Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования «СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

<u>Институт цветных металлов</u> институт <u>Геологии месторождений и методики разведки</u> кафедра

> УТВЕРЖДАЮ Заведующий кафедрой _____ <u>В.А. Макаров</u> подпись инициалы, фамилия «_____ 2024 г.

ДИПЛОМНАЯ РАБОТА

21.05.02. Прикладная геология

код и наименование специальности

21.05.02.01 Геологическая съёмка, поиски и разведка месторождений

полезных ископаемых

код и наименование специализации

<u>Рудная минерализация интрузивных пород Кия-Шалтырского месторождения</u> тема

Пояснительная записка

Руководитель

подпись, дата

<u>Г.И.Шведов</u> инициалы, фамилия

<u>Л. Т. Кулему</u> инициалы, фамилия

Выпускник

подпись, дата

Красноярск 2024

Продолжение титульного листа ДР по теме: «Рудная минерализация интрузивных пород Кия-Шалтырского месторождения»

Консультанты по разделам:

<u>Геологическая часть</u> наименование раздела

подпись, дата

А. М. Сазонов инициалы, фамилия

<u>Геоинформатика</u> наименование раздела

подпись, дата

А.Б.Бородушкин инициалы, фамилия

Нормоконтролер

подпись, дата

<u>М.Н. Киселева</u> инициалы, фамилия

Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования «СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

<u>Институт цветных металлов</u> институт <u>Геологии месторождений и методики разведки</u> кафедра

> УТВЕРЖДАЮ Заведующий кафедрой ______ В.А. Макаров инициалы, фамилия «_____» ____ 2024 г.

ЗАДАНИЕ НА ВЫПУСКНУЮ КВАЛИФИКАЦИОННУЮ РАБОТУ в форме дипломной работы Студенту Кулему Лоран Тьебо

Группа: РМП 19-02 (ГГ 19-02) Направление: 121944044 «Геологическая съёмка, поиски и разведка месторождений полезных ископаемых»

Тема выпускной квалификационной работы: «Рудная минерализация интрузивных пород Кия-Шалтырского месторождения».

Утверждена приказом по университету № от

Руководитель ВКР: доцент Г. И. Шведов, ГМиМР, ИЦМ-СФУ

Исходные данные для ВКР: В.Е. Барсегян, А.В. Голубев и др. Кия-Шалтырское месторождение нефелиновых руд: Отчет о доразведке в 2009-2012 гг. с подсчетом запасов по состоянию на 01.01.2011 г. Красноярск, 2012, технический проект по состоянию на 01.01.2011 г. Красноярск, 2012.

Перечень рассматриваемых вопросов: геологическая часть, минералогическая часть, геоинформационная часть.

Перечень графического материала: геологическая карта листа N-45-XI (Белогорск) масштабов 1:200 000 и 1:100 000, геологическая карта Кия-Шалтырского месторождения масштаба 1:5 000, разрезы геологоразведочных линий.

Автором были отобраны образцы в течение двухлетних академических производственных практик на горизонтах 570, 580, 590, 600м м по профилям – IV, -III, -II, -I с июня по июль 2022г, и на горизонтах 690 и 700м с июня по июль 2023г.

КАЛЕНДАРНЫЙ ГРАФИК выполнения ВКР

Наименование и содержание этапа (раздела)	Срок выполнения
Геологическая часть	15.01.2024-15.06.2024
Минералогическая часть	15.01.2024-15.06.2024
Геоинформационная часть	15.04.2024-15.06.2024

«____» ____ 2024 г.

Руководитель ВКР

подпись

Задание принял к исполнению

подпись

<u>Г.И. Шведов</u> инициалы, фамилия

<u>Л. Т. Кулему</u>

инициалы, фамилия

РЕФЕРАТ

Выпускная квалификационная работа по теме «Рудная минерализация интрузивных пород Кия-Шалтырского массива» содержит <u>83</u> страницы текстового документа, <u>8</u> использованных источников, <u>8</u> листов графических приложений.

Объект работ: Кия-Шалтырское месторождение уртитов

Цель работы: изучение процесса образования рудной минерализации, а также закономерность распределения сульфидов в различных типах пород месторождения; установление корреляционной связи содержания серы, железа и Алюминий; оценка глубины распространения таких элементов как Со, Ni, Pt, Au.

В результате работ был изучен минеральный состав интрузивных пород, выяснилось, что часть рудных минералов образовалась в раннемагматическом этапе (титаномагнетит, ильменит, магнетит, гематит), а часть - в позднемагматическом этапе, а именно сульфиды (в которых развивались самородные элементы) и образовались они в разных фазах внедрения интрузивных пород.

Выяснялось, что присутствие рудных минералов с одной стороны снижают качества руд, но, с другой стороны ассоциируют сульфиды с такими ценными элементами, как золото, палладий, серебро, которые можно было попутно извлекать.

ФГАОУ ВО «Сибирский федеральный университет» Институт цветных металлов Горно-геологический факультет Кафедра ГМ и МР Раздел плана: тематические работы Полезное ископаемое: Алюминий Наименование объекта: Кия-Шалтырское месторождение Местонахождение объекта: Кемеровская обл., Тисульский район, п. Белогорск «УТВЕРЖДАЮ» Заведующий кафедрой _____ В. А. Макаров «_____» ____2024 г.

ГЕОЛОГИЧЕСКОЕ ЗАДАНИЕ

На изучение минерального состава пород и руд Кия-Шалтырского месторождения.

Основание выдачи геологического задания: задание на выполнение выпускной квалификационной работы приказ № от « » 2024г.

1. Целевое назначение работ: петрография, изучение сульфидных и оксидных рудных минералов и распределение химических элементов в рудном теле.

2. Геологические задачи и методы исследований.

- 2.1. Охарактеризовать петрографию Кия-Шалтырского массива
- 2.2. Спектральный анализ, рентгенно-флюоресцентный анализ порошков с целью получения содержаний их составляющих химических элементов.
- 2.3. Провести электронную микроскопию
- 2.4. Провести расчёт формул минералов по результатам электронной микроскопии.

3. Результаты

3.1. Петрографические заключения исследуемых пород

3.2. Доказать влияние сульфидов на качество руд, а также ценность на извлечение золота, серебра, палладия.

3.3. Генетические выводы о формировании интрузии.

Срок выполнения работы: 15.01.2024-25.05.2024 гг.

Руководитель проекта

подпись

<u>Г.И.Шведов</u>

инициалы, фамилия

Задание принял к исполнению

подпись

<u>Л. Т. Кулему</u> инициалы, фамилия

ΡΕΦΕΡΑΤ	6
СПИСОК ГРАФИЧЕСКИХ ПРИЛОЖЕНИЙ	9
СПИСОК ИЛЛЮСТРАЦИЙ	10
СПИСОК ТАБЛИЦ	13
ВВЕДЕНИЕ	14
1. Общие сведения об объекте работ	15
2. Геология месторождения	
2.1. Стратиграфия	18
2.2. Интрузивные образования (магматизм)	20
2.3. Тектоника	
3. Результаты исследований и интерпретация	
3.1. Результаты исследования предшественников	
3.2. Результаты исследований дипломной работы	
3.2.1. Отбор образцов	
3.2.2. Рудная Минералогия пород	31
3.2.2.1. Габбро	31
3.2.2.2. Ийолиты	48
3.2.2.3. Уртиты	56
3.2.2.4. Скарны	69
3.2.3. Диаграммы распределения сульфоарсенидов, диарсендов и	
распространённость минералов в породах	79
3.2.3.1. Сульфоарсениды:	79
3.2.3.2. Диарсениды	80
ЗАКЛЮЧЕНИЕ	82
СПИСОК ИСПОЛЬЗОВАННЫХ ЛИТЕРАТУР	83

СОДЕРЖАНИЕ

Лист	Наименование приложения	Масштаб	Приложение	Количество
				листов
1	Геологическая карта района	1:200 000	А	1
	работ			
2	Геологическая карта	1:100 000	Б	1
	Горячегорского и Кия-			
	Шалтырского месторождений			
	нефелиновых руд			
3	Геологическая карта Кия-	1:5 000	В	1
	Шалтырского месторождения			
4	Атлас исследуемых пород		Г	1
5	Атлас исследуемых минералов		Д	1
6	Атлас фотографий обнажений		E	1
	по карьеру			
7	Диаграммы распределения		Ж	1
	сульфоарсенидов, диарсенидов			
	Схема отбора проб			
8	Таблица распространённости		3	1
	рудных минералов в породах			

СПИСОК ГРАФИЧЕСКИХ ПРИЛОЖЕНИЙ

Всего <u>8</u> графических приложений на <u>8</u> листах.

СПИСОК ИЛЛЮСТРАЦИЙ

№ п/п	Наименование рисунков			
1.1	Обзорная карта района работ			
1.2	Уртит. Образец За. Горизонт 600м	17		
2.1	Схема распределения даек в рудном теле	25		
2.2	Схема тектонического районирования	26		
3.1	Точечная схема отбора проб на июль 2022г. Вид сверху	29		
3.2	Схема отбора проб по профилям видом сзади. Блок-диаграммы	30		
3.3	Пробы на профиле 4	30		
3.4	Габбро. Образец из коллекции предприятия. Горизонт неизвестен	31		
3.5	Средний петрографический состав габбро	32		
3.6	Габбро. 1- плагиоклаз, 2- оливин, 3- нефелин, 4-титан-авгит. Шлиф 18. Горизонт 620м	32		
3.7	Структура распада титаномагнетита. Анш. 26-2. Горизонт 720м	33		
3.8	Гематит совместно с пирротином заполняет промежутки между пластинками ильменита. Анш. 9. Горизонт 600м	34		
3.9	Цементация щелочных нерудных минералов пирротином. Анш. 26. Горизонт 720 м	34		
3.10	Зерно аргентопентландита в срастании с халькопиритом. А – отраженный свет. Б- Обратно-рассеянные электроны. Анш. 26-2-1. Горизонт 720м	35		
3.11	Аргентопентландит замещается пентландитом. А – отраженный свет. Б – обратно-рассеянные электроны. Анш. 26-2-1. Горизонт 720м	35		
3.12	Первичный пирит. Анш. 26-1. Горизонт 720м	36		
3.13	Вторичный пирит. Анш. 26-1. Горизонт 720м	37		
3.14	Халькопирит и пирротин. Анш. 26-2-1. Горизонт 720м	37		
3.15	Халькопирит в пирротине. Анш. 26-2. Горизонт 720м	38		
3.16	Галенит и халькопирит в составе пирротина. Отраженный свет. Анш. 26- 2-4. Горизонт 720м	38		
3.17	Галенит и халькопирит в составе пирротина. Фото в обратно-рассеянных электронах. Анш. 26-2-4. Горизонт 720м	39		
3.18	Зерно галенита в срастании с никелином в составе агрегата кобальтина. А – отраженный свет. Б – обратно-рассеянные электроны. Анш. 26-2-3. Горизонт 720м	39		
3.19	Джерфишерит замещается халькопиритом. А - Отраженный свет	40		
3.20	Кайма Джерфишерита вдоль включения нерудных минералов в пирротине. Отраженный свет. Анш. 26. Горизонт 720м	40		
3.21	Кобальтин с включениями никелина и гессита. А – отраженный свет. Б – обратно-рассеянные электроны. Анш. 26-2-3. Горизонт 720м	41		
3.22	Агрегаты глаукодота с включениями никелина, гессита и галенита. Анш. 26. Горизонт 720м	42		
3.23	Зерна никелина внутри агрегата кобальтина. Отраженный свет. Анш. 26- 2-3. Горизонт 720м	42		
3.24	Включение никелина в кобальтине. А – отраженный свет. Б – обратно- рассеянные электроны. Анш. 26-2-3. Горизонт 720м	43		
3.25	Гессит на границе никелина и кобальтина. А – отраженный свет. Б – обратно-рассеянные электроны. Анш. 26-2-3. Горизонт 720м	43		
3.26	Мелкие зерна цумоита по границе пирротина и кобальтина. Фото в обратно-рассеянных электронах. Анш. 26-2-3. Горизонт 720м	44		

