d1) if ai_lgRgai,i:Q,...,n,

2 ay .\
Ar (1—?) if R> ay.
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Satisfying the boundary conditions (6) and the continuous differentiability of the solution
when passing through the boundaries of the zones, in accordance with Property 2, we obtain the

system . c.
wiaf_1+3—l+di:0, wiaer—;eri:O,i:Z,...,n, (7)
;1 a;
3 3¢; 3¢;
20)1&1 = 2&)2&1 — %, QOJZ'C(@ — % = 2wi+1ai — sz—l’ 1= 2, ey, — 1, (8)
ay a; a;
3c, 304
200y — —— = . 9
Wi @ T o (9)
From (7-9)
1
wi(a} y —al)+ce(5———5)=0,i=2,....,n—1, (10)
a;_1 O
2o —
Co = (WQ?) wl)al, Ciy1 = g(wi_i_l —wi)a? +c, c1=0,1=2,...,n—1, (11)
2wn,
Cn = %ai — 104a3. (12)
From (11)
i 9 i 9 -
ZC]‘ = 3 Z(Wj — Wj,1>a?71 + chfl’ c; = 3 Z(wj — wj,l)ag?fl, 1=2,...,n. (13)
=2 i=2 =2 =2

Let us prove a property of system (10), (11), which will be used further.

Property 3. If the signs w;, i=1,...,n, alternate, then a;,_1=t;_1a;,1=2,...,n 0<t;_1<1
s a root of the equation
Swi

B Pyt =0, (o1 = o
2(@i—1 — w;)

_ _ _ 2 (997 —(;)',1
wi=(1- t?,l)wi + t?,lwiflv w1 = Wi, ¢ = 7( : =)

3 1—1%9»
sign(@;) = sign(w;), i=1,...,n. (16)
e — &
We assume ¢ = 2. Considering w; = wy, ¢ca = wai from (10)
2 2 2(&]2 7&_)1) 5 ]. 1 - O
nlaf = o) + T2 el - ) =

Hence a1 = as, or
2(01 — wa) 5a3 +aza; +a?

=0. 17
w (a1 + az) + 3 1 3 (17)
. . . a 3wa .
d Equation (17) is homogeneous. Denoting t; = — < 1, 19 = —————, wj # ws, we obtain
az 2(@1 — wa)
an equation for finding the value t;
2+ 2yt + 91 =0. (18)

For the existence of a root 0 < t < 1 it is necessary 1 < 0. From the resulting equation

1 3
()= +t—1+—), 0<t<1, %(0)=0, n(l)=-=

0
t+1 2<’
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, 1
() = —(3t2+1 - m).

For t > 0, 71 (¢t) < 0, the function v;(t) decreases monotonically as ¢ > 0. Hence, for

3 30J2
3 <3G o <° (19)
equation (18) has a single root ¢; on the interval (0,1). Note that inequality (19) is satisfied, if
w1, ws have different signs. We got a1 = tjas. For wy = wy, equation (17) implies wy = 0, and
hence wy; = 0, or as = ay. Zones D1, Dy are combined into one — the number of zones with such
geometry should be reduced by one when setting the problem.
For what follows we set ¢ = 3. From relation (13) it follows

2
c3 = g((,dg - ((1 — t?)u@ + t?@l))ag = g(tdg - U_Jg)ag.
3
From (17), similarly to the case i = 2, we obtain equation (14) with v = 2(_7@:,)
W2 — w3
Let us show that sign(ws) = sign(wsz). Let’s write it down

S : Lo 27
— sign(\(t1) (1 — £3) + 13 Aty) = 22 = : 20
sign(@z) = sign(\(t1)(1 ~ ) + )sign(@n), ) = 22 = 20 (20)

From equation (14) with v;,_; = 72 we express 2 and after substitution into (20)

20t + 3 + 1)
2061+ +13) — 3t — 3

o 3t3 + 6t 4 4ty + 2

AMt)(1 =)+ 0 = < 0.
()= 8) +8 1213 + 442 + 6t; + 3

(1—1)+8) =t

We got sign(wg) =—sign(wr) =—sign(wy) =sign(ws). Since wy, wa by assumption have different
signs. This implies that inequality (19) holds for w3, wo of different signs. Then as = toas.

