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Introduction

Under consideration is the parabolic equation

Mu = ut − Lu = ut − div(c(x, t)∇u) + a⃗(x, t)∇u+ a0(x, t)u = f, (1)

where c = diag(c1(t, x), . . . , cn(t, x)) is a diagonal matrix with strictly positive continuous entries,

(t, x) ∈ Q = (0, T )×G, a⃗(x, t) = (a1(x, t), . . . , an(x, t))
T , ∇u =

( ∂u

∂x1
, . . . ,

∂u

∂xn

)T

, n = 2, 3, and

G is a domain in Rn with boundary Γ. The equation (1) is furnished with the initial-boundary
conditions

Bu|S = g(t, x) (S = (0, T )× Γ), u|t=0 = u0(x), (2)

where Bu =
n∑

i=1

νiciuxi
+ σ(t, x)u, with ν being the outward unit normal to Γ, and with the

overdetermination conditions

u(t, bi) = ψi(t) (i = 1, 2, . . . , r), (3)
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where {bi}ri=1 is a collection of points lying in G. It is possible that Γ = Γ0 ∪ Γ1 with Γ0∩Γ1 = ∅,
Γ0,Γ1 are open subsets of Γ, and the condition (2) is given in the form

Bu|S0
= g(t, x), u|S1

= g1(t, x) (Si = (0, T )× Γi, i = 0, 1), u|t=0 = u0(x). (4)

Assume that g(t, x) =
r∑

i=1

αi(t)Φi(x) for some known functions Φj , the problem consists in

recovering both a solution to (1) satisfying (2), (3) (or (4), (3)) and functions αj , j = 1, 2, . . . , r.
Note that any function g can be approximated by the sums of this form for a suitable choice of
basis functions Φi.

Inverse problems of recovering the boundary regimes are classical. They arise in many dif-
ferent problems of mathematical physics, in particular, in the heat and mass transfer theory,
diffusion, filtration (see [1–3]), and ecology [4–9].

A particular attention is payed to numerical solution of the problems (1)–(3) and close to
them. Most of the methods are based on reducing the problems to optimal control ones and
minimization of the corresponding quadratic functionals (see, for instance, [10–16]). However,
it is possible that these functionals can have several local minima (see Section 3.3 in [17]) and
the problem is not always well-posed. Describe some articles, where pointwise measurements
are employed as additional data. Numerical determination of constant fluxes in the case of
n = 2 is described in [11]. Similar results are presented in [18] for n = 1. The three-dimensional
problem of recovering constant fluxes of green house gases is discussed in [4], but numerical results
are presented only in the one-dimensional case. In [5] (see also [6]) the method of recovering
a constant surface flux relying on the approach developed in [19] is described, where special
solutions to the adjoint problem are employed (see also [7,8]). The surface fluxes depending on t
are recovered in [3,14,20,21] in the case of n = 1, and in [13,23–25] in the case of n > 1. The flux
depending on time and spatial variables is reconstructed in [16, 26]. The case of flux depending
on space variables is discussed in [25]. In this article the flux is sought a finite segment of a
series with the use of piecewise linear basis of the finite element method. In literature, there are
results in the case in which additional Dirichlet data are given on a part of the boundary and the
flux is reconstructed with the use of these data on another part of the boundary (see [27]). The
article [15] is devoted to the recovering of the flux h(t, x)f(x) (the function f(x) is unknown)
with the use of final or integral overdetermination data. There is a limited number of theoretical
results devoted to the problem (1)–(3). If the points {bi}ri=1 are interior points of G then the
problem is ill-posed and this fact was observed in many articles (see [28]).

In this article we describe some new theoretical results (see [29]) as applied to this problem,
expose a new algorithm of calculating the flux based on our theoretical arguments and describe
the results of numerical experiments. The method relies on the finite element method in the space
variables and the finite difference method in time. The number of summands in the reprentatation
of the function g depends on the number of measurements. The results of numerical experiments
are quite satisfactory and the procedure is stable under small perturbations.

1. Preliminaries

The notations of the Sobolev spaces W s
p (G) and W s

p (Q) are conventional (see [30, 31]).
Given an interval J = (0, T ), put W s,r

p (Q) = W s
p (J ;Lp(G)) ∩ Lp

(
J ;W r

p (G)
)

and W s,r
p (S) =

W s
p (J ;Lp(Γ)) ∩ Lp

(
J ;W r

p (Γ)
)

[30]. By the norm of a vector, we mean the sum of the norms of
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its coordinates. Denote by Bδ(b) the ball of radius δ centered at b. The symbol ρ(X,Y ) stands
for the distance between the sets X,Y .