	Агрегат аллоклазита с микронными включениями минералов палладия и				
3.27	самородного золота. А – отраженный свет. Б – обратно-рассеянные				
	электроны. Анш. 26-2-1. Горизонт 720м				
3.28	Графит развивается по гематиту. Анш. 26-3. Горизонт 720м	46			
3.29	Йиолит. Фото из коллекции предприятия. Горизонт не указан	48			
3.30	Средний петрографический состав йиолитов	49			
3.31	Йиолит. 1- нефелин, 2- титан-авгит, 3- апатит, 4- плагиоклаз. Шлиф 20. Горизонт 720м	49			
3.32	Структура распада титаномагнетита. Анш. 17а. Горизонт 580м	50			
3.33	Гематит (мартит) замещает магнетит. Анш. 13а-2. Горизонт 720м	51			
3.34	Замещение пирротина гематитом и пентландитом. Анш. 13. Горизонт 720м	51			
3.35	Скопление первичного пирита. Анш. 17. Горизонт 580м	52			
3.36	Марказит в срастании с пиритом. Анш. 17а. Горизонт 580м	52			
3.37	Замещение пирротина халькопиритом и сфалеритом. Анш. 13а-1. Горизонт 720м	53			
3.38	Кристалл кобальтина в пирротине. Анш. 13а-1. Горизонт 720м	53			
3.39	Графитовая структура. Анш. 8. Горизонт 590м	54			
3.40	Уртит– текстура массивная, неоднородная, зернистая; трахитовая макроструктура. Образец 3а. Горизонт 630м	56			
3.41	Средний петрографический состав уртитов	56			
	Уртит. Агпаитовая структура, идиоморфный нефелин (1) вокруг				
3.42	ксеноморфный титан-авгит (2). Шлиф №14. Увеличение 10х. Горизонт	57			
	580м. Профиль -Ша				
3.43	Структура распада титаномагнетита. Анш. 10. Горизонт 590м	58			
3.44	Полоски ильменита. Анш. 7а. Горизонт 580м	59			
3.45	Гематит замещает магнетит. Анш. 4а. Уртит. Горизонт 600м	59			
3.46	Пирротин. Анш. 3. Горизонт 600м	60			
3.47	Клиновидные зерна пентландита в пирротине. А- отраженный свет. Б – обратно-рассеянные электроны. Анш. 0. Горизонт неизвестен	61			
3.48	Первичный пирит вместе с марказитом. Анш. 3. Горизонт 600м	61			
3.49	Вторичный пирит. Анш. 3. Горизонт 600м	62			
3.50	Халькопирит. Анш. 4а. Горизонт 600м	62			
3.51	Агрегаты арсенопирита по краям пирротина. А- отраженный свет. Б- обратно-рассеянные электроны. Анш. 5. Горизонт 600м	63			
3.52	Нарастание арсенопирита на пирротин. А-отраженный свет. Б-обратно-рассеянные электроны. Анш. 5. Горизонт 600м	63			
3.53	Молибленит. Обратно-рассеянные электроны Анш №3 Горизонт 590м	64			
3.54	Графит. Анш. 10. Уртит. Горизонт 590м	65			
2.21	Включения леллингита в кобальтине (А) и в герслорфите (Б).				
3.55	А – Анш. 5. Горизонт 600м	65			
	Фото в обратно-рассеянных электронах. Анш. 0. Горизонт неизвестен				
256	Гессит в составе герсдорфита. А - отраженный свет. Б – в обратно-	((
5.30	рассеянных электронах. Анш. 0	00			
3.57	Корреляционная диаграмма содержания S, Fe, Al ₂ O ₃				
3.58	Скарн. Образец 4. Горизонт 700м	69			
3.59	Структура распада титаномагнетита. Анш. 2. Горизонт 600м	70			
3.60	Пентландит развивается по краям пирротина. Анш. 2. Горизонт 600м.				

3.61	Мелкие выделения пентландита в пирротине. Отраженный свет. Анш. 2. Горизонт 600м					
3.62	Включение пентландита в пирротине. Анш. 2. Горизонт 600м					
3.63	Сфалерит по краю халькопирита. Анш. 2. Горизонт 600м	72				
3.64	Микронное зерно галенита в срастании с пирротином. Обратно- рассеянные электроны. Анш. 2. Горизонт 600м	73				
3.65	Мелкое зерно гессита в пирротине. Фото в обратно-рассеянных электронах. Анш. 2. Горизонт 600м	73				
3.66	Лёллингит. Обратно-рассеянные электроны. Анш. 2. Горизонт 600м	74				
3.67	Включение самородного золота в арсенидах и сульфоарсенидах кобальта и никеля. А – отраженный свет. Б – обратно-рассеянные электроны. Анш. 2. Горизонт 600м	75				
3.68	Графит развивается в пирротине. Анш. 2. Горизонт 600м	76				
3.69	Зерно садбериита в срастании с галенитом в агрегате аллоклазита. А – отраженный свет. Б – обратно-рассеянные электроны. Анш. 10-3. Горизонт 720м	77				
3.70	Диаграмма распределения сульфоарсенидов в габбро, скарнах и уртитах	79				
3.71	Диаграмма распределения диарсенидов в скарнах и уртитах	80				
3.72	Распространённость минералов в типах пород	81				

СПИСОК ТАБЛИЦ

№ п/п	Наименование таблиц	Стр.
2.1	Средний химический состав даек и шлир в рудном теле уртитов в	24
2.1	контуре подсчете запасов	24
3.1	Химический состав пентландита и аргентопентландита	36
3.2	Химический состав галенита	39
3.3	Химический состав джерфишерита, анш. 26	41
3.4	Химический состав никелина, анш. 26-2-3	43
3.5	Химический состав гессита	44
3.6	Химический состав цумоита	44
3.7	Химический состав сплава золота и серебра	45
3.8	Схема минералообразования в габбро	47
3.9	Схема минералообразования в ийолитах	55
3.10	Химический состав арсенопирита, образец 5	64
3.11	Химический состав молибденита	64
3.12	Химический состав леллингита	66
3.13	Данные спектрального анализа проб уртитов	67
3.14	Схема минералообразования в уртитах	68
3.15	Химический состав галенита	73
3.16	Химический состав гессита	74
3.17	Химический состав леллингита	74
3.18	Химический состав сплава золота и серебра в скарне	75
3.19	Химический состав садбериита	77
3.20	Схема минералообразования в скарнах	78

введение

Алюминий является одним из ценных металлов в развитии нашего общество из-за широкого применения. Он применяется в авиации, в космической технике, в электротехнике, в судостроении, в автотранспорте, в медицине и в быту.

В России в качестве алюминиевых руд используют чаще всего магматические горные породы, богатые окисью алюминия, такие как нефелиновые сиениты, уртиты и их разновидности.

Одним из представителей источников алюминиевых руд является Кия-Шалтырский массив, уртиты которого являются сырьем для Ачинского глиноземного комбината.

Материалы для выполнения дипломной работы были отобраны в течение двухлетних академических производственных практик на горизонтах 570, 580,590, 600м м по профилям –IV, -III, -II, -I с июня по июль 2022г, и на горизонтах 690 и 700м с июня по июль 2023г. Из отобранных материалов были изготовлены шлифы, аншлифы и порошки.

1. Общие сведения об объекте работ

Кия-Шалтырское месторождение нефелиновых руд (уртитов) расположено в северной части хребта Кузнецкий Алатау. Административно месторождение находится в Тисульском районе Кемеровской области, в 50 км от границы с Красноярским краем. Технологически Кия-Шалтырский нефелиновый рудник подчинён Ачинскому глинозёмному комбинату (АГК) Красноярского края.

Географические координаты месторождения: 88°27'40"в.д. и 55°00'20"с. ш, площадь горного отвода составляется 5,95км², земельного (с учетом отвалов и сооружений) 9,46 км² (рис.1).

Рис.1.1 – Обзорная карта района работ

Кия-Шалтырское месторождение уртитов открыто в 1957г геологом А.М. Прусевичем. В ноябре 1969 года выдана первая промышленная руда.

Бортовое содержание глинозёма не менее 24%, окиси калия и натрия в сумме не менее 10%, окислов железа не более 7% и кремнезёма не более 43%. Минимальное среднее содержание в подсчётном блоке глинозёма 26% при минимальном среднем содержании калия и натрия в сумме 11,5% и максимальном среднем содержании окиси железа 6% и кремнезёма 42%. Запасы нефелиновой руды на момент разведки составляли 236 млн. тонн при качестве по глинозему 27,78%.

В геологическом строении месторождения участвуют разнообразные осадочные, осадочно–вулканогенные и метаморфические породы возрастного интервала от позднего рифея до девона. Осадочно-метаморфический комплекс прорывается интрузивными породами, преимущественно, основного и щелочного состава.

нефелиновых Кия-Шалтырское месторождение руд, представленное уртитами, приурочено к одноименному массиву Горячегорского щелочногабброидного комплекса раннедевонского возраста, который контролируется крупным региональным Шалтырским разломом. Кия – Шалтырский массив расположен в левобережье реки Кийский Шалтырь, в его верхнем течении, являясь геологическим образованием. Массив уникальным окаймлен зоной метасоматических пород в виде роговиков и скарнов.

Кия – Шалтырское месторождение имеет форму штока удлиненной формы, которое вытянуто в меридиональном направлении и подковообразно загнуто на южном фланге месторождения, в глубину имеет форму клина. Параметры рудного тела: длина по поверхности - 2,3км; ширина от 20 до 220м; средняя мощность -120м; падение рудного тела юго–западное-западное, крутое, под углами 80-90°. Рудное тело полностью выклинивается на горизонте +320м.

Рудное тело в основном однородное, представленное одним петрографическим типом пород – уртитами. По своему внешнему виду, химическому и минеральному составу четко выделяется от вмещающих карбонатных и вулканогенных пород и прорывающих их габброидов.

Уртиты – светло-серого цвета, средне и крупнозернистые породы, сложенные идиоморфными зернами нефелина и ксеноморфными зернами титанистого авгита. Среднее содержание нефелина изменяется от 79,8% до 89,1%. Содержание Al₂O₃ колеблется от 21% до 32%. Вторичные минералы представлены: канкринитом, содалитом, мусковитом, хлоритом, альбитом и т. д. Коэффициент рудоносности - 0,92 - 0,97%.

Рис.1.2 – Уртит. Образец За. Горизонт 600м

Однородность рудного тела уртитов, нарушается присутствием разубоживающих примесей в виде даек, представленных ийолит - порфирами, камптонитами, диабазовыми порфиритами, шлировыми выделениями и некондиционными рудами в зонах трещиноватости, дробления и вторичных метасоматических изменений. Мощность включений составляет от первых сантиметров достигая 2-3м и до 12м.

Протяженность включений от десятка до сотен метров. Доля включений этих пород составляет около 10% от объема нефелиновой руды.

Вмещающие породы составляют внешнюю вскрышу блочной модели. Рыхлая вскрыша, представленная обломками коренных пород, сцементированных щебнисто-глинистым материалом. В составе скальной вскрыши отмечаются: известняки с кремнистыми прослоями до 25%, известняки с кремнистыми прослоями до 75%, роговики выветрелые, роговики массивные, крепкие, трещиноватые, габбро разной зернистости, туфы и туфопесчаники, туфогравелиты, ийолиты, а также метасоматические породы: скарнированные известняки, скарны, мраморы. Гидрогеологические условия разработки месторождения сложные. Подземные воды не напорные, трещинные, слабоминерализованные [1, 5].

2. Геология месторождения

Кия-Шалтырское месторождение расположено в северной части хр. Кузнецкого Алатау. Оно приурочено к одноименному массиву Горячегорского щелочно-габброидного комплекса раннедевонского возраста.

Кия-Шалтырский массив является уникальным геологическим образованием и признан геологическим памятником Кемеровской области. Он расположен в левобережье р. Кийский Шалтырь, в его верхнем течении.

В структурно-тектоническом плане интрузив залечивает контролирующее его разрывное нарушение, которое в районе месторождения имеет простирание юго-восточного направления. Вмещающими образованиями массива являются породы усть-кундатской и усинской свит раннего кембрия.

2.1. Стратиграфия

В соответствии с современными представлениями унифицированных схем корреляции стратиграфических подразделений и развития магматизма северной части Кузнецкого Алатау с использованием материалов работ ГДП-200 листа N-45-XI и с учетом всех ранее выполненных геологосъемочных, поисковых, тематических и разведочных отчетов стратиграфические подразделения в районе месторождения следующие.

усть-кундатская свита ($C_1 uk$) представлена известняками чистыми, доломитистыми, глинистыми, доломитисто-глинистыми, песчанистыми, углеродистыми, реже доломитами, глинистыми доломитами, мергелями, алевролитами, песчаниками, туфопесчаниками, гравелитами, конгломератами, туфоконгломератами, туфогравелитами, сланцами кремнистыми, углеродисто– глинистыми, глинистыми и глинисто-кремнистыми, базальтами, туфами кислого и основного составов, кварцитами, известняковыми конгломератами.

Карбонатная часть разреза свиты в районе месторождения сложена известняками, часто углеродистыми, обломочными, мраморированными, иногда глинистыми, доломитистыми, песчанистыми, с прослоями алевролитов, песчаников и углеродисто-глинисто-кремнистых сланцев. Эти образования контактируют с Кия-Шалтырским массивом с юго-запада и постепенно вверх по разрезу на восток, северо-восток сменяются породами осадочно-вулканогенной части разреза.