Increasing ¢ successively by one, similar to the previous one, we obtain a;_1 = t;_1a; and

2(&)7; — a}z?l) 5 2(wi — @1‘,1)

_ _ 5 5
c; = a;_, = t;_qa

2, sign(w;) = sign(w;).

Let us return to the problem under consideration (5), (6). Let in some zone D;, w; = 0, and
in the zone D;_1, w;—1 #0, i = 2,3,...,n, The function ¥(z,r) and its partial derivatives in the
zone D; are identically equal to zero, which contradicts the inequality of the normal derivative
from the zone D;_1 to zero at points R = a;_1 of the common boundary of the zones D;_1, D,
since the function ¥(z,r) in the zone D;_; at boundary points R = a;_; takes either the largest or
smallest value, depending on the sign of w;_1[6]. Further continuing these arguments, successively
decreasing the index i, and then successively increasing it, we arrive at all w; =0, i =1.2,...,n.

Thus, a flow with the considered geometry of vortex zones cannot have a single internal zone
with potential flow, and the alternation of signs of w; in zones D; is a necessary condition for
the existence of a solution to the problem under consideration.

Let the signs of w; alternate in the statement of the problem. Substituting ¢, =
2(wn — wn,l)

3 t>_,a? (Property 3) into (12 ), we obtain the equation for finding a,,

OpaZ =154, @, = (1 =12 _ wn +12_ 10, 1.

Requiring w,, > 0, in the problem statement by Property 3, we obtain sign(w,) = sign(w,) > 0.
Then

15A
a, = — .
(1- ti—l)wn + ti—lwn—l
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Next, a; are determined inversely through a,, a;—1 =t;_1a;, i=n,n—1,...,2.

Note that if w, > 0, is required, wy must be less than zero when n is even and w; > 0 when
n is odd.

Thus, we have obtained that in space, within the framework of an ideal fluid, it is possible
to move a liquid sphere of radius a,, streamlined around by a potential flow, inside which there
are n vortex zones with vorticities w;r, with alternating signs w;, at w, > 0.

Let us write down the solution to problem (5), (6) (the signs of w; alternate, w, > 0).

T—wl (R2 a%) if 0 < R <an,
2 10 3
2(wi — wi— . .
\I/(Z,T') = %OUJZ'(R2 - a?)‘f’ wal)ti_lai ( - (%) > ifa; 1 <R<a;,i=2,...,n,
3
AT2<12§> fR>a

For n = 1 (one vortex zone with w > 0) we have the spherical Hill vortex, known in hydro-
dynamics [7], in plasma theory after "spherical plasmoid" [§]

wr?(R2 — R?) if 0 < R < Ry,

U(z,r) = R3 .
(z,7) Ar2<1—Rg) if R > Ry,

15
Ry, w, A are related by the relation w = —5-. The Hill vortex represents a liquid sphere moving
0
in the direction of the OZ axis in a potential flow around it with a speed of % at infinity, inside

which there is a vortex motion with a vorticity of wr. It was shown in [9] that in the vicinity
of the spherical Hill vortex there is no other axisymmetric vortex with one vortex zone, which
differs little from it.

Note that the resulting solution to problem (5), (6) describes a natural axisymmetric gener-
alization of the Hill vortex with n vortex zones. This structure of the vortex flow can be called
a composite spherical Hill vortex.

Let us write the flow function for a composite Hill vortex with two vortex zones (wy <0, we >0)

e r?(R? —a?) if R< ay,

10
) if a1 & R az,

r? 3wy —w
U(z,r) =4 Trwa(R?—a3) + ( 22 ) ay <
< lfR ag,

10
15A 15A
- a1 = aghy = t. 21
- \/ (= B + ) 70 \/ (= Bz + ) 21

It is important to note that we wrote the general problem of axisymmetric flow in space with

bg\w% ?3\&

n vortex zones in analytical form for a specific particular case of the geometry of vortex zones in
the form of spherical layers, assigning each zone its own vorticity from a given set of vorticities
w;r. Since the existence of such a solution requires only that the vorticities alternate signs in

adjacent zones (the numerical values of w; determine the radii of the layers) and w, > 0, then
n—1

the specified w; must have 5 positive and 5 negative wy, if n is even, and 5 positive,

negative wj, if n is odd.
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Thus, given a set of vorticities with the properties specified above, there is the possibility of
. ny, /Ny, . o n—1\ /n+1\ .. . .
the existence of (5)'<§)' in space if n is even and ( 5 )'( 3 )! if n is odd, composite

Hill vortices with n vortex zones in the form of spherical layers.