The definition of the inclusion Γ ∈ Cs, s > 1, can be found in [31, Chapter 1]. The coefficients
of the equation (1) are assumed to be real. We consider an elliptic operator L, i.e., there exists
a constant η0 > 0 such that ci(t, x) > η0 for all (t, x) ∈ Q and i = 1, . . . , n.

2. Recovering of the heat flux

Under consideration is the conventional heat and mass transfer model (1). We take G =

Ω × (0, Z), with Ω = (0, X) for n = 2 and Ω is a bounded domain with smooth boundary
(∂Ω ∈ C2) for n = 3. Let Γ0 = {x ∈ Γ : xn = 0} = {(0, x′) : x′ ∈ Ω} (x′ = (x1, . . . , xn−1))

and let S0 = (0, T )× Γ0. The problem is to find a solution to the equation (1) and the function

g =
r∑

i=1

αi(t)Φi(x) such that

u(bi, t) = ψi(t), i = 1, 2, . . . , r, bi ∈ G, (5)

u|t=0 = u0(x), cnuxn
|S0

= g(t, x), u|S\S0
= 0. (6)

One or more boundary conditions on S \ S0 can be changed. This inverse problem arises in the
problem of evaluation of the greenhouse gases emission from wetlands (see [4]).

We now expose some consequences of the results in [29]. Despite the fact that they refer
to the model case when c is the identity matrix and the remaining coefficients are independent
of t, they are rather sharp and we think that they are valid in more general situation as well.
Moreover, the conditions on the data below are actually used in the numerical algorithm. We
consider the model problem

ut + Lu = f(t, x), Lu = −∆u+

n∑
i=1

ai(x)uxi
+ a0(x)u, (7)

u|t=0 = u0(x), uxn
|S0

= g(t, x), u|S\S0
= 0, (8)

u(t, bi) = ψi(t) (i = 1, 2, . . . , r). (9)

As before, the problem consists in recovering both a solution to (7) satisfying (8) and (9) and

functions αi, i = 1, 2, . . . , r, characterizing the function g =
r∑

i=1

αi(t)Φi(x). We assume that

bi ∈ K = {x ∈ G : xn < ρ(x,Γ \ Γ0)}. (10)

Let b′i = (bi 1, . . . , bi n−1, 0), where bij is the j-th coordinate of the point bi. It is naturally to
assume that b′i ̸= b′j for i ̸= j. Let Gδ be the δ-neighborhood about the points b′i (i = 1, 2, . . . , r).
Denote Γδ = Gδ ∩ Γ0. Оur conditions for the data have the form

ai ∈W 2
∞(G) (i = 1, . . . , n), a0 ∈ L∞(G), (11)

u0(x) ∈W 1
2 (G), f ∈ L2(Q), (12)

Φi(x
′) ∈W

1/2
2 (Γ0), suppΦi ⊂ Ω, (13)

there exists δ0 > 0, δ0 < mini ρ(bi,Γ \ Γ0) such that

Φi(x) ∈W 1
2 (Γδ0) for n = 2, Φi(x) ∈W 2

2 (Γδ0) for n = 3, i = 1, . . . , r, (14)
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a0 ∈W 1
∞(Gδ0 ∩G). (15)

Under the conditions (11), (12), there exists a unique solution w0 to the problem (7), (8),
where g = 0, such that w0 ∈ W 1,2

2 (Q) (see [33]). Changing the variables w = u− w0, we obtain
the simpler problem

wt + Lw = 0, wxn |S0 = g(t, x), w|S\S0
= 0, w|t=0 = 0, (16)

w(bi, t) = ψi(t)− w0(t, bi) = ψ̃i(t), i = 1, 2, . . . , r. (17)

We assume that the functions ψ̃i(t) admit the representations

ψ̃i(t) =

∫ t

0

Vδi(t− τ)ψ0i(τ)dτ, ψ0i ∈ W̃
n/4
2 (0, T ) (n = 2, 3), (18)

where Vγ(t) =
e−γ2/4t

4πt
for n = 2 and Vγ =

γe−γ2/4t

2
√
πt3/2

for n = 3. Denote by Ψ the matrix with

the entries Ψij = Φj(b
′
i) (i, j = 1, 2, . . . , r) and assume that

detΨ ̸= 0. (19)

Theorem 1. Assume that the conditions (10)–(14), (18), (19), and (15) for n = 3 hold. Then
there exists a unique solution to the problem (7)–(9) such that u ∈W 1,2

2 (Q), αi(t) ∈W
1/4
2 (0, T )

(i = 1, 2, . . . , r).