Осадочно-вулканогенная часть разреза свиты представлена туфопесчаниками, туфоалевролитами, туфоконгломератами, туфами и лавами базальтов, реже дацитов, с прослоями известняков, сланцев кремнистоуглеродисто-глинистых и реже рассланцованных туффитов.

В западной части месторождения контакт существенно карбонатных образований с осадочно-вулканогенным разрезом свиты приурочен к зоне тектонического нарушения.

На контакте с образованиями Кия-Шалтырской интрузии породы устькундатской свиты ороговикованы и скарнированы. В зонах влияния разрывных нарушений они анкеритизируются и окварцовываются. Ширина зон ороговикования от первых до нескольких десятков, реже 100-200 метров, а скарнирования - от первых сантиметров до 10-15 (чаще 1-5) метров.

Отложения согласно залегают на доломитах растайской свиты и согласно перекрываются известняками усинской свиты. Максимальная мощность ее отложений в районе достигает 2000 м.

усинская свита (C_1 иs) представлена известняками чистыми, глинистыми, доломитистыми, водорослевыми и археоциатовыми (линзы и прослои) с редкими линзами и прослоями алевролитов, глинистых и кремнисто-известковистых сланцев, туффитов и туфов базальтов, конгломератов. Известняки, наиболее распространённые породы свиты, преобладают чистые известняки. Конгломераты встречаются крайне редко. Мощность единичных прослоев и линз алевролитов, глинистых и кремнисто-известковистых сланцев колеблется от 0,1 до 1 м, а туффитов и туфов базальтов достигает 30-60 м. Породы свиты участвуют в строении крыльев синклиналей с довольно крутыми углами падения (45-75°).

Контакты известняков усинской свиты с породами усть-кундатской свиты в районе Кия-Шалтырского массива чаще тектонические, севернее (вблизи пос. Белогорск) установлены факты их согласного залегания.

В известняках усинской свиты установлены многочисленные остатки археоциат и водорослей, характерных для атдабанского яруса раннего кембрия. Свита залегает согласно на отложениях усть-кундатской свиты и перекрывается с размывом породами полтавской свиты. Мощность свиты составляет от 800 до 2300 м.

Четвертичные отложения. В пределах участка месторождения представлены сплошным, маломощным (0,5 – 3,0м) делювиальным чехлом. В составе делювия широко развиты мелкие обломки и щебень различных пород, сцементированные песчано-глинистым материалом [1, 5].

2.2. Интрузивные образования (магматизм)

Алтае-Минусинский ранне-среднедевонский магматический пояс. Минусинский сегмент. Горячегорский сектор

Интрузивные образования Горячегорского сектора Минусинского сегмента представлены субвулканическами телами Базырско-Ашпанского трахит-тефрит-трахибазальтового комплекса и их комагматичными интрузивами Горячегорского щелочно-габброидного и Карадатского щелочно-сиенитового комплексов.

Горячегорский щёлочно-габброидный комплекс (E1, E1vD1g1, Ev, EoD1g2, $Ev_{,}Ev_{\pi}D_{1}g_{3}$, $Eiv_{D_{1}}g_{4}$, $Ev_{,}\varphi\xi D_{1}g_{5}$). К Горячегорскому комплексу отнесены нефелинсодержащие и ассоциирующие с ними щелочные и умеренно-щелочные мезо-гипабиссальные породы района. Породы комплекса образуют массивы сложного и простого строения. В массивах сложного строения присутствует до 5 разновидностей пород со своими дайковыми фациями, а в телах простого строения – одна или две разновидности. Однако нет ни одного массива, где присутствовали бы все члены ассоциации щелочных и сопутствующих им пород. Количественно в районе преобладают интрузивы простого строения. Массивы комплекса небольшие (до 2–4 км²), гипабиссальные, моно- и полипородные. Их форма удлиненно-овальная неправильная, предопределена конфигурацией вмещающих полостей растяжения. Преимущественная ориентировка тел субмеридиональная. Самые крупные из них: Кия-Шалтырский (петротип), Кийский, горы Дедовой. На сопредельных территориях известны Горячегорский, руч. Ветвистого, Семеновский, Дмитриевский и др. относительно крупные массивы. Существенные вариации строения и состава интрузивных массивов, петрографического состава основных разновидностей пород обусловлены спецификой дифференциации базитового исходного расплава при формировании интрузивов.

В составе комплекса выделяется 5 фаз внедрения: І фаза – уртиты, ийолитуртиты, ийолиты; II фаза – пойкилитовое разнозернистое мезократовое тералитов); фаза трахитоидное нефелинсодержащее габбро (до III _ лейкократовое нефелинсодержащее габбро (до тералитов), IV фаза – двуполевошпатовые ийолит-уртиты, V фаза – нефелиновые сиениты, щелочные сиениты. Завершают становление комплекса небольшие штокообразные и местами дайкообразные щелочного порфирового микрогаббро, тела насыщенные ксенолитами габброидов II и III фаз, менее - нефелиновых сиенитов. Контакты фаз между собой и с вмещающими образованиями крутопадающие, близкие к вертикальным, co ступенчато изогнутыми плоскостями. Количественные соотношения разновидностей пород сильно варьируют в пределах отдельных массивов.

Вариации составов однотипных пород, а также различия в породных «наборах» разных массивов объясняются спецификой геолого-тектонических условий их формирования. Наиболее полно породы комплекса представлены в Кия-Шалтырском (петротип) и Горячегорском интрузивах. Наиболее распространенными образованиями комплекса являются нефелиновые сиениты,

а наименее – уртиты. Последние образуют три небольших тела: Светлинское, Кийский Выход и в составе Кия-Шалтырского массива. Общим для тел «настоящих» уртитов (Кия-Шалтырский, Светлинский массивы и Кийский Выход) является их размещение среди карбонатных пород. При этом в Кия-Шалтырском массиве уртиты тесно ассоциируют с нефелинсодержащими габброидами, а в остальных случаях они слагают автономные тела, значительно удаленные от интрузивов раннедевонских габброидов. Причиной такой удаленности, по мнению А.Н. Уварова [1], является возникновение в процессе дифференциации самостоятельной и весьма подвижной уртитовой фазы, легко перемещающейся в пространстве. Немаловажное значение при возникновении уртитов имеет карбонатный субстрат, служащий той изолирующей средой, в которой может «вызреть» уртитовая фаза.

Каждой из разновидностей плутонических пород соответствуют свои дайково-жильные производные. Контакты даек ступенчатые, что типично для тел, заполняющих трещины отрыва. Дайковая фация I фазы представлена микроийолитами, они образуют тела мощностью от 1 см до 1 м, редко более. Иногда уртитов встречаются небольшие среди тела пегматитов, соответствующих по составу ийолитам. Дайки II фазы представлены щелочным микрогаббро и камптонитами мощностью от 10 см до 1-2 м, III фазы тералитовым порфиритами и микрогаббро, IV фазы - двуполевошпатовым микроийолит-уртитами, V фазы — нефелиновыми микросиенитами, реже нефелиновых сиенитов. Как правило, лайки пегматитами комплекса пространственно тесно сопряжены со своими плутоническими аналогами, но могут проявляться и в отрыве от них. Среди даек жильных фаций пойкилитовых габброидов, нефелиновых монцонитов трахитоидных щелочных И нефелиновых сиенитов встречаются аномально обогащённые нефелином (до 80%) "дайки-монстры". Нередко их относят к производным уртитов, именуя полевошпатовыми ийолитами, хотя по своей сути они являются то тералитовыми порфиритами (плагиоклаза 10-12%, нефелина до 75%), то нефелиновыми 10-15%, сиенитами (калишпата не более нефелина ЛО 75%). то двуполевошпатовыми ийолит-уртитами (калишпат + плагиоклаз группы андезита-олигоклаза около 10-35%, нефелин – до 75-80%). Эти «монстры» проявлены практически по всей площади распространения горячегорского комплекса, но чаще всего встречаются в среднем и верхнем течении Кийского Шалтыря и в верхнем течении Кии. Обычно они проявляются на значительном удалении от массивов щелочных пород, но встречаются и внутри этих массивов (Кия-Шалтырский, Горячегорский, Малошалтырский интрузивы). Причины появления "даек-монстров" не изучены. На контакте с телами комплекса происходит ороговикование (до роговиков), нефелинизация, калишпатизация и альбитизация силикатных пород, скарнирование (до скарнов) и мраморизация (до мраморов) карбонатных пород, иногда развиваются кальцифиры. На контакте габбро происходит габброизация уртитов, развитие с метасоматических пироксенитов по уртитам непосредственно на контакте и в

виде жил, проникающих в уртиты. Ширина зоны контактово измененных пород от 1 см до 2-5 м, иногда до нескольких десятков метров.

Дайковая фация I фазы (микроийолиты и порфировидные ийолиты)

Дайковая фация I фазы представлена микроийолитами и порфировидными ийолитами, образующими дайки мощностью от 1 см и менее до 1, редко 3-4 м. Часто в эндоконтактах уртиты, обогащаясь пироксеном, кальцитом и апатитом, постепенно переходят в ийолит–уртиты и ийолиты.

Протяженность их обычно составляет от первых м до 15-20 м, в редких случаях достигает до 150-200 м. Наиболее протяженные и мощные дайки микроийолитов в уртитах зафиксированы в северной и центральной частях рудного тела, где их мощность (пересечение по керну) составляет более 3 м – 3,2 м. Микроийолиты второй генерации образуют маломощные (5-10 см) жилоподобные тела с резкими контактами, рассекающие микроийолиты первой генерации, от которых не отличаются по составу.

Контакты даек часто ступенчатые, что типично для тел, заполняющих трещины отрыва. Дайковые тела наиболее распространены непосредственно в рудном теле уртитов и характеризуются залеганием, субпараллельным его простиранию. Также этих даек довольно много в клине мраморов, разделяющих пойкилитовое щелочное габбро и уртиты в северо-западной части интрузива, в т.ч. и в непосредственной близости от контакта габброидов, но в габброидах их нет.

Простирание даек микроийолитов и порфировидных ийолитов северозападное северное по азимуту 330-360°, реже северо-восточное 10-20°. В целом они ориентированы вдоль простирания рудного тела уртитов. Падение их югозападное, реже юго-восточное и южное под углами от 65 до 85-90°.

Вывод: дайки ийолитов являются сингенетическими продуктами замещения уртитов.

Дайки II фазы (камптониты)

К востоку уртиты сменяются прорывающим их *пойкилитовыми мезократовыми нефелинсодержащими габбро (до тералитов) II фазы*. Контакт осложнен эндо-экзоконтактовой оторочкой плагиоклазовых пироксенитов мощностью до 10 м. В местах выполаживания контакта уртиты габброизируются в зоне шириной до 10, изредка 30 метров. Пойкилитовые нефелинсодержащие мезократовые габбро (до тералитов) второй фазы внедрения приурочены к центральной части Кия-Шалтырского массива, они образуют подковообразное в плане тело, обращенное выпуклостью на юг. Его северо-западная половина круто, под углом 75-85°, падает на запад, а восточная – меняет падение от западного (от пологого до крутого, углы 45-80°) на восточное (всегда крутое, угол 80°). Склонение тела пойкилитовых мезократовых габброидов северо-восточное, как и у уртитов.

Камптониты и щелочные титан-авгит-амфиболовые микрогаббро II фазы образуют дайки мощностью от нескольких см до 2-3 м, в редких случаях 7-12 м. Простирание даек северо-восточное, реже северное и северо-западное. Протяженность их от первых десятков до 100-130 м и более.

Камптониты темно-серые и зеленовато-серые породы, текстура их массивная, реже миндалевидная и прожилковая. Структура пород равномерномелкозернистая, гипидиоморфозернистая, сериально-порфировая и призматически зернистая. Минеральный состав: плагиоклаз 35-50%, роговая обманка (керсутит, баркевикит) 20-50%, апатит 1-5%, нефелин 0-5%, щелочной полевой шпат 0-5%, титан-авгит 0-3%, сфен 0-3%, сульфиды 1-3%, магнетит 0-3%.[3]

Дайки III фазы

Тералитовые порфириты (микротералиты) и роговообманковые диабазы (роговообманковое микрогаббро) Ш фазы в рудном теле уртитов образуют дайки мощностью от 1-5 см до 2-3 м, редко до 9 и более м. В рудном теле встречаются повсеместно, изредка наблюдается, как они прорывают дайки микроийолитов и камптонитов. Простирание даек северо-восточное, реже северное и северо-западное. Протяженность их составляет от первых десятков до 100-120 м, реже 200 и более м. Трахитоидные нефелинсодержащие габброиды сложены плагиоклазом (65-83%) №52-62 (лабрадор), титанистым ферроавгитом (5-30%), гиалосидеритом (0-5%), нефелином (ед. зерна – 10%), титаномагнетитом (1-5%), апатитом (до 1%).