Let us note an interesting fact that, along with the composite Hill vortex with two vortex
zones at w; < 0, we > 0 of radius as (21), there is a Hill vortex with the same radius as, but
with one vortex zone with vorticity w(z,r) = ((1 — )ws 4 tjw;)r with the same value A.

Let’s consider the inverse problem. Given a Hill vortex with a given value A and one vortex
zone of radius Ry. It is required to find a composite Hill vortex with two vortex zones with the
same values Ry, A.

In accordance with (21), we arrive at the problem of finding the numbers w; < 0, ws > 0
satisfying the relation

15A
(1 —t)wy + tow; =w = SR 0<t<l,
0
. . .. . . . . 3wo
where ¢ is an implicit function of wy, ws, given by equation (18) with v = —————.
2(0.}1 — UJQ)
3wa . 2y
From v; = ————— we write wy = ————wj, and then from (1 — t%)wy + tdw; = w, we
m 2(w1 —WQ) 2 3427 ! ( ) 2 11
get
W = ——=W, Wy=-—"-W, W= —5.
LT 0y 315 27 2y + 35 R2
. 413 4 12 Lo
From equation (18) we find v, = 11 and after substitution into (22), we find
-2t +t+1 263 + 4% + 6t + 3
Wy = (E+e+1) w>0, w =— + tort w<0, 0<t<l.

(t —1)(3t3 4 612 + 4t + 2) (3t3 + 62 + 4t + 2)t2

Next, setting ¢, 0 < t < 1, arbitrarily, we find w;, ws, and then using formulas (21) for t; = ¢
the values a1, as. By construction as = Rjy. Note that due to the arbitrariness of the value of
t, 0 <t < 1, the inverse problem under consideration has an infinite number of solutions.

2. Flow in a sphere with vortex spherical layers

Let us consider the possibility of axisymmetric flow in a sphere of radius Ry with a given
geometry of n vortex zones in the form of spherical layers (D1 : R<ay, D;: aj—1 < R < ay,
it = 2,...,n) and with one selected zone (D, 11 : a, < R < Rp), adjacent to the boundary
R = Ry, only in which vorticity can become zero, i.e. the flow may be potential. This flow
design for w, 11 = 0 is an analogue of a composite Hill vortex in a sphere.

Just as in point 1. the problem can be written in analytical form

w17"2 if R< ai,
LY(z,r) = wir? ifai_1 <R<a; i=2,...,n,
wni1r? if a, < R < Ry,
given that
\I/|R:ai=0,i=1,...,n, \I/|R:ROZA>O. (23)
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In accordance with (4), we look for a solution to the problem in the form

T(R? —a}), 0<R<ay,
10
7‘2 C;
\IJ(Z,T)Z TO(WZR2+ﬁ+dl), ;1 gRgai, i:2,...,TL,
r? 5 oy (104 —w,1(R3 —a?))R} al
1N n - B - 1- == ) n < < .
T (a2 e + (R3 - ad) (1-%)) me<r<m

Here, the boundary conditions are satisfied in the zone D; with R = a1, in the zone D,, with
R = a,, in the zone D,,;; with R = a,,, R = Ry. Satisfying the remaining boundary conditions
(23) and the continuous differentiability of the solution when passing through the boundaries of
the zones, we obtain system (10-12), in which equation (12) should be replaced by the equation

1 3¢, 1 3R3(10A — we (RZ — a2))
m <2wnan - a;) =10 (an+1an + G _”a%)an ). (24)

n

In accordance with Property 3, the signs of w; must alternate and a,_1 = th_1an, ¢, =

