
Journal of Siberian Federal University. Mathematics & Physics 2024, 17(5), 586–598

EDN: JSPTAR
УДК 519.635.1, 519.635.4

On Calculation of Bending of a Thin Orthotropic
Plate Using Legendre and Chebyshev Polynomials
of the First Kind

Oksana V. Germider∗

Vasily N.Popov†

Northern (Arctic) Federal University named after M.V. Lomonosov
Arkhangelsk, Russian Federation

Received 10.04.2024, received in revised form 05.05.2024, accepted 24.06.2024

Abstract. The problem of bending of a thin orthotropic rectangular plate clamped at the edges is
considered in the paper. The solution is obtained using the Legendre and Chebyshev polynomials of the
first kind. The function that approximates the solution of the biharmonic equation for an orthotropic
plate is presented in the form of a double series expansion in these polynomials. Matrix transformations
and properties of the Legendre and Chebyshev polynomials are also used. Roots of these polynomials
are used as collocation points, and boundary value problem is reduced to a system of linear algebraic
equations with respect to coefficients of the expansion. The problem of bending of a plate caused by the
action of a distributed transverse load of constant intensity that corresponds to hydrostatic pressure is
considered. This boundary value problem has analytical solution. The results of calculations for various
ratios of the lengths of sides of the plate are presented. The values of deviation of solutions constructed
using Legendre and Chebyshev polynomials from the analytical solution of the problem are presented in
terms of the infinite norm and the finite norm in the space of square-integrable functions.
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Study of bending of a thin rectangular plate is essential in modeling thin-walled spatial struc-
tures. Structures made of orthotropic materials unlike structures made of isotropic materials have
high load-bearing capacity. Then one can reduce their weight with an increase in their strength.
In this regard, the development of methods for modelling of such plates under the action of vari-
ous types of loads is one of the main tasks of mechanics of thin-walled structures. Solution of the
problem of bending the median plane of a square orthotropic plate pinched on all sides is con-
structed [1]. The method of initial functions using an exponential series with unknown coefficients
was employed. Distributions of bending moments and shearing forces were found. The results of
calculation of bending of a rectangular plate based on integral transformations under the action
of constant intensity load, hydrostatic pressure and point load concentrated in the center of the
plate were presented [2], [3]. Bending of the orthotropic plate under various boundary conditions
was studied [4]. Numerical solution of the problem of bending of a rectangular plate consisting
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of orthotropic layers arbitrarily oriented in the plane of the plate which are rigidly fixed to each
other was obtained by the method of collocation and least residuals [5]. Equilibrium models of
plates with rigid inclusions were considered [6]. A dynamic stiffness matrix was constructed for
plane vibrations of a free orthotropic plate [7]. The results of analysis of frequencies of these
vibrations were presented [8]. Deflections of a structural element representing a plate with a
contour attachment the points of which are located on a rigid base when an acceleration pulse
is transmitted in the direction perpendicular to the plane of the plate were calculated [9]. Study
was conducted on bending of rectangular orthotropic thin plates with rotationally fixed edges
under the action of arbitrary transverse loads [10]. The procedure for obtaining the stress distri-
bution over the plate thickness for a strongly orthotropic material for three approximate models
was described [11]. The first approximate model is the classical Kirchhoff-Love theory. The
second model allows one to find transverse shear deformations and stresses. The third approxi-
mation is the Ambartsumian theory. It allows one to find transverse shear and normal stresses.
In the presented work, to construct a solution of the problem of bending of a thin rectangular
orthotropic plate with pinched edges systems of Legendre and Chebyshev polynomials of the
first kind orthogonal on the segment [−1, 1] are used. They play an important role both in the
general theory of special functions and in the theory of orthogonal polynomials. Function that
approximates the solution of the biharmonic equation for an orthotropic plate is represented as a
double series expansion over these polynomials in combination with matrix transformations. In
this case, the boundary value problem is written in dimensionless form. To find the coefficients
in this decomposition approach proposed in [12] is used. It is based on the properties of Leg-
endre and Chebyshev polynomials. The problem of bending of the plate due to the action of a
distributed transverse load of constant intensity that corresponds to hydrostatic pressure is con-
sidered. This problem has analytical solution. The results of numerical solution of the problem
are presented. Following [13], the obtained values of deviation of the constructed solutions using
Legendre and Chebyshev polynomials from the analytical solution of the problem are given in
terms of the infinite norm [14] and the finite norm in the space of functions integrable with the
square [14,15]. To discretize the integral norm the decomposition of the integrand function into
the Chebyshev series is used. Coefficients of this decomposition can be found using values of
this function calculated in the roots of Chebyshev polynomials. The importance of sampling by
function values at points is emphasized in [16]. Verification of the obtained values of the integral
norm was carried out using algorithm from [17] in the Maple computer algebra system.