Нефелиновые микросиениты V фазы в пределах Кия-Шалтырского массива представлены дайками и жилами мощностью от 1 см до 1 м (редко) и протяженностью не более 10 метров, прорывающими пойкилитовые и трахитоидные щелочные габброиды и уртиты. Нефелиновые сиениты внешне светло-серые с розоватым, буроватым и красноватым оттенками, мелкосреднекристаллические, массивные порфировидные. Выделяются И трахитоидные авгитом лейкократовые с титанистым И гастингситом, меланократовые с титанистым амфиболом и эгирин-авгитовые сиениты. Отмечаются также оливинсодержащие разности с титанистым авгитом и гастингситом. Минеральный состав: калиевый пертитовый полевой шпат (50-65%), альбит до олигоклаза (10-20%), нефелин (10-40%), эгирин-авгит или (и) титан-авгит (2-10%), амфибол баркевикитового ряда (1,5-20%) с примесью биотита, мусковита, титаномагнетита, сфена. Отмечаются также единичные зерна флюорита, цоизита. Вторичные минералы нефелиновых сиенитов: канкринит, содалит, анальцим, либнерит, альбит.

Морфология и мощность даек

Влияние дайковых пород на качество руд массива

Средний химический состав наиболее представительных проб (относительно свежих без включения приконтактовых пород) по разновидностям пород и в целом по всем дайкам и шлирам в рудном теле уртитов в контуре.

Таблица 2.1 – Средний химический	состав	даек и	шлир	в рудном	теле у	уртитов	В
контуре подсчете запасов							

	Наименование пород					
Компоненты		ийолиты, ийолит- уртиты	ы, микрогаббро, - диабазы, камптониты не ы порфириты		нефелиновые сиениты [*]	среднее по всем дайкам и шлирам
	1	2	3	4	5	6
	п.п.п.	3,88	4,78	4,15	0,89	4,37
	SiO ₂	41,11	43,64	45,07	67,51	43,51
%	Al_2O_3	20,20	17,66	17,75	17,31	18,39
B 0	Fe ₂ O ₃	9,40	9,75	10,87	1,18	9,71
кание	CaO	11,94	10,81	8,28	0,32	10,56
	MgO	2,46	4,68	2,98	0,67	3,71
сря	Na ₂ O	7,55	5,28	6,31	7,58	6,12
Цо	K ₂ O	1,68	1,52	2,12	2,81	1,68
\circ	SO ₃	0,20	0,26	0,29	-	0,25
	R ₂ O	8,65	6,28	7,70	9,43	7,23
	Мщел	0,71	0,59	0,71	0,9	0,65
К	оличество анализов	21	33	10	2	66

По данным таблицы можно предполагать, что содержания оксида кальции и оксида серы взаимосвязаны и имеют обратную корреляционную связь.

Вывод: необходимо отметить, что присутствие даек оказывает заметное влияние на содержание глинозёма, что приводит к ухудшению его качества, поэтому поставлена задача изучить дайки. [5]

Все дайки имеют обычно серый, темно-серый или зеленовато-серый цвет, четкие контуры с рудой, но при селективной выемке их обычно трудно отличить от руды, за исключением камптонитовых даек.

наиболее распространены дайки и «шлиры» мощностью до 1,0м, их количество (частота встречаемости) составляет 79,7 % от общего количества даек, встреченных в контуре подсчета запасов, а линейная дайконосность – 32,0 % от общей мощности всех даек. Наименьшим распространением пользуются дайки мощностью более 3,0м – частота встречаемости всего 3,8 % от общего количества, но их линейная дайконосность составляет 27,6 % от общей мощности всех даек. [5]

Рис.2.1 – Схема распределения даек в рудном теле

Вывод по дайкам: микроийолиты и порфировидные ийолиты I фазы – сингенетические с уртитами, они образуются за счёт обогашения уртитов пироксенами, затем пострудные - камптониты и щелочные титан-авгитамфиболовые микрогаббро II фазы, тералитовые порфириты (микротералиты), роговообманковые диабазы (роговообманковое микрогаббро) III фазы и нефелиновые микросиениты V фазы образовались в определенных фазах внедрения пород позже уртитов.

Дайки по рудного телу распределяются по трём направлениям:

а) субмеридиональное направление для большей части даек диабазовых порфиритов и камптонитов;

b) северо-западное направление почти для всех даек ийолитовыхпорфиритов;

с) северо-восточное направление характерно для даек диабазовых порфиритов и камптонитов. [5]

2.3. Тектоника

2.3.1. Пликативные структуры

В структурном плане Кия-Шалтырское месторождение нефелиновых руд входит в состав Мрасско-Мартайгинской подзоны Баратальско-Мартайгинской складчатой зоны расположеной в северо-западной части Алтае-Кузнецкой раннекаледонской Залегание складчатой системы салаириды. раннекаледонских комплексов осложнено структурами среднепалеозойской активизации. Пликативные структуры осложнены разрывными нарушенями и многочисленными интрузивными телами каледонского и более позднего возрастов. Протяжённость складок составляет от сотни метров до нескольких десятков километров, при размахе крыльев до 5-6 км. Углы падения слоев на крыльях достигают до 80°. Залегание пород осложнено складками более высоких порядков, иногда складки осложняются флексурными перегибами или ундуляцией шарниров.

Структурно-вещественные комплексы района месторождения образуют крупную антиклинальную складку субмеридионального простирания, центральная часть которой прорвана Безымянским массивом гранодиоритов, расположенного в нескольких километрах южнее Кия-Шалтырского массива.

2.3.2. Разрывные структуры

Все структурно-вещественные комплексы района и их структуры, в пересечены особенности каледонские, И осложнены многочисленными разрывными нарушениями. В целом по региону они были заложены в период позднекембрийско-раннеордовикской коллизии, испытали подновление в девонское, мезозойское и, видимо, в кайнозойское время. Характер движений по обуславливался сочетанием горизонтальных разломам И вертикальных перемещений с доминированием сдвиговой компоненты. [1, 5]

Рис.2.2 - Схема тектонического районирования

3. Результаты исследований и интерпретация

3.1. Результаты исследования предшественников

Более 20 лет назад авторами Сазонов А. М., Леонтьев С. И., Гринев О. М., Звягина Е. А., Чекушин В. С. И Бетхер М. Я. в нефелиновых породах Кузнецкого выявлены повышенные концентрации благородных металлов и Алатау минералы золота, серебра, платины, иридия, рутения, осмия. Наиболее высокие содержания золота и платиноидов тяготеют К графитизированным сульфидизированным разностям Микрозондовые исследования пород. концентратов главных разновидностей пород позволили надежно охарактеризовать более 60 минералов рудного комплекса, представленных оксидами, сульфидами, антимонидами, арсенидами, теллуридами, самородными металлами и сплавами. Обращает на себя внимание разнообразие минералов благородных металлов, сплавов и самородных металлов, количество которых насчитывает 38 видов. Выявлены сплавы золота с оловом и алюминием (Au, Sn, Al и AuAl2), ранее не описанные в природных ассоциациях. Нефелиновые породы региона изучались в связи с использованием их в качестве сырья для получения глинозема.

Экспресс-технологические испытания возможности концентрирования благородных металлов нефелинового сырья и продуктов его переработки проведены распространенными методами обогащения (гравитация, флотация) и металлургического передела (рафинирования алюминия и получения пеносиликатов из белитового шлама).

Работы проводились почти по всем месторождениям и рудопроявлениях района Кузнецкого Алатау, а конкретно о Кия-Шалтырском месторождении были получены следующие прогнозные ресурсы (Р-) извлекаемых благородных металлов в нефелиновой руде и белитовых шламах:

1) в остаточных запасах нефелиновых руд на Кия-Шалтырском

месторождении - золота - 192 т. серебра - 192 т. палладия -

67,2т. платины - 19,2 т.

2) в некондиционных рудах, складированных в спецотвалах на

Кия-Шалтырском карьере - золота - 31 т. серебра - 31 т.

палладия - 5 г; платины - 6 т;

3) в белитовых шламах АГК (г. Ачинск) - золота- 62 т; серебра - 62 т; платиноидов 60-80 т.

На первых этапах для извлечения благородных металлов целесообразно ориентироваться на некондиционную руду и нефелиновый (белитовый) шлам. Запасы некондиционных руд в четырех спецотвалах на Кия-Шалтырском руднике составляют 21405000 тонн. После золотоизвлекательного процесса хвосты перейдут в разряд кондиционных руд и могут использоваться в производстве глинозема. Это даст возможность для проведения назревшего горно-технологического переоборудования карьера. В 2000 гг. отставание вскрышных работ составляли около 15 млн. т.

Запасы нефелинового шлама в г. Ачинске оцениваются в миллионы тонн. Ежегодно в хвостохранилище АГК поступает в среднем 5млн. тонн шлама. Повышенное содержание в шламе щелочей превращает окрестности комбината в зону экологического бедствия. Поэтому назрела необходимость оперативной проектной проработки материалов по использованию шламов в производстве пеносиликатов, цемента и других продуктов с попутным извлечением благородных металлов. Организация попутного производства на глиноземном комбинате позволила бы получать около 20 тонн благородных металлов в год. Это в значительной мере повысила рентабельность работы предприятия и могла способствовать рационализации использования недр. Для Кия-Шалтырского была построена геохимическая математическая месторождения модель распределения петрогенных и примесных элементов. Выявлены две их геохимических ассоциации, отражающие неявную ритмичную расслоенность уртитового тела. Первая геохимическая ассоциация повышенных концентраций Al203, Na20, K20, SiO2, Rb, Ga, Sr, Pb определяет высокосортные нефелиновые руды в пределах месторождения. Обособление этих компонентов в пространстве произошло на магматическом этапе. Золото имеет отрицательную корреляцию с подавляющим большинством элементов этой геохимической ассоциации.

Вторая геохимическая ассоциация, включающая Fe2O3, CaO, MgO,

SO3, Ni, Co, Cu, Mn и Au, в повышенных концентрациях геологически и

генетически двойственна. Обособление и накопление элементов этой ассоциации осуществлялось в последних порциях расплава. После кристаллизации последнего Fe2O3, CaO и MgO вошли в состав титанавгита, а

FeO, SO3, Ni, Co - в состав сульфидного ликвата.

Установлена вертикальная ритмичная смена (с шагом 80-70 м) максимумов концентраций выделенных геохимических ассоциаций. Повышенные содержания элементов второй геохимической ассоциации зафиксированы в участках приконтактового скарнирования уртитов. Железо,

кальций, магний входят в состав главных минералов скарнов, а сульфиды Fe, Ni, Co - в послескарновые образования. Золото и другие благородные металлы накапливаются в ликвационно-сульфидном и постмагматических минеральных парагенезисах.

Исследования были предварительными и показывают необходимость постановки опробовательских работ на золото и платиноиды в

пределах распространения сульфидизированных уртитов, скарнов и графитизированных пород с целью оконтуривания, локализованного благороднометального оруденения.

Выявленная благороднометальная специализация щелочных пород

Открывала новые перспективы в развитии добывающей отрасли страны, способную существенно изменить положение России на международном рынке драгметаллов.

3.2. Результаты исследований дипломной работы

3.2.1. Отбор образцов

Образцы были отобранные в центральной части рудного тела уртитов и на его контактах с вмещающими породами в течение двухлетних академических производственных практик на горизонтах 570, 580,590, 600м м по профилям –IV, -III, -II, -I с июня по июль 2022г, и на горизонтах 690 и 700м с июня по июль 2023г по рудному телу по одной разновидности пород на каждом профиле от запада до востока.

Рис.3.1 – Точечная схема отбора проб на июль 2022. Вид сверху

Рис.3.2 – Схема (блок-диаграмма) отбора проб по профилям

Рис.3.3. – Пробы на профиле -IV

3.2.2. Рудная минералогия пород

Исследования проводились в 4 типах пород по последовательности их образования: габбро-Йиолиты-уртиты-скарны, в которых рудные минералы выделяются в виде прожилок и вкрапления. По статистке из наиболее информативных образцов и аншлифов были изучены от самых распространённых до самых редких минералов.

Результаты исследований было найдено 28 рудных минералов во всех образцах. Из них 4 оксида (титаномагнетит, ильменит, магнетит и гематит), 10 сульфидов (пирротин, пентландит, пирит, марказит, галенит, сфалерит, халькопирит, кубанит, молибденит и джерфишерит), 6 сульфоарсенидов (арсенопирит, кобальтин, герсдорфит, никелин, аллоклазит и глаукодот), 2 диарсенида (лёллингит и саффлорит), 2 теллура (гессит и цумоит), 2 минерала палладия (садберит и полярит) 1 самородный элемент (графит) и 1 сплав самородных элементов(электрум).