2(wy, — Wy —
Mtiflai. Taking this into account, from (24) the equation for determining the value

of a,, follows

a’ — R3a? (1 __ SWn+ ) + SRg(lf)A —wnifl) _ (25)
2(@n — wnt1) 2(@n — wn+1)
3R3(10A — w1 R3)

2(‘:% - wn-{—l)

We set w, > 0, wp41 < 0. Then @, > 0 and > 0. Consider the function

3wn+1 ) + 3R8(10A — wn+1R8)

V= a® — R3a2 (1 _
f(a ) ap 00n 2(— 2(wn _ wn-{-l)

Wn — wn+1)

We have f(0) > 0, f(Ro) > 0. At point a = <§ (1 - m>> Ry, f'(af) = 0. It is
3wn+1

2
checked that if w,,, w,+1 have different signs, then 0 < [ = (1 — ——
5 2(&n — Wnt1)

)) Ry < Ry and

f"(ar) > 0. So at point a the function f(a,) has a minimum.
Demanding f(a¥) < 0, we obtain the condition under which equation (25) on the interval
0 < an < Rp has a root (in the case of a strict inequality, there are two roots)

104 _ 2(wn = war1) (z (2 3wni1

2
3 5

X ~ 1- n 3 ’n)v n = — . 26

R2 3 5) (1=7)% +m) v 2(@Wn, — Wnt1) (26)

3
From Property 3. it follows 5 <y <0.

3/2\3
On the interval (—32,0) the function F(v,) = 5 3) ’ (1 =) 3 4n is positive, monotonically

) . 3/2\% 3 3/2\% .
increasing and 0 < F(7,) < 5(5) , F< — 5) =0, F(0) = 5(5) . Taking into account that
Wn, — wpa1 > 0, we found that the right part of the inequality in (26) is greater than zero.

Note that the right-hand side of condition (26) does not depend on A and Ry, therefore
condition (26) is satisfied. In the case of strict inequality in condition (26), there are two solutions.

If condition (26) is not met, there is no solution.
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Let us write down condition (26) when in the zone B, 1, adjacent to the boundary of the
ball R = Ry, the flow is potential (w41 = 0)

A 1 /2\%
w5l
wnR2 T 25\5

Let us write down the solutions to the problem (w,, > 0, w,+1 < 0, signs of w;, i < n alternate)

2

I—Owl(RQ—a%), 0< R<ay,
2 2 i — Wi 3
U(z,1) = I—Owi(sz f)+%tila§(lf (%) ), a1 <K R<a,i=2,...,n,
2 2 21\ p3 3
r 2 2 (IOA — wn+1(RO — an))RO an
o, _ " 1-—==], an < R<R,,
low +1(R an)+ (Rg—a%) R3 a R Ro

a1 = t?ﬁlan, t;—1 — root of equation (14), corresponding to the ¢ — 1 zone, a,, — root of
equation (25).

Let us note an interesting fact: if a flow with a given number of vortex zones in space exists,
for example, a composite spherical Hill vortex, and in it the geometry of the layers is determined
uniquely, then a similar flow in the sphere does not always exist, and if it does exist, then two
different geometries are possible spherical layers.

Let us consider the possibility of the existence of two zones at w; < 0, wy > 0. We will need
this model example later. For this case, equation (25) for finding the value a; takes the form

=0 (27)

3 _ 2
flon) = af g (1 g ) P

2(w1 —(,UQ) 2((«)1 —wg)

3(10A—wy R2
We have f(0)= 3R02((121 _W;)RO), f(Ro)=

15R3A

(w1 —ws)
6W1 — 15LLJ2

2 3 3

its only extremum is the minimum, since f”(aj) = > 0. And only for f(0) > 0 does

1— w2
equation (27) have a root on the interval (0, Rg), and this root is unique. The condition f(0) > 0

is satisfied for wo > Tl For w; = 0 in each meridian plane in the zone R < aj the flow function
U(z,r) is identically equal to zero.

We found that in a sphere with wy > 1]2—;4 it is possible for two vortex zones with w; < 0,
wg > 0, and zones with the considered geome%ry are calculated uniquely.

Tt is obvious that problem (5), (6) for w, > 0, w,4+1 = 0 is a generalization of the problem of
M. A. Gol’dshchik [1,10] in M. A. Lavrentiev scheme of plane flow of an ideal fluid in the model
case of an axisymmetric flow with n + 1 vortex zones.