1. Derivation of basic equations

Let us consider a thin orthotropic rectangular plate (06x6 d1, 06 y6 d2, −h/26 z6h/2)
which is under the action of a transverse load of intensity q(x, y). Let us take the median
plane of the undeformed plate for the xy plane, and z axis is directed towards the unloaded
outer plane. Volumetric forces are neglected. In this case, the partial differential equation to
determine bending of the plate has the form [18]:

Dx
∂4ω

∂x4
+ 2H

∂4ω

∂x2∂y2
+Dy

∂4ω

∂y4
= q, (1)

where ω(x, y) is the bending of the median surface of the plate, Dx = E′
xh

3/12, Dy = E′
yh

3/12,
H = D1 + 2Dxy, D1 = E”h3/12, Dxy = Gh3/1, G is the shear modulus, h is the thickness of
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the plate. Bending stiffnesses Dx and Dy are [19]

Dx =
Exh

3

12(1− ν1ν2)
, Dy =

Eyh
3

12(1− ν1ν2)
, D1 = ν1Dy = ν2Dx, (2)

where Ex and Ey are Young’s modules for the main directions of elasticity, ν1, ν2 are Poisson’s
coefficients.

For a plate clamped along the contour, i.e., for x = 0, d1 and y = 0, d2, boundary conditions
have the form [18]

ω = 0,
∂ω

∂x
= 0, x = 0, d1, (3)

ω = 0,
∂ω

∂y
= 0, y = 0, d2. (4)

Let us rewrite equation (1) and boundary conditions (3) and (4) in new dimensionless variables
x∗ = x/d1 and y∗ = y/d1:

∂4ω∗

∂x∗4 +
2H

Dx

∂4ω∗

∂x∗2∂y∗2
+

Dy

Dx

∂4ω∗

∂y∗4
= q∗, (5)

ω∗ = 0,
∂ω∗

∂x∗ = 0, x∗ = 0, 1, (6)

ω∗ = 0,
∂ω∗

∂y∗
= 0, y∗ = 0, d∗2; d∗2 =

d2
d1

, (7)

where q = q0q
∗, ω =

ω∗q0d
4
1

Dx
, q0 is the intensity of some constant load.

Let us construct a solution of boundary value problem (5)–(7) by the collocation method
using Chebyshev polynomials of the first kind and the roots of these polynomials as collocation
points.

2. Construction of a solution of boundary value problem
using Chebyshev polynomials of the first kind

Let us present function ω∗ as a double Chebyshev series. For this purpose, let x1 = 2x∗ − 1,
x2 = 2y∗/d∗2−1, where x1, x2 ∈ [−1, 1] since Chebyshev polynomials of the first kind are defined
on the segment [−1, 1]. In this case, problem (5)–(7) has the following form in variables x1 and
x2

κ1
∂4ω∗

∂x4
1

+ κ2
∂4ω∗

∂x2
1∂x

2
2

+ κ3
∂4ω∗

∂x4
2

= q∗, (8)

ω∗ = 0, κ4
∂ω∗

∂x1
= 0, x1 = −1, 1, (9)

ω∗ = 0, κ5
∂ω∗

∂x2
= 0, x2 = −1, 1, (10)

where κ1 = 16, κ2 =
32H

Dxd∗22
, κ3 =

16Dy

Dxd∗42
, κ4 = 2, κ5 =

2

d∗2
.
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Limiting the expansion of ω∗ to the terms of the series with numbers ki 6 ni for xi (i = 1, 2),
one can write

ω∗(x1, x2) =

ni∑
ki=0
i=1,2

ak1k2Tk1(x1)Tk2(x2) = T1(x1)⊗T2(x2)A, (11)

where Ti(xi) = (T0(xi)T1(xi) . . . Tni−1(xi)Tni(xi)) is a matrix of size 1×n′
i (n′

i = ni+1, i = 1, 2),
the elements of which are Chebyshev polynomials of the first kind Tji(xi) = cos(ji arccosxi)