3.2.2.1. Габбро

Нефелинсодержащие габбро приурочены к центральной части Кия-Шалтырского массива; они образуют подковообразное в плане тело, обращенное выпуклостью на юг [5].

Текстура пород массивная.

Рис. 3.4 – Габбро. Образец из коллекции предприятия. Горизонт неизвестен

Структура данных пород неравномернозернистая, от мелко - до крупнозернистой.

Минеральный состав. Главные минералы: титан-авгит – 30-35%, плагиоклаз –25-30%; второстепенные минералы: оливин – до 10%, нефелин – 15%; акцессорные минералы: апатит – 0-5%, титаномагнетит – 2%, сульфиды, сульфоарсениды 0-3%.

Рис. 3.5 – Средний петрографический состав габбро.

Микроструктура пород габбровая, гипидиоморфнозернистая, пойкилитовая.

Титан-авгит представлен неправильными зернами размером 1-2 мм и розоватым оттенком цвета. По краям зерна замещаются зеленым эгиринавгитом, по трещинам спайности развивается бурая роговая обманка.

Плагиоклаз (An₅₂) сильно трещиноватый, заполняет пустоты между зернами титан-авгита и нефелина.

Оливин образует корродированные ксеноморфные зерна (1,0-3,5 мм), в которых присутствуют многочисленные закономерно ориентированные в двух направлениях дендритовидные пластинчатые выделения рудного.

Нефелин образует крупные поля, иногда до одного полного поля зрения, развивается в интерстициях между зернами пироксена, полностью замещен бурым анальцимом и волокнисто-чешуйчатым агрегатом.

Рис. 3.6 – Габбро. 1- плагиоклаз, 2- оливин, 3- нефелин, 4-титан-авгит. Шлиф 18. Горизонт 620м

Рудная минерализация

Образцы габбро сильно преобладают по разнообразию рудных первичных и вторичных минералов. В исследуемых образцах габбро выделяются следующие рудные минералы: титаномагнетит (Fe(FeTi)₂O₄)-1,5% пирротин (Fe_{x-1}S_x)-2%, пирит (FeS₂)-0,2%, ильменит (FeTiO₃)-0,1% магнетит (FeFe₂O₄)-0,1%, гематит (Fe₂O₃)0,2%, графит(C)-0,5%, халькопирит (CuFeS₂)-0,05%, арсенопирит (FeAsS)-0,05%, кобальтин (CoAsS)-0,1%, никелин (NiAsS)-0,01%, леллингит (FeAs₂)-0,01%, герсдорфит (NiAsS)-0,01% пентландит (Fe, Ni, Co)₉S₈-0,01%, гессит (Ag₂Te)-0,01%, электрум (Au, Ag)-0,01%, фазы палладия, т.е. полярит (PdBi), садбериит (PdSb)-0,01%, джерфишерит K₆(Fe, Cu, Ni)₂₄S₂₆Cl-0,1% и цумоит (BiTe)-0,01%, глаукодот-0,1%.

Оксиды

Титаномагнетит Fe(Fe,Ti)₂O₄ — также характеризуется типичной структурой распада. Зерна шестоватые, размером до 0,5 мм.

На следующем рисунке (рис. 4.3.8) хорошо видны ильменитовые пластинки в двух направлениях, образующие угол до 90⁰.

Магнетит ($FeO*Fe_2O_3$) и гематит (Fe_2O_3) – часто встречаются в совместном срастании, замещают пирротин местами как вторая генерации, но часто магнетитовую часть титаномагнетита переходит в гематит. Зерна имеют неправильную форму. В структуре распада титаномагнетита, участвует гематит в замещении магнетита. Местами по краям вместе с пентландитом замещает пирротин, а также отдельным зернами.

Рис. 3.8 – Гематит совместно с пирротином заполняет промежутки между пластинками ильменита. Анш. 9. Горизонт 600м

Сульфиды

Пирротин ($Fe_{x-1}S_x$) — наиболее распространённый рудный минерал, заполняет пустоты между зернами нефелина и пироксенов, т.е. образует сидеронитовую структуру. Образуя самые крупные зерна и агрегаты (до 2мм), пирротин является средой развития ряда минералов, образование которых связано с его замещением или коррозией.

Рис.3.9 – Цементация щелочных нерудных минералов пирротином. Анш. 26. Горизонт 720 м

Пентландит (Fe, Ni, Co)₉S₈ – Большинство зерен пентландита характеризуются значительной примесью кобальта (до 8,45мас. %) и относятся к кобальт-пентландиту (таблица.3.1.).

В составе аншлифа 26-2-1 были обнаружены также два зерна аргентопентландита, содержащие значительную примесь серебра (до 13,99мас. %) и являющиеся самостоятельным минеральным видом (рис.3.10, 3.11). Стехиометрия обнаруженного минерала хорошо согласуется с теоретической. Этот минерал характерен для медно-никелевых месторождений.

Рис.3.10 – Зерно аргентопентландита в срастании с халькопиритом. А – отраженный свет. Б- Обратно-рассеянные электроны. Анш. 26-2-1. Горизонт 720м

Аншлиф	Спектр	Содержания, мас. %			Сумма	Формула		
		S	Fe	Co	Ni	Ag		
26-2-1	38	34,66	33,82	5,90	28,51	0,0	102,89	(Fe _{4,53} Ni _{3,63} Co _{0,75}) _{8,91} S _{8,09}
26-2-1	39	35,72	39,42	4,79	22,70	0,0	102,63	(Fe _{5,24} Ni _{2,87} Co _{0,60}) _{8,72} S _{8,28}
26-2-1	40	34,60	35,59	5,92	26,55	0,0	102,66	(Fe4,77Ni3,39C00,75)8,92S8,08
26-2-1	41	34,02	32,42	4,84	28,71	0,0	100,00	$(Fe_{4,46}Ni_{3,76}Co_{0,63})_{8,85}S_{8,15}$
26-2-1	70	32,44	27,88	4,83	34,66	0,0	99,80	$(Fe_{3,89}Ni_{4,60}Co_{0,64})_{9,12}S_{7,88}$
26-2-1	71	33,87	25,75	8,45	31,35	0,0	99,42	(Fe _{3,57} Ni _{4,14} Co _{1,11}) _{8,82} S _{8,18}
26-2-1	1	30,05	34,46	0,0	21,04	13,57	99,13	Ag1,04(Fe5,15Ni2,99)8,14S7,82
26-2-1	47	31,09	32,43	0,0	23,17	13,50	100,18	Ag1,03(Fe4,77Ni3,24)8,01S7,96
26-2-1	48	30,94	32,51	0,0	23,62	13,33	100,40	Ag _{1,01} (Fe _{4,77} Ni _{3,30}) _{8,07} S _{7,91}
26-2-1	49	30,95	32,87	0,0	23,01	13,99	100,82	Ag _{1,06} (Fe _{4,82} Ni _{3,21}) _{8,03} S _{7,91}
26-2-1	78	30,01	34,26	0,0	21,15	12,51	97,94	Ag0,97(Fe5,15Ni3,02)8,17S7,85
26-2-1	79	29,98	34,57	0,0	21,24	12,64	98,42	Ag0,98(Fe5,18Ni3,03)8,20S7,82

Таблица.3.1 – Химический состав пентландита и аргентопентландита

Пирит (FeS₂) – меньше распространен, представляет две генерации в совместном срастании с пирротином. Форма зерен и кристаллов пирита первой генерации кубическая, таблитчатая с четкими границами отдельных зерен.

Рис 3.12 – Первичный пирит. Анш. 26-1. Горизонт 720м
Вторичный пирит образуется путём замещения пирротина, часто по периферии, и выделяется нечеткими бесформенными удлиненными зернами длинной до 1 мм.

Рис. 3.13 – Вторичный пирит. Анш. 26-1. Горизонт 720м

Халькопирит (CuFeS₂) – в данных породах распространён часто мелкими отдельными зернами, а также местами ассоциирует с пирротином.

Рис. 3.14 – Халькопирит и пирротин. Анш. 26-2-1. Горизонт 720м

Рис. 3.15 – Халькопирит в пирротине. Анш. 26-2. Горизонт 720м.

Галенит PbS — Относится к малораспространенным минералам. Минерал обнаружен в составе четырех аншлифов (26-2-1, 26-2-2, 26-2-3 и 26-2-4).

Три мелких (размерами от 2,7х3,8мкм до 7,7х13,8мкм) зерна галенита неправильной формы были обнаружены внутри и по краям пирротина в аншлифе 26-2-4. Кроме галенита в пирротине также присутствовало включение халькопирита (рис.3.16 – 3.17).

Рис.3.16 – Галенит и халькопирит в составе пирротина. Отраженный свет. Анш. 26-2-4. Горизонт 720м

Рис.3.17 – Галенит и халькопирит в составе пирротина. Фото в обратнорассеянных электронах. Анш. 26-2-4. Горизонт 720м

В составе аншлифа 26-2-3 небольшое (2,2х3,8мкм) зерно галенита треугольной формы находится в тесном срастании с никелином внутри агрегата кобальтина (рис. 3.18).

Рис.3.18 — Зерно галенита в срастании с никелином в составе агрегата кобальтина. А – отраженный свет. Б – обратно-рассеянные электроны. Анш. 26-2-3. Горизонт 720м

Необходимо отметить, что практически во всех анализах в составе галенита присутствует небольшая примесь селена (до 2, 36мас. %).

Аншлиф	Спектр	Содержания, мас. %			Сумма	Формула
		S	Se	Pb		
26-2-1	2	11,93	1,52	85,36	98,81	$Pb_{1,02}(S_{0,93}Se_{0,05})_{0,98}$
26-2-2	83	11,59	0,97	85,39	99,82	$Pb_{1,05}(S_{0,92}Se_{0,03})_{0,95}$
26-2-2	85	11,78	1,5	85,214	99,02	$Pb_{1,03}(S_{0,92}Se_{0,05})_{0,97}$
26-2-4	74	12,49	1,23	86,28	100	$Pb_{1,01}(S_{0,95}Se_{0,04})_{0,99}$
26-2-4	75	12,05	0,71	87,24	100	$Pb_{1,05}(S_{0,93}Se_{0,02})_{0,95}$
26-2-3	110	10,92	2,36	82,92	96,21	Pb _{1,04} (S _{0,88} Se _{0,08}) _{0,96}

Таблица. 3.2 – Химический состав галенита

Сложные сульфиды

Джерфишерит K₆(Fe, Cu, Ni)₂₄S₂₆Cl — Обнаружен в наиболее сульфидизированной массе в составе аншлифа №26. Джерфишерит наблюдается внутри крупных выделений пирротина трещиноватыми агрегатами размером до 0,22x0,26мм в тесном срастании с халькопиритом, которым, предположительно, замещается (рис.3.19).

Рис. 3.19 – Джерфишерит замещается халькопиритом. А - Отраженный свет. Б – обратно-рассеянные электроны. Анш. 26. Горизонт 720м

Интересно, что внутри агрегата джерфишерита размещаются мелкие зерна кубанита. Небольшими и мелкими зернами джерфишерит располагается в виде кайм вдоль границ крупного пирротинового агрегата и включений в нем рудных и нерудных минералов (Рис.3.20).

Рис.3.20 – Кайма Джерфишерита вдоль включения нерудных минералов в пирротине. Отраженный свет. Анш. 26. Горизонт 720м

Часть зерен джерфишерита, предположительно, также замещается гематитом.

Включения нерудных минералов, вокруг которых располагаются цепочки зерен халькопирита и джерфишерита, представлены, главным образом, кальцитом и апатитом.

По химическому составу данный джерфишерит относится к железомедистой разновидности, характерной для уртитов Хибинского массива (Новые данные о минералах...,2006) и чароититов Мурунского массива (Минералогия..., 1996).

Спектр		С	одержа	ния, мас.	.%		Сумма	Формула
	S	Cl	K	Fe	Ni	Cu		
3	31,73	1,45	9,20	34,73	1,92	20,55	99,57	$K_{5,98}(Fe_{15,80}Cu_{8,21}Ni_{0,83})_{24,84}S_{25,14}Cl_{1,04}$
4	31,87	1,34	9,25	35,01	1,40	21,04	99,91	$K_{5,99}(Fe_{15,88}Cu_{8,39}Ni_{0,60})_{24,87}S_{25,18}Cl_{0,96}$
5	32,15	1,32	9,29	34,82	1,96	19,94	99,49	$K_{6,03}(Fe_{15,81}Cu_{7,96}Ni_{0,85})_{24,61}S_{25,42}Cl_{0,94}$
27	33,80	0	6,73	38,06	5,18	13,52	97,29	$K_{4,44}(Fe_{17,59}Cu_{5,49}Ni_{2,28})_{25,35}S_{27,20}$
28	34,05	0	6,48	38,86	6,24	12,04	97,67	K4,26(Fe17,87Cu4,87Ni2,73)25,475S27,27
29	34,14	0	5,97	39,07	6,54	11,74	97,46	$K_{3,93}(Fe_{18,02}Cu_{4,76}Ni_{2,87})_{25,64}S_{27,42}$
40	31,57	1,35	9,03	35,01	3,21	19,47	99,63	$K_{5,87}(Fe_{15,94}Cu_{7,79}Ni_{1,39})_{25,12}S_{25,04}Cl_{0,97}$
41	32,05	1,38	9,12	35,54	3,10	18,46	99,65	K5,91(Fe16,11Cu7,35Ni1,34)24,80S25,31Cl0,99

Таблица 3.3 – Химический состав джерфишерита, анш. 26

Согласно предположениям Тихоненковой с соавторами (Калиевый сульфид...), медьсодержащая разновидность джерфишерита распространена в метасоматически измененных щелочных породах [2,3,6,7,8].