Proof. The claim results from Theorem 5 in [29]. First of all, we note that in [29] Γ ∈ C2.
Nevertheless, the arguments of the proof remain valid since W 1,2

2 (Q)-solvability of the boundary
value problem (7), (8) holds. The well-posedness condition from [29] is reduced to the condition
(19). The condition (10) ensures that the sets {b ∈ Γ : ρ(bj ,Γ) = |bj − b|} consist of one point
b′j ∈ Γ0 and the conditions (10), (13), (14), (18), (19) guarantee the fulfillment of other conditions
of Theorem 5 in [29].

Note that the condition (18) is sharp and cannot be weakened. 2

3. Numerical algorithm

Describe the numerical algorithm. Consider the case of n = 2. We employ FEM (the finite
element method). We need to find the functions {αi(t)}. As for the functions Φi, we can use
the piecewise linear basis of FEM, in this case we obtain a piecewise linear approximation of g.
Sometimes, it is better to use smoother function. We use some analog of the FEM basis. Define
a collection of numbers x11 < x21 < . . . , xr1. Let x01 = ε > 0, xr+1

1 = X − ε, with ε a sufficiently
small parameter. Let δi = (xi+1

1 − xi−1
1 )/2, i = 1, 2, . . . , r. Assign

Φi(x1) =


1

2

(
1 + cos

(
π

δi

(
x1 −

xi−1
1 + xi+1

1

2

)))
, x1 ∈

[
xi−1
1 , xi+1

1

]
0, x1 ̸∈

[
xi−1
1 , xi+1

1

] ∈W 2
∞(0, X) (20)

for i = 1, 2, . . . , r. Make an additional change of variables

v = u− Φ, Φ =

r∑
i=1

ψi(t)
x21(x1 −X)2

∏
j ̸=i(x1 − xj1)

(xi1)
2(xi1 −X)2

∏
j ̸=i(x

i
1 − xj1)

(Z − x2)

(Z − xi2)
. (21)
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The function v is a solution to the problem

Mv = f −MΦ = f0, v(bi, t) = 0, i = 1, 2, . . . , r, v|t=0 = u0(x)− Φ(0, x), (22)

c2vx2 |S0 = g(t, x1)− g0(t, x1) = g̃, v|S\S0
= 0, g0 = c2(t, x1, 0)Φx2(t, x1, 0). (23)

Describe the method. Construct a triangulation of the domain G and the corresponding basis
{φi}Ni=1 of FEM. Denote the nodes by {yi}. We look for an approximate solution in the form

v =
N∑
i=1

Ci(t)φi. For convenience, we assume that the points bi = (bi1, b
i
2) (i = 1, 2, . . . , r) agree

with the nodes yN−r+1, . . . , yN . The functions Ci(t), i = 1, 2, . . . , N , are a solution to the system

MC⃗t +KC⃗ = −F⃗ + f⃗0, C⃗ = (C1, C2, . . . , CN )T , (24)

where

F⃗ =

(∫ X

0

g(t, x1)φ1(x1, 0) dx1, . . . ,

∫ X

0

g(t, x1)φN (x1, 0) dx1

)T

,

and the coordinates of the vector f⃗0 are of the form

fi = (f0(t, x), φi) +

∫ X

0

g0(t, x1)φi(x1, 0) dx1, (f0(t, x), φi) =

∫
G

f0(t, x)φi dx.