For wy < 0, wy > 0 its formulation is an extension of the problem of plane motion of an
ideal fluid in the field of Coriolis forces [1, 11] to the axisymmetric case, as well as on the model
principle.

3. Vortex flows in an arbitrary limited axisymmetric region

Let D be an arbitrary bounded region adjacent to the axis » = 0 in variables z,r, r > 0. Its
boundary T' consists of a smooth curve o in the upper half-plane r > 0 and the segment [, 3] of
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the axis z = 0, a < 0,5 > 0. The curve ¢ adjoins the points a, § at angles different from zero
and 7 respectively. Let us write the boundary condition for the flow function

TUlr = ¢(s)r? > 0. (28)

Since the flow region and boundary function are arbitrary, assumptions about the geometry of
vortex zones, as was done for flow in a sphere or in all space, are problematic. In this regard,
at the first stage a difficult problem arises in the analytical formulation of the problem. It is
natural to begin the study for a flow with two vortex zones.

For the analytical formulation of the problem in this case, the formulation of two dual prob-
lems by M. A. Gol’dshtik [1, 11] is well suited. This has already been discussed when constructing
flows in a sphere. Thus, in a flat bounded domain D, it is required to find continuously differen-
tiable solutions to problems (wy > 0, ¢(s) > 0)

wp if ¥ <0, wp if ¥ >0,
avg) ={ 4TS aven ={ Ly I Ws=v 0. @)

They define flows with two zones, vortex and potential.
In accordance with these problems, to obtain a flow with two vortex zones in the axisymmetric
case, we come to two also dual problems, written in analytical form (wy > 0,ws < 0)

wir? iU <0,

LY = Ulp = 2>
(z,y) { oo iU >0, Ir = @(s)r* >0, (30)
2 .
wirs iU >0, 9
Ly = Ulp = = 0. 1
(myy) { CUQTQ lf \I/ < 0’ |F (,0(8)7‘ O (3 )

Let’s consider problem (30). A function Wo(z,r) satisfying the equation LWq(z,7) = wor?

and boundary condition (30) in the domain D is positive in the domain D, and therefore is trivial
solution to this problem. At ws = 0 the flow is potential in the entire region D, at wy < 0 the
entire region D is a vortex zone. In [12], the existence of a nontrivial solution was proven.

Let us observe that the possibility of the existence of a second nontrivial solution with two
vortex zones, which exists in a model problem in a sphere, is a difficult, independent mathematical
problem. For the plane case with we = 0, the existence of a nontrivial solution (flow with a vortex
and potential zone) was proven in [10,13,14], and the existence of a second nontrivial solution
in [5,15]. For wy # 0 the existence of a nontrivial solution was proven in [16].

Let’s consider problem (31). Note that its solution cannot take negative values in the region
D. We assume that at some point M* C D, ¥(M*) < 0. From the boundary condition in (31)
it follows that there is a subdomain D* C D on the boundary of which U* = 0 , and inside it
LU(z,7) = wer? < 0. Hence ¥ > 0 in D*. We obtain a contradiction.

From problem (31) we move on to the problem: we need to find a continuously differentiable
non-negative solution to the problem

LYU(z,r) = wir? if U(z,7) >0, U|p =7r2p(s) > 0. (32)

To construct a solution to the problem LW(z,7) = wr?f(z,7), ¥|p = r%p(s) it is conve-
nient to go to the variables z = &, r = 2V/%, after which LU(z,7) = SU = t¥;, + g =
dwtf(€,2vt), L*U(z,1) = S*U = tUy + Uge + 2U; = wf(€,2v/1). In the variables £, t we ob-
tained the equations (S(tU) = tS*U) degenerate on the boundary of the region at ¢t = 0, which
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are well studied in [17-19]. For example, for the equation S¥ = 0 the usual formulation of the
Dirichlet problem is correct, for the equation S*U = 0 for the considered domain D the modified
formulation is correct — the solution is specified only on the curve ¢ and the solution is sought
in class of functions bounded at » — 0 [17]. Note that in the case under consideration such a
solution is continuous up to r = 0 and extreme values are reached at o[19].