Сульфоарсениды

Сульфоарсениды составов кобальтин-герсдорфит-арсенопирит нашли широкое распространение в пирротине как поздние минералы. Размеры зерен достаточно малы, до 0,1мм.

Кобальтин (CoAsS) — образует зональный агрегат, внутри которого развиваются никелин и гессит.

Рис.3.21 – Кобальтин с включениями никелина и гессита. А – отраженный свет. Б – обратно-рассеянные электроны. Анш. 26-2-3. Горизонт 720м

Глаукодот (Co,Fe,Ni)AsS) — ещё один минерал - представитель сульфоарсенидов выделяется на фоне пирротина, внутри него развиваются гессит, никелин и галенит.

Рис. 3.22 – Агрегаты глаукодота с включениями никелина, гессита и галенита. Анш. 26. Горизонт 720м

Никелин NiAs – распространен только в составе трех аншлифов – 26-2-1,2,3. Минерал, как правило, распространен в виде мелких линзовидных зерен в составе окружающих их агрегатов кобальтина (рис.4.2.23 – 4.2.24).

Рис. 3.23 – Зерна никелина внутри агрегата кобальтина. Отраженный свет. Анш. 26-2-3. Горизонт 720м

Рис.3.24 – Включение никелина в кобальтине. А – отраженный свет. Б – обратно-рассеянные электроны. Анш. 26-2-3. Горизонт 720м

Химический состав минерала представлен в таблице 3.4 Необходимо отметить в составе никелина значительные примеси железа (до 3,31 мас. %), кобальта (до 3,11 мас. %) и сурьмы (до 1,01 мас. %).

Спектр		Соде	ржания,	мас.%		Сумма	Формула
	Fe	Co	Ni	As	Sb		
108	2,38	0,64	40,82	55,15	1,01	100,00	$(Ni_{0,93}Fe_{0,06}Co_{0,01})_{1,00}(As_{0,99}Sb_{0,01})_{1,00}$
109	3,31	3,11	36,98	56,08	0,52	100,00	$(Ni_{0,84}Fe_{0,08}Co_{0,07})_{0,99}(As_{1,00}Sb_{0,01})_{1,01}$
130	1,10	0,60	42,22	55,10	0,98	100,00	$(Ni_{0,96}Fe_{0,03}Co_{0,01})_{1,00}(As_{0,99}Sb_{0,01})_{1,00}$
131	1,31	0,50	41,72	55,87	0,60	100,00	$(Ni_{0,95}Fe_{0,03}Co_{0,01})_{0,99}(As_{1,00}Sb_{0,01})_{1,01}$
137	2,68	0,55	40,68	55,17	0,93	100,00	$(Ni_{0,93}Fe_{0,06}Co_{0,01})_{1,00}(As_{0,99}Sb_{0,01})_{1,00}$
138	2,72	0,90	40,69	54,95	0,73	100,00	$(Ni_{0,93}Fe_{0,07}Co_{0,02})_{1,01}(As_{0,98}Sb_{0,01})_{0,99}$

Таблица 3.4 – Химический состав никелина, анш. 26-2-3

Теллуры

Гессит Ag₂Te₋ Зерно гессита выявлено на границе включения никелина в кобальтине (рис.3.25).

Рис.3.25 – Гессит на границе никелина и кобальтина. А – отраженный свет. Б – обратно-рассеянные электроны. Анш. 26-2-3. Горизонт 720м

Химический состав минерала в виду крайне мелких размеров был пересчитан на 100% (таблица 3.5).

Аншлиф	Спектр	Содержан	ия, мас. %	Сумма	Формула
		Ag	Te		
26-2-4	54	60,90	39,10	100	Ag _{1,94} Te _{1,06}
26-2-4	55	61,78	38,22	100	Ag _{1,97} Te _{1,03}
26-2-4	56	62,33	37,67	100	Ag _{1,99} Te _{1,01}
26-2-3	129	61,93	38,07	100	Ag _{1,97} Te _{1,03}

Таблин	a.3.5 –	Химический	і состав	гессита
таолиц	a.s.s			recenta

В составе минерала отмечается небольшое превышение содержания теллура по сравнению с теоретическим составом.

Цумоит BiTe_– Является крайне редким и очень мелким минералом. Его зерна размерами менее 1мкм располагались цепочкой вдоль контакта пирротина и кобальтина (рис.3.26).

Рис.3.26 – Мелкие зерна цумоита по границе пирротина и кобальтина. Фото в обратно-рассеянных электронах. Анш. 26-2-3. Горизонт 720м

В составе минерала наблюдается дефицит теллура и избыток висмута против стехиометрии (таблица 3.6).

Аншлиф	Спектр	Содержан	ие, мас. %	Сумма	Формула
		Bi	Te		
26-2-3	126	63,38	36,62	100	Bi _{1,03} Te _{0,97}
26-2-3	127	65,05	34,95	100	Bi _{1,06} Te _{0,94}
26-2-3	128	64,83	35,17	100	Bi _{1,06} Te _{0,94}

Таблица. 3.6 – Химический состав цумоита

Минералы палладия

Полярит PdBi — Одной фазой палладия, вероятно, является полярит, выявленный вместе с низкопробным золотом в образце 26-2-1. Этот минерал был обнаружен в составе аллоклазита, замещающего пентландит, и в составе пентландита, которого аллоклазит замещает. По трещинам этого агрегата аллоклазита развиваются микронные прожилки низкопробного самородного золота (рис.3.27).

Рис.3.27 – Агрегат аллоклазита с микронными включениями минералов палладия и самородного золота. А – отраженный свет. Б – обратно-рассеянные электроны. Анш. 26-2-1. Горизонт 720м

Сплавы, самородные

Электрум (Au, Ag) — Сплав золота и серебра в составе сульфидной минерализации Кия-Шалтырского месторождения был обнаружен в нескольких образце (№26-2-1). Во всех исследованных случаях благороднометальная минерализация была связана с сульфоарсенидами и арсенидами кобальта и никеля (см. рис. 3.27).

NºNº	Аншлиф	Спектр	Содержан	ия, мас. %	Сумма	Проба
п/п			Ag	Au		
4	26-2-1	67	21,12	78,88	100,0	789‰
5	26-2-1	68	21,84	78,16	100,0	782‰
6	26-2-1	69	21,55	78,45	100,0	785‰

Таблица 3.7- Химический состав сплава золота и серебра

Находка низкопробного золота была сделана в составе образца (аншлифа) №26-2-1, отобранного из приконтактовой части дайки камптонитов. Золото средней пробы из трех анализов 785‰ было обнаружено в трещине аллоклазита в виде тонкого (толщиной менее 1 микрона) прожилка длиной около 5мкм (см. описание фаз палладия). Здесь же также были выявлены мелкие включения фазы палладия состава палладий-висмут (предположительно, полярита?). В связи с крайне мелкими размерами прожилка золота анализы были пересчитаны на 100% сумму (таблица 3.7, анш.26-2-1).

Графит(C) заполняет центральные части пирротина по трещинам, используя трещины спайности.

Рис. 3.28 – Графит развивается по гематиту. Анш. 26-3. Горизонт 720м

Минералы	Этапы								
	Магмати	ический	Гидро	термальный					
			стадии						
	Нефелин-плагиоклазовая	Титаномагнетит-	Пирит-халькопиритовая	Кобальтин-никелиновая					
		гематитовая							
Нефелин									
Титан-авгит									
Плагиоклаз									
Апатит									
Джерфишерит									
Титаномагнетит									
Ильменит-1									
Магнетит									
Гематит-1									
Пирротин									
Пентландит			•						
Пирит-1									
Марказит			— —						
Пирит-2			—						
Гематит-2									
Халькопирит			—						
Кубанит									
Кобальтин				—					
Арсенопирит									
Герсдорфит				—					
Гессит				—_					
Никелин									
Графит									
Форма проявления	Зернистые	Зернистые, полосчатые	Прожилки, зе	рнистые зональные					
ассоциаций									
РН, среда	Основная		Кислая						

Таблица 4.2.8 – Схема минералообразования в габбро

3.2.2.2. Ийолиты

Небольшие тела ийолитов и ийолит-уртитов зафиксированы в самом рудном теле и на северном и юго-восточном флангах тела трахитоидных габброидов. В эндоконтактах уртиты, обогащаясь пироксеном, кальцитом и апатитом, постепенно переходят в ийолиты. Простирание даек микроийолитов и порфировидных ийолитов северо-западное, северное по азимуту 330° - 360°, реже северо-восточное 10-20°. В целом они ориентированы вдоль простирания рудного тела уртитов. Падение их юго-западное, реже юго-восточное и южное под углами от 65 до 85-90°.

Петрографический состав ийолитов отличается от уртитов большим содержанием пироксенов. Характерная текстура: массивная, прожилковая.

Рис.3.29 – Йиолит. Фото из коллекции предприятия. Горизонт не указан

Структура пород средне-, крупнозернистая.

Минеральный состав. Главные минералы: нефелин – 45-50%, титан-авгит – 25-30%; второстепенные минералы: плагиоклаз – 5-10%, акцессорные минералы: апатит – 0-5%. Рудные минералы – 5% (титаномагнетит – 2%, сульфиды– 2%, графит – 1%).

Рис.3.30 – Средний петрографический состав йиолитов

Микроструктура пород часто гипидиоморфнозернистая, местами идиоморфнозернистая и пойкилитовая.

Рис.3.31 – Йиолит. 1- нефелин, 2- титан-авгит, 3- апатит, 4- плагиоклаз. Шлиф 20. Горизонт 720м

Нефелин представлен изометричными округлыми зернами без четких кристаллографических ограничений, размером 0,5-6 мм. Между замещенными зернами нефелина отмечаются редкие таблитчатые, неправильные кристаллы плагиоклаза размером 0,1-0,2 мм.

Титан-авгит представлен округлыми, таблитчатыми зернами размером 0,1-0,7 мм, образующими цепочечные агрегаты розовой окраски.

Плагиоклаз отмечается в виде таблитчатых зерен размером до 0,4 мм, ассоциирующих с вторичными минералами нефелина.

Титаномагнетит представлен крупными агрегатами неправильной натечной формы, размером до 2 мм, в срастании с ним наблюдаются сульфиды.

Также сульфиды встречаются в виде самостоятельных зерен размером до 0,05 мм в нефелине.

Рудная минерализация

На краях шлифов рудная минерализация, представленная округлыми зернами сульфидов размером до 0,2 мм, вокруг которых развиты неправильные, чешуйчатые зерна титаномагнетита с графитом.

Минеральный состав. Главные минералы – титаномагнетит-2%, пирротин-1,2%, графит-0,8%, пирит-2 0,5% Второстепенные – гематит-0,1%, магнетит-0,1%, халькопирит-0,01%, марказит-0,01%.

Оксиды

Титаномагнетит (Fe(Fe,Ti)₂O₄) — представлен в виде включений в плагиоклазах, в пироксене, а также местами образует круглые зерна в нефелине. Размеры от 0,01 до 2мм и более. Минерал больше распространён, более 2%. Он разъедается графитом.

Рис.3.32 – Структура распада титаномагнетита. Анш. 17а. Горизонт 580м

Гематит (Fe₂O₃) – характеризуется таблитчатой, игольчатой формами, размером от 0,01 до 0,8мм. Характерна струкстура замещения, коррозионная. Средняя распространённость - 0,2%. Встречается с магнетитом, который он замещает постоянно как отдельными зернами, как и магнетитовую часть титаномагнетита.

Рис.3.33 – Гематит (мартит) замещает магнетит. Анш. 13а-2. Горизонт 720м

Сульфиды

Пирротин ($Fe_{x-1}S_x$) — Форма выделений неправильная, округлая, вытянутая, размеры до 2 мм. Средняя распространённость около 3%. Структуры: от идиоморфнозернистой до аллотриоморфнозернистой, зональная. Срастается с кальцитом, графитом, халькопиритом, замещается гематитом. Встречается в парагенезисе с пиритом, халькопиритом и является зоной развития сульфоарсенидов, диарсенидов.