The matrices M and K have the entries Mij = (φi, φj) =
∫
G

φi(x)φj(x) dx and

Kjk = (c1(t, x)φkx1
, φjx1

) + (c2(t, x)φkx2
, φjx2

) + (a(t, x)∇φk, φj) + (a0(t, x)φk, φj),

respectively. We have that C⃗(0) = v0. A solution to the system (24) is defined by the finite
difference method. Define the step in time τ = T/m and replace (24) with the system

M
C⃗i+1 − C⃗i

τ
+Ki+1C⃗i+1 = −F⃗i+1 + f⃗i+1, C⃗i = (C1

i , . . . , C
N
i )T , i = 0, 1, 2, . . . ,m− 1, (25)

where Ck
i ≈ Ck(τi), F⃗i ≈ F⃗ (τi), f⃗i = f⃗0(τi), Ki = K(τi). The system (25) can be written as

follows:

Ri+1C⃗i+1=−τF⃗i+1+τ f⃗i+1+MC⃗i, C
k
i =Ck(τi), C⃗i = (C1

i , . . . , C
N
i )T , i=0, 1, 2, . . . ,m−1, (26)

where Ri+1 =M + τKi+1. Assign α⃗i = (α1
i , . . . , α

r
i )

T , α⃗i ≈ ⃗̃α(τi), αk
i ≈ α̃k(iτ).

In view of (22), we must have CN−r+i
k = 0 (i = 1, 2, , . . . , r). Assign Ck

0 = v0(bk)

(k = 1, . . . , N). The numbers αk
0 are solutions to the system

r∑
i=1

αi
0Φi(x

k
1) = c2(0, x1, 0)u0x2

(b′k). (27)

In dependence of smoothness of a solution we can require the consistency conditions
r∑

i=1

αi
0Φi(x1) = c2(0, x1, 0)u0x2(x1, 0), ∀x1 ∈ (0, X),

with αi
0 a solution to the system (27). But they are not necessary, for example, for solutions

u ∈W 1,2
2 (Q). We also assume that

det {Φi(b
k
1)}rk,i=1 ̸= 0, ψi(t) ̸= 0 ∀t, i. (28)
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Assume that we have found the vectors α⃗i, C⃗i. We seek the quantity C⃗i+1 as a solution to the
system

Ri+1C⃗i+1 = −τBα⃗i+1 + τ f⃗i+1 +MC⃗i, (29)

where N×r-matrix B has the entries bkj =
X∫
0

Φj(x1)φk(x1, 0) dx1 (j = 1, 2, . . . , r, k = 1, . . . , N).

The vector α⃗i+1 is determined from the system

τBi+1α⃗i+1 = τΦ0R
−1
i+1f⃗i+1 +Φ0R

−1
i+1MC⃗i (30)

where the matrix Bi+1 = Φ0R
−1
i+1B

i+1 of dimension r × r, where Φ0 is a r × N -matrix whose
first N − r columns are occupied by zeros and and the last r columns is the identity matrix
of dimension r × r. The matrix Bi can be singular (with small elements). To improve the
convergence, we employ the Tikhonov regularization. So we replace the system (29) with the
system

τ(B∗
i+1Bi+1 + ε)α⃗i+1 = τB∗

i+1Φ0R
−1
i+1f⃗i+1 +B∗

i+1Φ0R
−1
i+1MC⃗i, ε > 0, (31)

where B∗
i+1 is the adjoint matrix.

4. Program implementation and results of numerical
experiments

In this section, we analyze the results of numerical experiments for several groups of input
data. We will consider the dependence of accuracy of determining the coefficients αi and the
function u on the number N of points of the triangulation grid, the number of the overdetermi-
nation points bi and the distance l between them. The coefficients in (1) are defined as follows:
a0 = 1/(t + 1), a1 = x, a2 = y, c1 = x + 2, c2 = y + 2. Characteristics of the computer: Pro-
cessor: Intel(R) Xeon(R) CPU E5-2678 v3 @ 2.50GHz (2 processors); RAM: 64.0 GB; System
type: Windows 10 Pro 64-bit operating system.

First of all, we construct some test data. To define test functions, we construct a solution u to
the direct problem (1), (6) with the known boundary condition (6) and the function g depending
on the known functions Φi and αi. Next, we take a collection of points bi and determine the
data (5). Solving the inverse problem (1), (5), (6), we find a solution u and the functions {αi}.
Comparing given function {αi} and obtained after calculations, we can estimate the convergence
of the algorithm. To abbreviate the exposition, only graphs of the functions constructed and the
results of calculating the parameters αi will be presented.