(ji = 0, ni, i = 1, 2) [20], A is the matrix with size n′
1n

′
2 × 1 with elements ak1k2

: A =

(a00 a01 . . . an1n2−1 an1n2
)
T . The sign ⊗ in (11) is used to denote the Kronecker tensor product

of two matrices [21]. The elements of the matrix are found by collocation. Let us choose the
roots of polynomials Tn1+1 and Tn2+1 as collocation points in (8) for x1 и x2:

xi,ki
= cos

(
π(2ni − 2ki + 1)

2(ni + 1)

)
, ki = 0, ni, i = 1, 2. (12)

Then
Tji(xi,ki

) = cos

(
πji(2ni − 2ki + 1)

2(ni + 1)

)
, ji, ki = 0, ni, i = 1, 2. (13)

Moreover, if ni is odd then xi,mi
= −xi,ni−mi

and Tji(xi,mi
) = (−1)jiTji(xi,ni−mi

),
(mi = 0, (ni − 1)/2; ji = 0, ni; i = 1, 2). If ni is even then xi,ni/2 = 0, xi,mi = −xi,ni−mi

and Tji(xi,mi
) = (−1)jiTji(xi,ni−mi

), (mi = 0, ni/2− 1; ji = 0, ni; i = 1, 2). The value of Tji(0)

is found using the following representation [20]

Tji(xi) =

[ji/2]∑
k=0

ςkx
ji−2k
i , ςk =

(−1)k2ji−2k−1ji(ji − k − 1)!

(ji − 2k)!k!
,

where [ji/2] is the integer part of the number ji/2. If ji is even then Tji(0) = ςji/2 = (−1)ji/2,
otherwise Tji(0) = 0 (i = 1, 2).

The derivative of Ti(xi) with respect to xi is represented as a product of TiJi as follows [22]

dTji

dxi
= ji

ji−1∑
ki=0

ji+ki−nech.

ckiTki(xi), ji > 1,

where c0 = 1 and cki
= 2 (ki > 0), and Ji is an upper-triangular matrix with nonzero elements

Ji,0 ji = ji (ji is odd, ji = 1, ni) and Ji,ki ji = 2ji (ji − ki > 0 and ji + ki – odd, ji, ki = 1, ni,
i = 1, 2). Here and below, numbering of rows and columns in matrices is started from scratch.

For the second and fourth derivatives of Ti(xi) with respect to xi one can write

djTi

dxj
i

= TiJi
j , j = 2, 4; i = 1, 2. (14)

Substituting collocation points (12) into equation (8), a system of linear algebraic equations
is obtained. Then equations at points xi = xi,0 and xi = xi,ni are excluded, and equations
corresponding to boundary conditions ω∗(±1, x2,k2

) = 0 and ω∗(x1,k1
,±1) = 0 are introduced:

T1(−1)⊗T2(x2,k2
)A = 0, T1(1)⊗T2(x2,k2

)A = 0, k2 = 0, n2, (15)

T1(x1,k1)⊗T2(−1)A = 0, T1(x1,k1)⊗T2(1)A = 0, k1 = 1, n1 − 1. (16)
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At points xi = xi,1 and xi = xi,ni−1 equations satisfying conditions
∂ω∗

∂xi

∣∣∣∣
xi=±1

= 0 (i = 1, 2)

are written

T1(−1)J1 ⊗T2(x2,k2)A = 0, T1(1)J1 ⊗T2(x2,k2)A = 0, k2 = 0, n2, (17)

T1(x1,k1)⊗ (T2(−1)J2)A = 0, T1(x1,k1)⊗ (T2(1)J2)A = 0, k1 = 1, n1 − 1. (18)

As a result, using (11), (14)-(18), one can obtain

BA = F, B =

5∑
m=1

Bm, (19)

where F = (f00 f01 . . . fn1 n2
)T with elements fk1 k2

= q∗(x1,k1
, x2,k2

), (ki = 2, ni − 2, i = 1, 2),
square matrices Bm (m = 1, 5) of size n′

1n
′
2 × n′

1n
′
2 defined as

B1 = κ1G
′′
1J1

4 ⊗G′′
2, B2 = κ2G

′′
1J1

2 ⊗
(
G′′

2J2
2
)
, B3 = κ3G

′′
1 ⊗

(
G′′

2J2
4
)

B4 = G3 ⊗G2 +G′′
1 ⊗G4, B5 = κ4G5J1 ⊗G2 + κ5G

′′
1 ⊗ (G6J2) .