For the operator L* there is a fundamental solution[20]

4 T
E(z,7,21,m1) = ;/ [(z—z1)2 + 72 +7% — 2y cosﬁ}_% sin? Bdg,
0

which has a logarithmic singularity for r, r1 > 0
2 -3 2 2
E(z,r,zhrl):—;(rrl) 2In((z —21)" + (r—r1)%) + ®(2,r,21,71),

®(z,7,21,71) is a regular function.
Using Green’s formula [18,19] with v = W, uw = rG(z,21,7r,71)

//(USU —vS*u)dé dty = j{(vufl —vg, u)dty — (t1vuy, — v, u — vu)dés,
D

r

we obtain a representation of the solution to the problem LW (z,7) = wr?f(z,r), W|r = 0 in
the form

W(z,r) _fr / f 21,71)G(2, 21,7, 71)d21dr. (33)

Here G(z,21,7,71) is the Green’s function for the problem L*U = wf(z,r), Ul, = ¢(s) (the
solution is bounded for » — 0), which is standardly constructed using the fundamental solution
E(z,r,z1,71). G(z,21,7,11) = E(2,71,21,71) — G1(2, 21, 7,71), where G1(z, z1,7,71) in variables
& # &, t1 # t solution of problem S*G; = 0, G|, = —E|, bounded at ¢t; — 0 . From the
above extremum principle for the equation S*U = 0 it follows that for z # z1,7 # r; the Green’s
function G(z, z1,7,71) > 0in D |J(a, B),

It is important to note that function (33) has all the properties of a logarithmic potential in
the D domain, since the Green’s function by construction has a logarithmic singularity inside
the D domain.

Let’s return to problem (32).

To prove the existence of a solution to this problem that goes to zero at points in the region
D, consider the sequence of problems

LY, (z,7) = wlr2th(n\11n(z,r)), U,|r = rzgo(s) > 0. (34)

Just as before, it is easy to show that ¥,, > 0.
Problem (34) is equivalent to the integral equation

U, (z,r) // Sth(nV,,(21,71))G(z, 2,7, r1)dz1dry + Vo(z,7). (35)

Similarly [1, 11, 12], taking into account the properties of the integral (33) with the introduced
Green’s function as a logarithmic potential, using Schauder’s theorem, we establish the existence
for each n > 0 of a solution ¥,, > 0 continuous in D of the integral equation (35), and by
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Arzel’s theorem, the compactness of the sequence of solutions ¥,,(z,r) in the space of functions

continuously differentiable in the domain D. Note that the solution to problem (34) is unique,
Oth(nV,) n

oV,  ch?(n¥,)
continuously differentiable function ¥(z,7) > 0.

Further, repeating the proof from [1,11,12], it is established that the limit function is a
solution to problem (34)

Here it is taken into account that for the right side of the equation in (34)

which follows from > 0. Let the subsequence ¥, (z,7) converge to a

lim th(ng¥U,,(z,r)) =1 if ¥(z,r)>0.
Nk —>00
Let us obtain the condition under which the resulting solution goes to zero in the region D.
Under the assumption that U(z,r) > 0 at all points of the region D, it follows from equation (35)

U(z,r) = Uo(z,r) — —r / G (z,7,21,7m1)d2177. (36)

Let Dg be a semicircle (r > 0) of the largest radius Ry that can be inscribed in the region D
(we can assume that its center is at the origin of coordinates z = 0,7 = 0) and C' = max(¢(s)r?).
For the model case D = Dy, 7?¢(s) = Cr? in the second paragraph, if we go to the notation

10C
of problem (31), redesignating ws by w1, w1 on wsy, it is found that if the inequality w; > R is
0
satisfied, the problem (31) under consideration has a solution ¥p,(z, ), which in the semicircle
D, C Dy, 124+ 22 < a? r >0, a < Ry is identically equal to zero, and in D \ D, is greater
than zero. The value a is the root of equation (27) at A = C, w; = 0.
The function ¥ p,(z,r) for this case can be written as

OJ1 2
Up,(z,1) = / GRO z,r, 21,71)d2171.
Do\Da

GRr,(z,1,21,71), the Green’s function introduced in the work for the region Dj.
Let us represent the function ¥(z,r) (36) in D, in the form