Each experiment includes sequential steps:
- Setting the number and coordinates of overdetermination points and the functions αi;
- Initialization of the domain for constructing a solution to the direct and inverse problems;
- Definition of service arrays of points;
- Solving the direct problem (1), (6);
- Construction of the functions Φi and the auxiliary function Φ;
- Solving the inverse problem (22)–(23), restoring the solution u and the function αi.
Present the software implementation for the first group of data, for the rest we will present

only pivot tables.
For the first group of experiments, we take r = 3. The overdetermination points bi

have the coordinates: (0.2; 0.2), (1; 0.5), and (1.8; 0.8). We take α1 = t + 2, α2 = (t − 2)2, and
α3 = (t+ 1)3.
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Experimentally, it was found that the change in the number of grid points in time m prac-
tically does not affect the accuracy of the calculations, so we take it equal to 100. It was also
found that with an increase in the number of time points m, it is necessary to decrease the
regularization parameter ε, for example, for m = 200, you need to take ε 6 10−10, otherwise the
algorithm will diverge. For all groups of experiments, we take the parameter ε = 10−7.

1) As the domain of constructing the solution to the problem (1), (5), (6), we take a rectangle
with sides A = 2 and B = 1 located along the axes x1 and x2, respectively. The lower left corner
of the rectangle is at the point (0; 0), we will use this domain for all groups of experiments. Let’s
add to the domain r circles with radii R = 0.1 and centered at the points bi.

Using Delaunay triangulation, we get the first mesh Z0 with 214 nodes. The new grids
are obtained by dividing each triangle of the previous grid into 4 parts, we get Z1 = 812 and
Z2 = 3163, the Fig. 1.

a) b) c)

Fig. 1. Zone with nodes a) Z0 = 214; b) Z1 = 812; c) Z2 = 3163

2) Further, after constructing the triangulation mesh, it is necessary to determine the collec-
tions of indices of points, including the points bi.

3) The time step is defined as τ = T/m. To solve the direct problem (1), (6), we define the
right-hand side f = 1 (see (1)), the initial condition u0 = 1 and boundary function g assuming
that αi are known. The functions Φ, Φi, and the respective function g are constructed in accord
with the formulas from the previous section (see (21), (20)). Note that with these almost arbitrary
initial data, the consistency conditions at t = 0, x2 = 0 are not fulfilled. This gives rise a large
oscillation of a solution at t = 0. So, it is necessary to cut off a part of the solution that has a
large error at the initial time points which arise in the calculations. One more variant which was
used is to define the time shift variable as τs = 20 · T/m. It is necessary to extend the time line
by changing the start point to −τs · T/m. With the shift in time, we get m+ τs +1 time points.
This stage is not obligatory.

4) A solution to the direct problem (1), (6) is defined by the formulas of the previous section,
except for the equation (26) which is replaced with

C⃗i+1 = (Mi+1 + τKi+1)
−1 · (−τG⃗i+1 + τF⃗i+1 +Mi+1C⃗i), C

k
i = Ck(τi), (32)

where C⃗j = (C1
j , . . . , C

N−lp−tp−rp
j )T , j = 0, 1, 2, . . . ,m+ τs.

5) We calculate the functions MΦ, f0 (see (22)), and the first time derivative of the data
ψi
t = (ψi((j + 1)τ)− ψi(jτ))/τ .

6) For further analysis of the results of solving the problem (22)–(23) and restoring the solution
u, we introduce the following quantities that describe the calculation errors: the parameter
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εα = maxi(maxj |αj(iτ)−αj
i |), where the numbers αj

i are the results of calculations, j = 1, . . . , r;
εu = maxi,j |ui,j − u(yi, τj)| is the error in calculating the concentration of a pollutant, where
i = 1, 2, . . . , N and j = 1, 2, . . . ,m. Let Tτ be the total running time of the algorithm, including
the time to solve the direct problem, in seconds. The calculation results for three previously
defined grids are presented on the Fig. 2.

a) b) c)

Fig. 2. The results of calculations of functions αi on the grids a) Z0; b) Z1; c) Z2

It is quite natural that an increase in the number of nodes leads to an increase in the accuracy
of calculations. In this case, the calculation error εα, εu and the calculation time Tτ for three
grids, respectively, are equal to (1.7116, 0.0996, 74), (0.4589, 0.0285, 238), (0.1306, 0.0082, 1052).
As is easily seen, the error is inversely proportional to the number of nodes.

Even in the case of the grids Z0 and Z1, solutions obtained repeat the profile of the de-
sired solution. In this case, taking into account the increasing computation time, in subsequent
experiments we will use Z0.

For the second group of experiments, we take one overdetermination point and the
function α1 = log(t+ 1). The other data are the same.