Рис.3.34 – Замещение пирротина гематитом и пентландитом. Анш. 13. Горизонт 720м

Пирит (FeS₂) — образует прямоугольные зерна с идиоморфными границами. Размеры крупные от 0,01 до 2 мм и более. Структуры прожилковые, замещения и разъедания. Распространённость пирита составляет 0,5%.

Рис 3.35 – Скопление первичного пирита. Анш. 17. Горизонт 580м *Марказит* (FeS₂) – образует линзы от 0,005 до 0,01мм. замещает пирит, пирротин, халькопирит. Малораспространённый – 0,05%.

Рис.3.36 – Марказит в срастании с пиритом. Анш. 17а. Горизонт 580м

Халькопирит (CuFeS₂) — Для минерала характерная структура - коррозионная и структура замещения. Встречается с пиритом, пирротином, гематитом.

Сфалерит (ZnS) – распространен вместе с халькопиритом, обрастают агрегаты пирротина.

Рис 3.37 – Замещение пирротина халькопиритом и сфалеритом. Анш. 13а-1. Горизонт 720м

Сульфоарсениды

Кобальтин (CoAsS) – относится к очень редким минералам, размеры зерен его достигают до 0,01мм. Минерал характеризуется зернистой структурой. [4,5,6,7,8]

Рис. 3.38 – Кристалл кобальтина в пирротине. Анш. 13а-1. Горизонт 720м

Самородные

Графит(С) – Размеры зерен от 0,01 до 0,2мм, редко до 1 мм. средняя распространённость - 2%. Встречается в виде линз, точечных пятен в нефелине, а также вокруг зерен пирротина. Структура графитовая, разъедания.

Рис.3.39 – Графитовая структура. Анш. 8. Горизонт 590м

Минералы		Этапн	Ы					
	Магмати	ический	Гидротерма	льный				
		Стади						
	Нефелин-плагиоклазовая	Титаномагнетит-	Пирит-халькопиритовая	Кобальтин-				
		гематитовая		никелиновая				
Нефелин								
Титан-авгит								
Плагиоклаз								
Апатит								
Титаномагнетит		—						
Ильменит								
Графит								
Гематит		·						
Пирротин								
Пентландит			—					
Пирит-1	1							
Марказит	1							
Пирит-2			—					
Халькопирит]		· – _					
Кобальтин								
Арсенопирит				—				
Герсдорфит								
Гессит				· —				
Никелин								
Форма проявления	Зернистые	Зернистые, полосчатые	Прожилки, зернистые	Линзы				
минеральных			зональные					
ассоциаций								
РН, среда	Основная Кислая							

Таблица 3.9 – Схема минералообразования в ийолитах

3.2.2.3. Уртиты

Уртиты – светло-серые средне-крупнозернистые породы гипидиоморфнозернистой структуры, трещиноватые, состоящие из нефелина (в среднем 85%), титана-авгита (13%) и незначительной примеси апатита, титаномагнетита, пирротина.

Текстура: массивная, трахитовая, редко неоднородная, пятнистая.

Структура: полнокристаллическая неравномернозернистая мелкосредне-крупнозернистая.

Рис.3.40 – Уртит. текстура массивная, неоднородная, зернистая; трахитовая макроструктура. Образец За. Горизонт 630м

Минеральный состав. Главные минералы: нефелин – 65-70%, титан-авгит – 5-10%, второстепенные минералы (плагиоклаз (альбит)) 5-10 %, акцессорные минералы (апатит) –0-5%, рудные-5% (титаномагнетит – 2%, пирит, пирротин – 2% графит–1%).

Рис.3.41 – Средний петрографический состав уртитов

Микроструктура: агпаитовая. Агпаитовая структура обусловлена идиоморфизмом нефелина по отношению к темноцветным минералам.

Рис.3.42 – Уртит. Агпаитовая структура, идиоморфный нефелин (1) вокруг ксеноморфный титан-авгит (2). Шлиф №14. Увеличение 10х. Горизонт 580м. Профиль -Ша

Нефелин представлен бесцветными идиоморфными зернами кубической, гексагональной, неправильной формы, размером 0,2-5 мм, частично замещенными вторичными продуктами (10%). Минерал характеризуется бесцветной окраской, почти прямым угасанием, отрицательным удлинением, Ng-Np≈0,015.

Титан-авгит ксеноморфен по отношению к нефелину, размер зерен пироксена 0,1-10 мм. Титан-авгит имеет розовато-бурую, зеленовато-розовую, серо-розовую, розовую с фиолетовым оттенком окраску. Титан-авгит представлен ксеноморфными зернами, краевые части (редко центральные) которых корродируются и «разъедаются» вторичными продуктами. Минерал интенсивно, но неравномерно замещается зеленым эгирин-авгитом (в среднем на 10%), хлоритом, роговой обманкой.

Плагиоклаз (альбит) характеризуется таблитчатыми зернами размером до 0,2 мм. Зерна имеют буроватую окраску. Локализуются на границе зерен нефелина и ассоциирут с его вторичными минералами, чаще с анальцимом.

Апатит представлен идиоморфными гексагональными, столбчатыми, шестиугольными, округлыми, призматическими зернами размером 0,1-5 мм.

Титаномагнетит отмечается в виде тонкозернистых вытянутых, неправильных агрегатов, редко в виде изометричных зерен, размером до 0,2 мм, сосредоточенных, главным образом, в эгирин-авгите.

Рудная минерализация

Рудные минералы представляют отдельные зерна характерной сидеронитовой структуры, т.е. заполнение пустот кристаллов основной массы нефелина аллотриоморфными зернами рудных минералов и составляют 5%. пирит-0,3%, титаномагнетит-2%, Главные минералы: пирротин -1,5%, Второстепенные минералы - ильменит-1 - 0,2%, ильменит-2 0,1% гематит-0,2%, графит-0,3%, пентландит-0,1%, марказит-0,1%, и редкие минералы – кобальтин-0,02%, гессит- 0,01%, герсдорфит-0,01%, лёллингит-0,01%, халькопирит-0,01%, галенит-0,01% и молибденит- 0,005%.

Оксиды

Титаномагнетит (Fe(FeTi)₂O₄) – распадается на магнетит и пластинки ильменита (структура распада твердого раствора). Кристаллы идиоморфные, шестиугольники. Размеры от 0,01 до 2мм и более. Более распространённый - до 5%. Очень высокотемпературный и кристаллизуется раньше других рудных минералов.

Рис.3.43 – Структура распада титаномагнетита. Анш. 10. Горизонт 590м

Ильменит (FeTiO₃) – представлен зернами размером от 0,05 до 0,5 мм и больше. Распространенность - до 2%. Встречается с магнетитом и вместе образуют структуру распада твердых растворов.

Рис.3.44 – Полоски ильменита. Анш. 7а. Горизонт 580м

Гематит (Fe₂O₃) – образует замещения магнетитовой части титаномагнетита, а также создает корродирует агрегаты пирротина. Встречается вместе с который его замещает магнетитом.

Магнетит (Fe₃O₄) – Размеры от 0,01 до 2мм. Обрастётся гематитом.

Рис. 3.45 – Гематит замещает магнетит. Анш. 4а. Уртит. Горизонт 600м

Сульфиды

Пирротин (Fe_{x-1}S_x) – наиболее распространённый минерал неправильной формы, редко округлый, вытянутый. Размеры от 0, 001 до 2 мм. Цементирует нерудные минералы и образует с ними сидеритовую структуру.

Структуры: прожилковая и аллотриоморнозернистая по отношению к нерудным минералам. В отношениях с другими нерудными минералами и сульфидами пирротин срастается с кальцитом, с графитом, с халькопиритом, замещается гематитом. Встречается в сростках с пиритом, халькопиритом. Пирротин представляет собой благоприятную зону развития структур замещения, а также по нему развивается большая часть сульфоарсенидов, диарсенидов никеля и кобальта [2, 3].

Рис.3.46 – Пирротин. Анш. 3. Горизонт 600м

Пентландит (Fe,Ni,Co) $_9S_8$ — Минерал значительно распространен, но крупных выделений не образует. Ассоциирует с агрегатами пирротина, в составе которого образует пламеневидные зерна за счет распада твердого раствора. Пентландита может иметь срастания с халькопиритом. Размеры зерен пентландита редко превышают 2,8х3,0мм. Форма зерен пентландита обычно клиновидная, древовидная, в виде перьев или мелких субпараллельных линз.

Рис.3.47 – Клиновидные зерна пентландита в пирротине. А- отраженный свет. Б – обратно-рассеянные электроны. Анш. 0. Горизонт неизвестен

Пирит (FeS₂) – выделяется крупными размерами зерен: от 0,01 до 2 мм и более. Структуры прожилковые. Минерал развивается отдельными зернами, замещает и разъедает края пирротина. Пирит в составе аншлифов существует в двух генерациях. Пирит первой генерации выражен более отчетливыми контурами зерен, а также образует отдельные таблитчатые и кубические зерна.

Марказит (FeS₂) – Структура минерала звездчатая, лучистая; размеры: 0,005 до 0,01мм. Встречается с пиритом, пирротином, халькопиритом. Основная форма выделений –замещение пирротина и пирита.

Рис. 3.48 – Первичный пирит вместе с марказитом. Анш. 3. Горизонт 600м

Пирит второй генерации развивается вдоль трещин катаклаза пирротина, и характеризуется зазубренными контурами, а зерна - вытянутые и бесформенные.

Рис 3.49 – Вторичный пирит. Анш. 3. Горизонт 600м

Халькопирит (CuFeS₂) – образует игольчатые, таблитчатые отдельные зерна размерами от 0,01мм до 0,3мм. Заполняет пустоты между зернами нефелина.

Рис.3.50 – Халькопирит. Анш. 4а. Горизонт 600м

Арсенопирит FeAsS – Минерал обнаружен только в одном образце - №5. Минерал образует по краям пирротиновых выделений небольшие трещиноватые агрегаты, содержащие внутри себя не до конца замещенные реликты пирротина, а также микронные зерна новообразованного лёллингита (рис.3.51).

Рис.3.51 – Агрегаты арсенопирита по краям пирротина. А- отраженный свет. Бобратно-рассеянные электроны. Анш. 5. Горизонт 600м

Б

Рис.3.52 – Нарастание арсенопирита на пирротин. А-отраженный свет. Б-обратно-рассеянные электроны. Анш. 5. Горизонт 600м

Размеры агрегатов арсенопирита широко варьируют. Минимальные размеры составляют первые микроны, максимальные – 0,164x0,182мм.

Химические анализы агрегатов арсенопирита показывают неоднородность его элементного состава, и значительно нарушенную стехиометрию (таблица).

Спект		Сод	ержан	ия, мас	. %		Сумма	Формула
р	S	Fe	Co	Ni	As	Sb		
84	17,47	33,08	0,0	1,04	48,34	0,0	99,93	$(Fe_{0,99}Ni_{0,03})_{1,02}As_{1,08}S_{0,90}$
85	18,44	34,25	0,19	0,0	46,57	0,0	99,45	$(Fe_{1,01}Co_{0,01})_{1,02}As_{1,03}S_{0,95}$
86	14,92	22,66	6,28	4,81	50,90	0,43	100,0	$(Fe_{0,70}Ni_{0,14}Co_{0,18})_{1,02}As_{1,18}S_{0,80}$
87	17,21	29,62	3,64	1,61	50,24	0,16	102,48	$(Fe_{0,87}Ni_{0,05}Co_{0,10})_{1,02}As_{1,10}S_{0,88}$
88	14,10	19,94	7,87	6,22	51,69	0,19	100,01	$(Fe_{0,62}Ni_{0,18}Co_{0,23})_{1,03}As_{1,20}S_{0,77}$
89	17,17	31,04	1,51	2,06	47,97	0,0	99,72	$(Fe_{0,93}Ni_{0,06}Co_{0,04})_{1,03}(As_{1,07}Sb_{0,01})_{1,08}S_{0,89}$
102	16,90	23,96	7,63	2,57	48,94	0,0	100,0	$(Fe_{0,72}Ni_{0,07}Co_{0,22})_{1,01}As_{1,10}S_{0,89}$
103	16,37	23,56	8,10	2,59	49,37	0,0	99,99	$(Fe_{0,71}Ni_{0,07}Co_{0,23})_{1,02}As_{1,12}S_{0,86}$
104	18,1	33,60	0,0	0,0	48,94	0,0	100,64	$Fe_{0,99}As_{1,08}S_{0,93}$

Таблица.3.10 – Химический состав арсенопирита, образец 5

Отмечаются значительные примеси кобальта (до 8,1мас. %), никеля (до 6,22мас. %). В незначительном количестве в составе арсенопирита присутствует сурьма (до 0,43мас. %).