Here Gi, G”i, G3+i and G4+i are square matrices with sizes n′
i × n′

i (i = 1, 2):

Gi =



Ti(xi,0)

Ti(xi,1)

Ti(xi,2)

. . .

Ti(xi,ni−2)

Ti(xi,ni−1)

Ti(xi,ni
)


, G′′

i =



0

0

Ti(xi,2)

. . .

Ti(xi,ni−2)

0

0


, G2+i =



Ti(−1)

0

0

. . .

0

0

Ti(1)


, G4+i =



0

Ti(−1)

0

. . .

0

Ti(1)

0


.

To find values Ti(−1) and Ti(1) relations Ti,ji(−1)=(−1)ji , Ti,ji(1)=1, (ji = 0, ni, i = 1, 2)
are used citebibGer3.

The elements of matrix A are obtained from equation (19). Function ω∗ is restored the using
(11).

3. Constructing a solution of boundary value problem
using Legendre polynomials

Let us represent function ω∗ as a finite sum of a double Legendre series:

ω∗(x1, x2) =

ni∑
ki=0
i=1,2

ak1k2
Pk1

(x1)Pk2
(x2) = P1(x1)⊗P2(x2)A, (20)

where Pi(xi) = (P0(xi)P1(xi) . . . Pni−1(xi)Pni
(xi)) (i = 1, 2), and Legendre polynomials Pji(xi)

are defined as follows

P0(xi) = 1, P1(xi) = xi, (ji + 1)Pji+1(xi) = (2ji + 1)xiPji(xi)− jiPji−1(xi), j > 1.

As collocation points xi,ki
for xi in equation (8) the roots of polynomial Pni+1 (i = 1, 2)

are used. According to [22], these roots xi,ki are eigenvalues of a symmetric matrix Li of size
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n′
i × n′

i with nonzero elements Li,ki+1 ki = Li,ki ki+1 = (ki + 1)/
√

4(ki + 1)2 − 1 (ki = 0, ni − 1,
i = 1, 2). Moreover, if ni is odd then xi,mi

= −xi,ni−mi
and Pji(xi,mi

) = (−1)jiPji(xi,ni−mi
),

(mi = 0, (ni − 1)/2; ji = 0, ni; i = 1, 2). If ni is even then xi,ni/2 = 0, xi,mi
= −xi,ni−mi

and
Pji(xi,mi

) = (−1)jiPji(xi,ni−mi
), (mi = 0, ni/2− 1; ji = 0, ni; i = 1, 2). The value Pji(0) is

found using the following representation [22]

Pji(xi) =

[ji/2]∑
k=0

ςkx
ji−2k
i , ςk =

(−1)k(2ji − 2k)!

2ji(ji − 2k)!(ji − k)!k!
.

Thus, if ji is even then

Pji(0) = ςji/2 =
(−1)ji/2ji!

2ji
(
ji
2

)
!2
,

otherwise, Pji(0) = 0 (i = 1, 2).
The derivative of Pi(xi) with respect to xi is represented as a product of PiJi using [22]

dPji

dxi
=

ji−1∑
ki=0

ji+ki−nech.

(2ki + 1)Pki(xi), ji > 1,

where Ji is an upper-triangular matrix of size n′
i × n′

i with nonzero elements Ji,ki ji = 2ki + 1

(ji − ki > 0 and ji + ki – odd, ji, ki = 0, ni, i = 1, 2 For the second and fourth derivatives of
Pi(xi) with respect to xi one can write

djPi

dxj
i

= PiJi
j , j = 2, 4; i = 1, 2. (21)

Using the selected collocation points for equation (8), equalities (20) and (21)and taking into
account boundary conditions (9) and (10), system of equations (19) is obtained, where matrices
Gi, G”i, G3+i, G4+i and G”i are defined by Pi (i = 1, 2). In this case, the values Pi(−1) and
Pi(1) are found using as follows Pi,ji(−1) = (−1)ji , Pi,ji(1) = 1, (ji = 0, ni, i = 1, 2). Restoring
elements of matrix A from (19), one can obtain function (ω∗(x1, x2) from (20).