We present a summary table indicating a different number and coordinates of overdetermi-
nation points, the functions αi, received errors, and calculation time, Tab. 1.

Table 1. Summary table

No bi εα εu τs
1 (0.5;0.3) 0.0303 0.0037 35.7
2 (0.5;0.5) 0.0384 0.0044 35.8
3 (0.5;0.7) 0.0572 0.0056 35.4
4 (1;0.3) 0.0248 0.0041 38.1
5 (1;0.5) 0.0315 0.0053 39.2
6 (1;0.7) 0.0475 0.0065 37.9
7 (1.5;0.3) 0.0374 0.0059 37.6
8 (1.5;0.5) 0.0443 0.0078 36
9 (1.5;0.7) 0.0679 0.0098 36.7

According to the results obtained, it can be seen that, despite the use of the grid Z0, the
solutions are quite accurate. The error increases as the distance from the lower bound increases,
which corresponds to the theoretical results (Theorem 1).
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For the next part of the experiments, we will add random noise to each point of the array
of the right-hand side vector, the noise value will be denoted by nz(i, j). Thus we get f(i, j) =
f(i, j) · (1 + nz(i, j)), with f(i, j) the right-hand side in the system, the results are presented in
Fig. 3. The coordinates of overdetermination point (0.5; 0.3) and all other parameters are the
same.

a) b)

Fig. 3. Result of calculations of the function α1 on a grid with noise a) nz = 25%; b) nz = 50%

Despite the introduced noise, the algorithm still shows good convergence, the calculation
errors are εα, εu: (0.19, 0.009) and (0.35, 0.017), respectively.

For the third experimental group, form a table with data for two points with the required
functions α1 = (t− 2)2 and α2 = log(t+ 1). The remaining data are the same.

Table 2. Summary table

No bi εα εu τs
1 (0.5; 0.3), (1; 0.3) 0.074 0.0067 48.6
2 (0.5; 0.3), (1; 0.5) 0.094 0.0087 50.8
3 (0.5; 0.3), (1; 0.7) 0.149 0.0154 51.7
4 (0.5; 0.3), (1.5; 0.3) 0.058 0.005 52.4
5 (0.5; 0.3), (1.5; 0.5) 0.083 0.0063 53.1
6 (0.5; 0.3), (1.5; 0.7) 0.145 0.011 52.5
7 (0.5; 0.5), (1; 0.3) 0.048 0.0047 50.6
8 (0.5; 0.5), (1; 0.5) 0.077 0.0069 50.7
9 (0.5; 0.5), (1; 0.7) 0.129 0.0097 49.7
10 (0.5; 0.5), (1.5; 0.3) 0.038 0.0046 54.5
11 (0.5; 0.5), (1.5; 0.5) 0.069 0.0052 53.6
12 (0.5; 0.5), (1.5; 0.7) 0.12 0.0083 52.5
13 (0.5; 0.7), (1; 0.3) 0.097 0.0086 49.9
14 (0.5; 0.7), (1; 0.5) 0.072 0.0057 50.1
15 (0.5; 0.7), (1; 0.7) 0.067 0.005 49.5
16 (0.5; 0.7), (1.5; 0.3) 0.054 0.0037 49.9
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According to the data obtained, it is possible to confirm the conclusion made earlier that the
distance between the points does not affect the accuracy of the calculation. Also, an increase in
the number of overdetermination points and the unknown functions αi increases the calculation
error.

Science Foundation and the Government of the Khanty-Mansiysk Autonomous Okrug-
YUGRA (Grant no. 22-11-20031).
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Восстановление потока на границе области по точечным
замерам

Егор И. Сафонов
Сергей Г.Пятков

Даниил А. Парунов
Югорский государственный университет
Ханты-Мансийск, Российская Федерация

Аннотация. Мы рассматриваем обратные задачи восстановления поверхностных потоков на гра-
нице области по точечным замерам. Задача некорректна по Адамару. Мы описываем точные усло-
вия, гарантирующие существование и единственность решений в пространствах Соболева и строим
численный метод, основанный на методе конечных элементов и методе конечных разностей по вре-
мени. Представлены результаты численных экспериментов, которые вполне удовлетворительны и
процедура устойчива по отношению к малым возмущениям.

Ключевые слова: поверхностный поток, регуляризация Тихонова, обратная задача, точечное
переопределение, конвекция-диффузия.
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