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Abstract. Higher symmetries and operator symmetries of linear partial differential equations are
considered The higher symmetries form a Lie algebra, and operator ones form an associative algebra.
The relationship between these symmetries is established. New symmetries of two-dimensional stationary
equations of gas dynamics are found.
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Introduction
It is well known that symmetries play a crucial role in finding solutions of differential equa-

tions. The theory of point symmetries is well described in numerous monographs and text-
books [1–3]. A large number of examples of invariant and partially invariant solutions were
presented [4,5]. One can say that theory of point transformations is well developed. Some gener-
alizations of the Lie theory have been proposed.The most successful advances include the theory
of higher symmetries of nonlinear equations and operator symmetries of linear equations [2,6–8].
However, the use of higher symmetry operators is complicated because transformations con-
structed using these operators act in infinite-dimensional spaces and they are represented by
formal series [2]. As a result, it is difficult to determine analogs of invariant solutions with
respect to such transformations.

Modified definitions of admitted operators and operator symmetries for linear systems of
partial differential equations are introduced in this paper. It is easily verified that operator sym-
metries form an associative algebra with respect to ordinary multiplication and a Lie algebra
with commutator multiplication. It is proved that some admitted operator corresponds to each
operator symmetry. It turns out that symmetries of linear equations can be transformed into
symmetries of nonlinear equations in some cases. Here, as an example, a system of two equa-
tions that describes plane, steady, irrotational gas flows is considered [9, 10]. Using hodograph
transformation, a linear system is obtained. The admitted operators of this system give rise to
an infinite series of symmetries of nonlinear gas dynamics equations.

1. Symmetries
Let us consider the matrix differential operator

L =
k∑

|α|>0

Aα(x)
∂|α|

∂xα1
1 · · · ∂x

αn
n
, (1)
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where α = (α1, . . . , αn), Aα are m ×m matrices depending on x = (x1, . . . , xn). The operator
defines a system of linear partial differential equations

Lu = 0, (2)

where u = (u1, . . . , um) is a set of unknown with respect to x functions.
Further, the operator of total derivative [1, 2] with respect to xi (i = 1, . . . , n) is denoted by

Dxi
. The expression Dα means the product of operators Dα1

x1
· · ·Dαn

xn
.

Definition 1. System (2) admits the operator in canonical form

X =
m∑
j=1

ηj
∂

∂uj
+

∑
16j6m
α∈Nn

Dαηj
∂

∂ujα
, (3)

if there is a matrix differential operator M such that the equality

Lη = MLu, (4)

is true, where u = (u1, . . . , um) is a set of arbitrary smooth functions of x, and η = (η1, . . . , ηm).
Relation (4) is called the defining equation.

The above definition differs from the standard one [2,3]. Obviously, condition (4) is sufficient
for the classical invariance of system (2). One can shown that it is necessary condition but it is
not needed here.

Remark. If system of partial differential equations L(u) = 0 is nonlinear system then condition
(4) must be replaced by the following condition

XL(u) = ML(u)

.
It follows from (4) that if u is a solution of system (2) then ũ = η is also solution of this

system. Thus the transformation x −→ x, u −→ η acts on solutions of system (2). Such
transformations are called L-symmetries.

Proposition 1. If η1, . . . , ηp are solutions of the defining equations

Lηk = MkLu, k = 1, . . . p, (5)

then

x −→ x, u −→
p∑
k=1

ckη
k, ck ∈ R (6)

is the L-symmetry of equation (2).

Indeed, since functions ηk satisfy (5) then the equality

L(
p∑
k=1

ckη
k) = (

p∑
k=1

ckMk)Lu.

is true due to linearity of the operators. This means that transformation (6) is L-symmetry.

Proposition 2. The set of L-symmetries of system (2) forms a monoid with the composition
operation.
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This immediately follows from the fact that symmetries act on solutions of the system and,
therefore, the composition of two L-symmetries of system (2) is an L-symmetry. Moreover, the
identity transformation is also a symmetry.

The second method of introducing symmetries of linear equations is described in [7,8]. Some
modified versions of definitions are provided below.

Definition 2. Let differential operator (1) be given. The differential operator S is called the
operator symmetry of equation (2) if there is a differential operator D such that

LS = DL. (7)

It is assumed that S is not a polynomial in L.

Obviously the operator symmetry S acts on solutions of equation (2), i.e., transforms solutions
into solutions.

Proposition 3. Let S1,S2 be two operator symmetries of system (2). Then

b1S1 + b2S2, S1S2, S1S2 − S2S1,

also operator symmetries for any b1, b2 ∈ R.