4. Numerical results and their analysis

As an example, let us consider the problem of bending of a rectangular orthotropic plate
under the action of a transverse load which is defined as

q∗(x∗, y∗) = cos(π(2x∗ − 1))

(
1 + cos

(
π

(
2y∗

d∗2
− 1

)))
+

+ cos

(
π

(
2y∗

d∗2
− 1

))(
2H

Dxd∗22
cos(π(2x∗ − 1)) +

ν2
ν1d∗42

(1 + cos(π(2x∗ − 1)))

)
. (22)

In this case, the analytical solution of boundary value problem (5)–(7) has the form

ω∗
a(x

∗, y∗) =
1

16π4
(1 + cos(π(2x∗ − 1)))

(
1 + cos

(
π

(
2y∗

d∗2
− 1

)))
. (23)

The values of the physical parameters from [1] and [18] are used in calculations: E′
x =

131 · 107 kg/m2, E′
y = 42 · 107 kg/m2, E′ = 5.1 · 107 kg/m2, G = 11.1 · 107 kg/m2. Deviations
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of constructed solutions (11) and (20) from analytical solution (23) are found by the infinite
norm [14]:

∥ω∗ − ω∗
a∥∞ = max

(x∗,y∗)∈Ω
|ω∗(x∗, y∗)− ω∗

a(x
∗, y∗)|, (24)

where Ω = [0, 1] × [0, d∗2], and the finite norm in the space of square integrable functions [14]
and [15]:

∥ω∗ − ω∗
a∥2 =

(∫ 1

0

∫ d∗
2

0

(ω∗(x∗, y∗)− ω∗
a(x

∗, y∗))2dx∗dy∗

)1/2

. (25)

Evaluation of expression (24) is carried out in term of the infinite norm of the difference
between vectors W and Wa with elements equal to the values of functions ω∗ and ω∗

a at uniformly
distributed points (x∗

k1
, y∗k2

) from Ω domain:

e∞ = ∥W −Wa∥∞ = max
06ki6mi

i=1,2

|ω∗(x∗
k1
, y∗k2

)− ω∗
a(x

∗
k1
, y∗k2

)|,

where W = (w00 w01 . . . wm1 m2
)T , wk1k2

= ω∗(x∗
k1
, y∗k2

), Wa = (wa,00 wa,01 . . . wa,m1 m2
)T and

wa,k1k2 = ω∗
a(x

∗
k1
, y∗k2

) (ki = 0,mi, i = 1, 2). The obtained values of the deviation estimate for

the infinite norm e∞ are presented in the Tab. 1 for n1 = n2 = n and m1 = m2 = 100 for d∗2 =
d2
d1

from [2,3] and [23]. The notation eT,∞ is used in the case of Chebyshev polynomials, and notation
eP,∞ is used for Legendre polynomials. The degree of 10 is indicated in parentheses. For values
d∗2 shown in Tab. 1 the maximum deflection value in the center of the plate is 0.002566496 10−9.
The third and sixth columns of this table present estimates of the deviations of solutions (11)
and (20) between successive iterations of n− 1 and n according to the infinite norm

en,∞ = max
06ki6mi

i=1,2

|ω∗
n(x

∗
k1
, y∗k2

)− ω∗
n−1(x

∗
k1
, y∗k2

)|,

where m1 = m2 =100. The fourth column of Tab. 1 contains the values of the infinite norm ẽT,∞
of the difference between Wa and the vector with elements obtained as a result of interpolation of
function (23) by Chebyshev polynomials. The corresponding values of the norm ẽP,∞ in the case
of Legendre polynomials are given in the seventh column of this table. It can be seen from the
results presented in Tab. 1 that solutions obtained using Legendre and Chebyshev polynomials
of the first kind coincide with the analytical solution with high accuracy (23) for relatively small
values of n. The obtained values of deviation for the infinite norm eT,∞ and eP,∞ of these
solutions approach the corresponding values of deviation norms ẽT,∞ and ẽP,∞ for polynomial
interpolations of function (23). It indicates good approximation properties of the method. The
values of eT,n,∞ and eP,n,∞ can be used as an estimate of the error of the constructed solutions.

To discretize norm (25), integrand function (ω∗(x∗, y∗) − ω∗
a(x

∗, y∗))2 is represented the in
the form of a partial sum of a double series according to Chebyshev polynomials

(ω∗(x1, x2)− ω∗
a(x1, x2))

2 =

qi∑
ki=0
i=1,2

aq,k1k2
Tk1

(x1)Tk2
(x2) = T1,q(x1)⊗T2,q(x2)Aq, (26)

where Tq,i(xi) = (T0(xi)T1(xi) . . . Tqi−1(xi)Tqi(xi)). Matrix elements Aq =

(aq,00 aq,01 . . . aq,q1q2−1 aq1q2)
T are determined using roots xi,ki

of polynomials Tqi+1 (i = 1, 2):