U(z,r) = (Yo(z,7) — C) + (C — —1 2 / GRO z,T, zl,rl)dzlrl)—i—

Do\D,
oJ
Wi 2 // 3 GRO 2,7y 21,T1) — G(z,r,zl,rl))dzldn— (37)
Do\Dq
_“ 2/ G (z,7,21,7m1)d21dr, — —r //7’1 (z,7,21,71)d21dry.
D\Dq

In the circle D,, the expression in the second bracket of equality (37) is equal to zero, the
remaining terms on the right side are negative. So, the function ¥(z,r) is negative in D, C D,
which contradicts the assumption that it is positive in the entire domain D. We found that for

1
wy > ](;C the function ¥(z,r) goes to zero in the domain D, € D.

Further7 similarly to works [1,11,12], it is possible to prove that the problem (31) under
consideration has a unique solution and under the condition that the boundary set o on which
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the boundary function ¢(s) is nonzero is connected , the set on which the solution is positive is
a region.

10C
Thus, it was established that with w; > Rz and with the above requirement on the boundary
0

function ¢(s), in the region D a flow is possible, which in some region vortex with vorticity wyr,
and in addition to it the flow function ¥(z,r) equals zero - the fluid is motionless.

Note that in the work the problem of the possibility of the existence of vortex axisymmetric
flows in a limited area was considered with only two vortex zones. Therefore, it is natural to
continue the study of the existence of flows with n (n > 2) vortex zones with questions of their
non-uniqueness, which occurs with model flows in a sphere.
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OCGCI/IMMeTpI/I‘{eCKI/Ie IIOTOKN I/I,ﬂeaJIbHOI'?'I 2KNJIKOCTHU
C S(b(beKTI/IBHO HEBA3KMNMHN BUXPEBbBIMHN 30HaAMM

WNcaak U. Baiianireitn
Cubupckuit deepabHbIil YHIBEPCATET
Kpacnosipck, Poccuiickas Peneparus

Awnnoranusi. B pabore copmynmpoBaHa MOIETb 0CECUMMETPUIECKOTO TEUEHHUST UACATBHON KUIKOCTU
¢ 1 3 HEKTUBHO HEBSI3KNMHU BUXPEBBIMHU 30HaMU, 0bo0Iatoast n3secTHyo Mojaensb M. A. JlaBpenTheBa
O CKJIeKe BUXPEBBIX U MOTEHINAJbHBIX TeYeHU! B IJIOCKOM cjaydae. [lokazana BO3MOXKHOCTb B PaMKaX
TAaKON MOJEN CYIIEeCTBOBAHUS B IPOCTPAHCTBE XKUJKON cdepbl, 00TeKaeMOil TTOTEHIIUATLHBIM OCECUM-
METPUYECKAM IOTOKOM, COCTOSIIIEN U3 1 MIAPOBBIX CJIOEB OCECUMMETPUIECKUX BUXPEBBIX TEUECHHUN. DTOT
MOJIEJIbHBIN TIpUMeEp 0000INAET U3BECTHBIA B MUIPOJAUHAMUKE CHEePUUECKU BUXPh XUJLJIa C OJHON BUX-
peBoii 30HOI. Takoe BUXpeBOe TedeHME C M MIAPOBBIME CJIOSIMH TaK¥Ke BO3MOXKHO M B cdepe, mpudIeM
B OTJIMYME OT TeYeHHUsl B IPOCTPAHCTBE, TaKOe TeYeHHe HeeJMHCTBEHHO. PaccMorpena 3ajada o6 oce-
CAMMETPUYECKOM BHUXPEBOM TE€YEHUM B OMPAHUYEHHON O00JIACTH, IO ITOCTAHOBKE O0OOIIAoNiasi IJIOCKOe

TEeYCHUEe I/I,ELeaJ'H)HOIL/'I KUAKOCTHU B I10JI€ KOPHUOJIMCOBBIX CHJI.

KurogyeBbie ciioBa: mjealibHas XKUJKOCTb, BUXPEBbIE TeUeHUsl, COePUIECKUNl BUXPb XUJLIA.
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