Proof. By condition the equalities

LS1 = D1L, LS2 = D2L.

are true. It follows that

L(b1S1 + b2S2) = b1LS1 + b2LS2 = b1D1L+ b2D2L = (b1D1 + b2D2)L,

LS1S2 = D1LS2 = D1D2L,

L(S1S2 − S2S1) = D1D2L−D2D1L = (D1D2 −D2D1)L. 2

Remark. If the commutator of operators S1,S2 is introduced according to the well-known formula
[S1,S2] = S1S2 − S2S1 then the last expression in the proof is rewritten as

L[S1,S2] = [D1,D2]L.

Corollary. The set of operator symmetries of system (2) forms an associative algebra over R with
respect to ordinary multiplication and a Lie algebra with respect to commutator multiplication.

Proposition 4. If S is an operator symmetry of equation (2), and u = (u1, . . . , um) is a set of
smooth functions then η = Su is a solution to the defining equation that generates L-symmetry.

By assumption, there exists an operator D that satisfies equality (7). Applying to u the
operators on the left and right sides of (7), equality (4) is obtained in which η = Su and M = D.

2. Symmetries of stationary gas dynamics equations
The L-symmetries introduced above can be applied to some nonlinear equations. As an

example, let us consider the well-known system of stationary equations

uy − vx = 0, (u2 − c2)ux + 2uvuy + (v2 − c2)vy = 0, (8)

that describes flat steady irrotational flows of compressible fluid [9,10]. Here u, v are components
of the velocity vector, c is the speed of sound, expressed from the Bernoulli integral

u2 + v2 + I(c2) = const.
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Writing equations (8) in terms of hodograph variables, system of linear equations [9]

xv − yu = 0, (u2 − c2)yv − 2uvxv + (v2 − c2)xu = 0, (9)

is obtained for two unknown functions x, y that depend on u, v. It is not difficult to see [9] that
both systems admit the following rotation, scaling and translation operators:

−v ∂
∂u

+ u
∂

∂v
− y ∂

∂x
+ x

∂

∂y
, x

∂

∂x
+ y

∂

∂y
,

∂

∂x
,

∂

∂y
.

The rotation operator admitted by the system (9) in canonical form has the form

(−y + vxu − uxv)
∂

∂x
+ (x+ vyu − uyv)

∂

∂y
.

Therefore, according to Proposition 1, the transformation

ũ = u , ṽ = v , x̃ = −y + vxu − uxv , ỹ = x+ vyu − uyv

acts on solutions of linear system (9) and it is an L-symmetry of this system. Using three other
symmetry operators, L-symmetry of the form

ũ = u, ṽ = v (10)
x̃ = c1(−y + vxu − uxv) + c2x+ c3, ỹ = c1(x+ vyu − uyv) + c2y + c4, (11)

is obtained, where ci are arbitrary constants.
In order to obtain symmetries of gas dynamics equations (8), it is necessary to express the

derivatives xu, xv, yu, yv in terms of the derivatives ux, uy, vx, vy. Using the hodograph transfor-
mation, it is easy to find these derivatives [9]

xu = vy/J, xv = −uy/J, yu = −vx/J, yv = ux/J,

where J =
∂(u, v)
∂(x, y)

is the Jacobian of functions u, v. Thus, the formulas of transformations (10),

(11) have the following form

ũ = u, ṽ = v (12)

x̃ = c1

(
−y +

vvy + uuy
J

)
+ c2x+ c3, ỹ = c1

(
x− vvx + uux

J

)
+ c2y + c4. (13)

The last expressions determine the transformation of solutions of system (8) back into solutions
of this system.

Combination of 10), (11) and

û = ũ, v̂ = ṽ

x̂ = b1(−ỹ + ṽx̃u − ũx̃v) + b2x̃+ b3, ŷ = c1(x̃+ ṽỹu − ũỹv) + b2ỹ + b4,

gives a new second-order symmetry of system (9).
One can obtain symmetries of system (9) of arbitrary order by means of compositions. Thus,

an infinite series of symmetries of the system in the hodograph variables arises. An infinite series
of symmetries of the gas dynamics equations (8) are obtained by recalculating the corresponding
derivatives.
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Conclusion
Using the found symmetries, it is possible to construct solutions from known ones. For exam-

ple, if scale-invariant solutions [9] of system (8) are taken then new solutions can be generated
using formulas (12), (13). The first works devoted to new types of symmetries have appeared
recently [11,12]. This approach requires further development and construction of new examples.
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Симметрии линейных и нелинейных уравнений
с частными производными

Олег В.Капцов
Институт вычислительного моделирования СО РАН
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Аннотация. Рассматриваются операторы высших и операторных симметрий линейных уравнений
с частными производными. Операторы высших симметрий образуют алгебру Ли, а операторные -
ассоциативную алгебру. Устанавливается связь между этими симметриями. Найдены новые сим-
метрии двумерных стационарных уравнений газовой динамики.

Ключевые слова: высшие симметрии, операторные симметрии, уравнения газовой динамики.
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