A = G1,q
−1 ⊗G2,q

−1Sq, (27)
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Table 1. Values of deviations in term of the infinite norm e∞, en,∞ and ẽ∞ versus n for q∗(x∗, y∗)
given in (22)

n eT,∞ eT,n,∞ ẽT,∞ eP,∞ eP,n,∞ ẽP,∞
d∗2 = 0.5

9 5.5(–6) 7.2(-6) 1.1(–7) 8.1(–6) 9.1(–6) 1.4(–7)
12 7.9(–9) 1.8(–8) 2.7(–11) 1.3(–8) 2.9(–7) 8.9(–11)
15 5.2(–11) 6.2(–11) 3.0(–13) 9.5(–11) 1.1(–10) 5.1(–13)
18 1.0(–14) 5.7(–13) 2.7(–17) 2.0(–14) 1.1(–12) 6.1(–17)

d∗2 = 1.0
9 5.4(–6) 7.1(–6) 1.1(–7) 7.9(–6) 8.9(–6) 1.4(–7)
12 7.8(–9) 1.8(–8) 2.7(–11) 1.3(–8) 2.9(–7) 8.9(–11)
15 5.1(–11) 6.1(–11) 3.0(–13) 9.3(–11) 1.0(–10) 5.1(–13)
18 1.0(–14) 5.6(–13) 2.7(–17) 2.0(–14) 1.1(–12) 6.1(–17)

d∗2 = 1.5
9 5.8(–6) 7.7(–6) 1.1(–7) 8.6(–6) 9.6(–6) 1.4(–7)
12 8.4(–9) 1.9(–7) 2.7(–11) 1.4(-8) 3.1(-7) 8.9(-11)
15 5.5(–11) 6.5(–11) 3.0(–13) 1.0(–10) 1.1(–10) 5.1(–13)
18 1.0(–14) 6.0(–13) 3.1(–17) 2.2(–14) 1.2(–12) 6.1(–17)

where Sq = (s00 s01 . . . sq1 q2)
T with elements: sk1 k2

= (ω∗(x1,k1
, x2,k2

) − ω∗
a(x1,k1

, x2,k2
))2,

(ki = 0, qi, i = 1, 2), square matrix Gi,q has size (qi + 1)× (qi + 1) and it is defined similarly to
Gi (i = 1, 2). The inverse to Gi,q matrix Gi,q

−1 is obtained by transposing Gi,q then multiplying
Gi,q

T by 2/(qi+1) and dividing elements of the first row of this matrix by 2 (i = 1, 2). It follows
from the equality [20]

2

qi + 1

qi∑
ki=0

Tj1(xi,ki
)Tj2(xi,ki

) = γT,j1δj1,j2 ,

where δj1,j2 is the Kronecker symbol, γT,0 = 2, γT,j1 = 1 (j1 > 0, i = 1, 2).
Using representation (26), one can obtain for the double integral in (25)

e22 =

∫ 1

0

∫ d∗
2

0

(ω∗(x∗, y∗)−ω∗
a(x

∗, y∗))2dx∗dy∗ =
d∗2
4

∫ 1

−1

∫ 1

−1

(ω∗(x1, x2)−ω∗
a(x1, x2))

2dx1dx2 =

=
d∗2
4

∫ 1

−1

T1,q(x1)dx1 ⊗
∫ 1

−1

T2,q(x2)dx2Aq. (28)

According to [20], there is the following relation for ji = 0 and even ji∫ 1

−1

Tji(xi)dxi =
2

1− j2i
, ji > 0, i = 1, 2,

otherwise, the value of the integral is zero.
Then ∫ 1

−1

Ti,q(xi)dxi = Ri, (29)

where Ri is a matrix of size 1× (qi +1) with elements Ri,0 ji = 2/(1− j2i ) (ji — even, ji = 0, qi,
i = 1, 2).

Substituting (27) and (29) into (28), one can obtain
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e22 =
d∗2
4
R1 ⊗Ri

(
G1,q

−1 ⊗G2,q
−1Sq

)
. (30)

The Tab. 2 shows the values of deviations eT,2 and eP,2 of constructed solutions (11) and
(20) from the analytical solution of problem (23) in term of the norm (25) based on (30) at
q1 = q2 = 10. The degree of 10 is indicated in parentheses.

Table 2. Values of deviations in term of the integral norm e2, en,2 and ẽ2 versus n for q∗(x∗, y∗)
given in (22)

n eT,2 eT,n,2 ẽT,2 eP,2 eP,n,2 ẽP,2

d∗2 = 0.5
9 2.0(–6) 2.5(–6) 2.6(–8) 3.1(–6) 2.8(–6) 2.5(–8)
12 2.9(–9) 6.6(–8) 8.2(–12) 4.7(–9) 1.0(–7) 6.3(–12)
15 1.9(–11) 2.3(–11) 6.4(–14) 3.4(–11) 3.8(–11) 5.4(–14)
18 3.8(–15) 2.1(-13) 7.6(-18) 7.5(–15) 4.1(–13) 8.2(–18)

d∗2 = 1.0
9 2.8(–6) 3.5(–6) 3.7(–8) 4.1(–6) 4.4(–6) 3.6(–8)
12 4.1(–9) 9.2(–8) 1.1(–11) 6.6(–9) 1.5(–7) 8.9(–12)
15 2.7(–11) 6.2(–11) 9.0(–14) 4.9(–11) 5.4(–11) 7.6(–14)
18 5.3(–15) 3.0(–13) 1.1(–17) 1.1(–14) 5.8(–13) 1.1(–17)

d∗2 = 1.5
9 3.5(–6) 4.4(–6) 4.5(–8) 5.1(–6) 5.5(–6) 4.4(–8)
12 5.0(–9) 1.1(–7) 1.4(–11) 8.2(–9) 1.8(–7) 1.1(–11)
15 3.3(–11) 4.0(–11) 1.1(–13) 6.1(–11) 6.7(–11) 9.3(–14)
18 6.7(–15) 3.7(–13) 1.5(–17) 1.3(–14) 7.1(–13) 1.5(–17)

Verification of the obtained values of eT,2 and eP,2 was carried out using algorithm from [17]
in the Maple computer algebra system. The third and sixth columns of Tab. 2 show the values
of deviations of obtained solutions (11) and (20) between successive iterations of n− 1 and n in
term of the integral norm calculated similarly to (30). The fourth column of this table shows the
values of norm ẽT,2 in the case of interpolation of function (23) by Chebyshev polynomials. The
corresponding values of norm ẽP,2 when using Legendre polynomials are given in the seventh
column of this table.

Tables 3 and 4 show the values of ω∗(x∗, y∗) in the center of the plate, as well as the norms
en,∞ and en,2 versus n for q∗(x∗, y∗) = 1 and q∗(x∗, y∗) = x∗, respectively. For the square
orthotropic plate (d∗2 = 1) under the action of a load with dimensionless intensity q∗(x∗, y∗) = 1,
comparison with the results obtained in [1] is presented. The maximum bending value in the
center of the plate ω∗(x∗, y∗) is equal to 0.00225757 for n = 12, and the value of 0.002257679 is
reached for n = 44, where n is the number of members of the exponential series [1]. The results
presented in Tables 1–4 show that solutions obtained using Legendre and Chebyshev polynomials
of the first kind have sufficiently fast convergence, and the obtained norm estimates can be used
as an estimate of the error of the constructed solutions in the corresponding function spaces.

Conclusion

Solution of the bending problem of a thin orthotropic rectangular plate clamped along the
contour is constructed using the collocation method in the matrix implementation. Chebyshev
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Table 3. Values of ω∗(x∗, y∗) in the center of the plate and the norms en,∞ and en,2 versus n for
q∗(x∗, y∗) = 1

n ω∗
T

(
1
2 ,

d∗
2

2

)
eT,n,∞ ω∗

P

(
1
2 ,

d∗
2

2

)
eP,n,∞ eT,n,2 eP,n,2

d∗2 = 0.5
9 0.000485168 6.4(–7) 0.000485279 7.2(–7) 1.9(–7) 2.2(–7)
12 0.000484932 4.2(–8) 0.000484931 5.5(–8) 1.1(–8) 1.5(–8)
15 0.000484933 2.1(–9) 0.000484933 2.7(–9) 2.7(–10) 3.6(–10)
18 0.000484933 8.2(-10) 0.000484933 1.1(–9) 6.6(–11) 1.1(–10)

d∗2 = 1
9 0.002258721 1.8(–6) 0.002259184 2.1(–6) 8.5(–7) 9.9(–7)
12 0.002257672 1.5(–7) 0.002257670 2.1(–7) 4.7(–8) 6.6(–8)
15 0.002257679 6.7(–9) 0.002257678 8.2(–9) 1.1(–9) 1.4(–9)
18 0.002257679 2.7(–9) 0.002257679 3.5(–9) 2.8(–10) 4.0(–10)

d∗2 = 1.5
9 0.002710060 7.4(–6) 0.002710432 7.5(–6) 3.0(–6) 3.1(–6)
12 0.002709799 1.2(–6) 0.002709800 1.9(–6) 5.4(–7) 8.1(–7)
15 0.002709801 4.6(–8) 0.002709801 6.3(–8) 1.3(–8) 1.8(–8)
18 0.002709802 1.3(–8) 0.002709803 1.9(–8) 2.7(–9) 4.3(–9)

Table 4. Values of ω∗(x∗, y∗) in the center of the plate and the norms en,∞ and en,2 versus n for
q∗(x∗, y∗) = x∗

n ω∗
T

(
1
2 ,

d∗
2

2

)
eT,n,∞ ω∗

P

(
1
2 ,

d∗
2

2

)
eP,n,∞ eT,n,2 eP,n,2

d∗2 = 0.5
9 0.000242584 6.0(–7) 0.000242640 6.6(–7) 1.1(–7) 1.3(–7)
12 0.000242466 3.4(–8) 0.000242466 4.3(–8) 5.7(–9) 8.1(–9)
15 0.000242466 3.6(–9) 0.000242466 5.1(–9) 4.5(-10) 6.8(–10)
18 0.000242466 6.1(-10) 0.000242466 8.5(–10) 4.2(–11) 6.6(–11)

d∗2 = 1
9 0.001129361 9.1(-7) 0.001129592 1.1(–6) 4.4(–7) 5.1(–7)
12 0.001128836 1.5(–7) 0.001128835 2.1(–7) 3.6(–8) 5.2(–8)
15 0.001128839 8.9(–9) 0.001128839 1.2(–8) 1.2(-9) 1.7(-9)
18 0.001128840 2.2(–9) 0.001128840 3.2(–9) 2.9(–10) 4.7(–10)

d∗2 = 1.5
9 0.001355030 4.1(–6) 0.001355215 4.2(–6) 1.7(–6) 1.7(–6)
12 0.001354899 7.8(–7) 0.001354900 1.1(–6) 2.9(–7) 4.2(–7)
15 0.001354901 5.0(–8) 0.001354900 6.6(–8) 9.3(–9) 1.3(–8)
18 0.001354901 1.5(–8) 0.001354901 2.3(–8) 2.5(–9) 4.1(–9)

polynomials of the first kind and Legendre polynomials are used as the basic system of functions.
The results of modeling the bending of the median plane of the plate under consideration for
various ratios of the lengths of the sides of the plate and types of transverse load using the roots of
the Chebyshev and Legendre polynomials are presented. It is shown that the constructed solution
of the boundary value problem converges quickly enough to the analytical solution given in the
work. Estimates of the errors of the constructed solutions for the infinite norm and the finite
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norm in the space of functions integrable with the square are obtained.
The research was carried out at the expense of a grant from the Russian Science Foundation,

project no. 24-21-00381.
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Аннотация. В работе получено решение задачи об изгибе тонкой ортотропной прямоугольной
пластины, защемленной по краям, с использованием многочленов Лежандра и Чебышева первого
рода. Функция, аппроксимирующая решение бигармонического уравнения для ортотропной пла-
стины, представлена в виде разложения в двойной ряд по этим многочленам в комбинации с мат-
ричными преобразованиями и свойствами многочленов Лежандра и Чебышева. С использованием
корней этих многочленов в качестве точек коллокации краевая задача приведена к решению си-
стемы линейных алгебраических уравнений относительно коэффициентов в разложении искомой
функции по этим многочленам. Представлены результаты вычисления изгиба пластины, обуслов-
ленного действием распределенной поперечной нагрузки постоянной интенсивности, нагрузки ви-
да, допускающего аналитическое решение краевой задачи, и с интенсивностью, соответствующей
гидростатическому давлению, для различных отношений длин сторон пластины. Полученные зна-
чения отклонений построенных решений с использованием многочленов Лежандра и Чебышева от
аналитического решения задачи приведены по бесконечной норме и конечной норме в пространстве
интегрируемых с квадратом функций.

Ключевые слова: изгиб тонкой ортотропной пластины, метод коллокации, многочлены Чебыше-
ва первого рода, многочлены Лежандра.
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