Молибденит MoS₂ – Минерал молибденит редкий, выделяется тонкими светло-серыми поверхностями. Он представлен в аншлифе 3 спектрами 22-24.

Рис.3.53 – Молибденит. Обратно-рассеянные электроны. Анш. 3. Горизонт 590м

аншлиф	спектр	Содержания, мас. %			Сумма	минерал	формула
		Mo	Fe	S			
3	23	39,12	2,28	56,92	98,32	Молибденит	$(Mo_{0,96}Fe_{0,07})_{1,03}S_{1,97}$
3	24	36,09	1,76	56,47	94,31	Молибденит	$(Mo_{1,01}Fe_{0,05})_{1,06}S_{1,94}$

Таблица 3.11 – Химический состав молибденита

Самородные элементы

Графит (С) – образует зерна таблитчатой, пластинчатой форм. Размеры от 0,01 до 0,2мм, редко до 1 мм. Структура графитовая, разъедания по отношению к нерудным минералам и к пирротину.

Рис 3.54 – Графит. Анш. 10. Уртит. Горизонт 590м

Диарсениды

Леллингит FeAs₂ – Минерал встречается практически только внутри кристаллов кобальтина или герсдорфита в виде мелких реликтов, не до конца замещенных.

Рис.3.55 – Включения леллингита в кобальтине (А) и в герсдорфите (Б). А – Анш. 5. Горизонт 600м. Б – Фото в обратно-рассеянных электронах. Анш. 0. Горизонт неизвестен

Химический состав леллингита характеризуется значительным содержанием кобальта и никеля, что подтверждает наличие непрерывного изоморфизма между леллингитом и саффлоритом (Справочник..., 1988).

Аншли	Спект		Co	держані	ия, мас	. %		Сумм	Формула
ф	р	S	Fe	Co	Ni	As	Sb	а	
5	99	0,5	16,8	5,39	5,9	71,2	0,0	100,0	$(Fe_{0,62}Ni_{0,21}Co_{0,19})_{1,02}(As_{1,95}S_{0,03})_{1,98}$
		4	2		7	7			
5	100	0,7	17,1	5,10	6,3	70,6	0,0	100,0	$(Fe_{0,63}Ni_{0,22}Co_{0,18})_{1,02}(As_{1,93}S_{0,05})_{1,98}$
		6	7		0	6			
5	101	0,9	16,4	5,31	6,0	71,3	0,0	100,0	$(Fe_{0,60}Ni_{0,21}Co_{0,18})_{0,99}(As_{1,95}S_{0,06})_{2,01}$
		2	3		5	0			
0	143	0,4	13,1	9,26	6,0	70,5	0,5	100,0	$(Fe_{0,49}Co_{0,33}Ni_{0,21})_{1,03}(As_{1,96}Sb_{0,01})_{1,97}$
		8	6		6	0	5		
0	150	0,4	12,3	10,4	6,0	69,9	0,8	100,0	$(Fe_{0,45}Co_{0,36}Ni_{0,21})_{1,03}(As_{1,93}S_{0,03}Sb_{0,01})_{1,7}$
		5	1	2	3	8	2		
0	151	1,2	12,4	9,90	6,2	69,6	0,5	100,0	$(Fe_{0,46}Co_{0,34}Ni_{0,22})_{1,01}(As_{1,90}S_{0,08}Sb_{0,01})_{1,9}$
		3	6		0	5	6		9
0	152	1,0	13,0	9,52	6,0	69,5	0,7	100,0	$(Fe_{0,48}Co_{0,33}Ni_{0,21})_{1,02}(As_{1,90}S_{0,07}Sb_{0,01})_{1,9}$
		6	4		9	7	1		9

Таблица 3.12 – Химический состав леллингита

Теллуры

Гессит Ag₂Te – зерно неправильной формы и более крупных размеров (до 1,8х3,9мкм) выявлено в составе никель-кобальтового сульфоарсенида, между двумя включениями леллингита (рис.3.56).

Рис. 3.56 – Гессит в составе герсдорфита. А - отраженный свет. Б – в обратнорассеянных электронах. Анш. 0.

Корреляционная диаграмма содержания S, Fe, Al₂O₃

Диаграмма была составлена для установления совместного влияния S, Fe на качество глинозема в некоторых пробах уртитов. Результат спектрального анализа данных проб представлен в таблице 3.13.

Таблица 3.13 – Данные спектрального анализа проб уртитов

Результаты спектрального анализа EDX-7000														
л⊍ проб ы	Na ₂ O	MgO	Al ₂ O ₃	SiO ₂	SO_3	K ₂ O	CaO	Fe ₂ O ₃	Nnn	TiO ₂	R ₂ O	M _{R2O}	М изв	SUM
3	10,78	1,26	28,04	43,29	0,15	3,13	7,26	3,69	1,55	0,33	12,84	0,754	0,179	99,5
4a	10,67	1,72	27,81	41,93	0,24	2	6,65	2,94	5,31	0,42	11,99	0,709	0,17	99,7
5a	9,6	1,65	26,85	42,88	0,16	1,92	7,9	4,38	3,76	0,39	10,87	0,666	0,197	99,5
7a	10,73	1,52	26,61	40,29	0,62	1,22	4,17	4,17	10,08	0,3	11,54	0,713	0,111	99,7
10	10,52	1,32	27,46	42,88	0,11	2,85	7,64	4,3	2,12	0,35	12,39	0,742	0,191	99,5
11	10,64	1,45	27,23	43,17	0,18	2,76	7,66	4,57	1,55	0,38	12,46	0,753	0,19	99,6
13	11,4	2	21,64	33,42	0,21	2,38	8,67	3,51	16,2	0,54	12,97	0,985	0,278	100
17	11,17	1,34	27,93	42,08	0,12	2,92	6,65	3,35	3,72	0,32	13,09	0,771	0,169	99,6
17a	11,65	0,95	28,78	42,01	0,19	3,25	5,92	2,98	3,6	0,27	13,8	0,789	0,151	99,6
Среднее														
содержание на			25.5		0.25			5						
	Polisbo	одетве	25,5		0,20			5						

Рис.3.57 – Корреляционная диаграмма содержания S, Fe, Al₂O₃

Вывод: учитывая, что содержания **S** и **Fe** выше их кларка, устанавливается, что присутствие серы и железа в рудах занижает долю глинозёма [2,3,4].

	Этапы										
Минералы		Магм	атический	Гидротермальный							
	стадии										
	Нефелин-плагиоклазовая		Титаномагнетит-гематитовая	Пирит-графитовая		Кобальтин- никелиновая					
Нефелин Титан-авгит											
Плагиоклаз	 										
Апатит											
Титаномагнетит											
Ильменит-1			— <u> </u>								
Ильменит-2											
Гематит											
Пирротин			—								
Пентландит											
Пирит-1											
Марказит											
Пирит-2				_							
Халькопирит											
Арсенопирит											
Графит											
Кобальтин						-					
Электрум											
Герсдорфит											
Гессит											
Никелин											
Форма проявления	Зернистые Зернистые		Зернистые, полосчатые	Прожилки	и, зернистые	Линзы					
минеральных				зона	льные						
ассоциаций					_						
РН, среда		Oc	новная	Кислая	Основная	Кислая					

Таблица 3.14 – Схема минералообразования в уртитах

3.2.2.4. Скарны

На контакте с образованиями Кия-Шалтырской интрузиии устькундатской свиты образуются скарны. Ширина зон скарнирования - от первых сантиметров до 10-15 (чаще 1-5) метров.

Скарны и скарнированные породы характеризуются серой, зеленоватосерой, грязно-зеленой окраской различной интенсивности. Нередко они полосчатые, что отражает первичную текстуру исходной породы. Минеральный состав породы непостоянный как по минеральным ассоциациям, так и по их количественным соотношениям. Мощность приконтактовых скарнов колеблется от первых миллиметров до 5-10, реже 15-20 метров, а скарнированных пород достигает до 50-100 м. В целом состав скарнов практически не отличается от состава скарнов, связанных с пойкилитовыми габброидами, исключая отсутствие нефелина. В них чаще преобладает везувиан (до 80%), обычен диопсид (до 25%), клиноцоизит (до 40%), гранат (ед. зерна-30%), кальцит, сульфиды [1].

Рис.3.58 – Скарн. Образец 4. Горизонт 700м

Рудная минерализация

В исследуемых образцах скарнов выделяются следующие рудные минералы: титаномагнетит (Fe(FeTi)₂O₄)-1% пирротин (Fe_{x-1}S_x)-2%, пирит (FeS₂)-0,2%, ильменит (FeTiO₃)-0,5% магнетит (FeFe₂O₄)-0,1%, гематит (Fe₂O₃)0,1%, графит(C)-0,5%, халькопирит (CuFeS₂)-0,05%, арсенопирит (FeAsS)-0,05%, кобальтин (CoAsS)-0,1%, никелин (NiAsS)-0,01%, леллингит (FeAs₂)-0,01%, герсдорфит (NiAsS)-0,01% пентландит (Fe, Ni, Co)₉S₈-0,01%, гессит (Ag₂Te)-0,01%, электрум (Au, Ag)-0,01%, фазы палладия, т.е. полярит (PdBi), садбериит (PdSb)-0,01%, джерфишерит K₆(Fe, Cu, Ni)₂₄S₂₆Cl-0,1% и цумоит (BiTe)-0,01%, глаукодот-0,1%.

Оксиды

Титаномагнетит Fe(Fe,Ti)₂O₄ – присутствует в скарнах в виде включений в нефелинах с реликтовой структурой распада в центральной части, а по краям с пластинками ильменита. Местами в магнетитовой части наблюдается гематит.

Рис.3.59 – Структура распада титаномагнетита. Анш. 2. Горизонт 600м

Сульфиды

Пирротин ($Fe_{x-1}S_x$) – представляет большой интерес, т.к. в нем обнаружено золото. Размеры зерен пирротина разнообразные - до первых мм; структура сидеронитовая.

Пирит (FeS₂) – в скарнах образуется по краям пирротина, т.е. является вторичным, в виде удлинённых зерен (рис. 3.60).

Пентландит (Fe,Ni,Co) $_9S_8$ — Минерал значительно распространен, но крупных выделений не образует. Ассоциирует с агрегатами пирротина, в составе которого образует пламеневидные зерна за счет распада твердого раствора (рис.3.61). Размеры выделений до 1мм.

Рис. 3.61 – Мелкие выделения пентландита в пирротине. Отраженный свет. Анш. 2. Горизонт 600м

Рис.3.62 – Включение пентландита в пирротине. Анш. 2. Горизонт 600м

Сфалерит ZnS – редкий минерал, выделяется мелкими зернами до 0,1мм в интерстициях пирротина вместе с халькопиритом.

Рис.3.63 – Сфалерит по краю халькопирита. Анш. 2. Горизонт 600м

Галенит PbS – Относится к малораспространенным минералам. Минерал обнаружен в аншлифе №2. Микронное (размером 2,7х3,1мкм) зерно галенита выявлено на краю мелкого зерна пирротина, расположенном в нерудной массе (рис.3.64).

Рис.3.64 – Микронное зерно галенита в срастании с пирротином. Обратнорассеянные электроны. Анш. 2. Горизонт 600м

Таблица	3	15 -	- X	имический	состав	галенита
гаолица		.1.) -	- 77	имический	COUTAB	галснита

Аншлиф	Спектр	Содер	жания,	мас.%	Сумма	Формула	
	chemp	S	Se	Pb			
2	37	15,76	0,00	84,24	100	$Pb_{0,94}S_{1,06}$	

Теллуры

Гессит Ag₂Te – Минерал выявлен в виде нескольких микронных зерен. Был обнаружен в аншлифе №2 в составе пирротина в виде единичного зерна размером 2х4мкм (рис. 3.65). Остальные находки связаны только с арсенидами и сульфоарсенидами.

Рис.3.65 – Мелкое зерно гессита в пирротине. Фото в обратно-рассеянных электронах. Анш. 2. Горизонт 600м

Таблица.3.16 – Химический сос	став гессита
-------------------------------	--------------

Аншлиф	Спектр	Содержан	ия, мас. %	Сумма	Формула
		Ag	Те		
2	18	62,26	37,74	100	Ag _{1,98} Te _{1,02}
2	19 63,05		38,09	101,14	Ag _{1,99} Te _{1,01}

Диарсениды

Леллингит FeAs₂ – Минерал встречается практически только внутри кристаллов кобальтина или герсдорфита в виде мелких реликтов, не до конца замещенных (рис. 3.66).

Химический состав леллингита характеризуется значительным содержанием кобальта и никеля, что подтверждает наличие непрерывного изоморфизма между леллингитом и саффлоритом (Справочник..., 1988).

Таблица. 3.17 – Химический состав леллингита

Аншлиф	Спектр		Сод	ержания	н, мас.%	6	Сумма	Формула	
		S Fe		Со	Ni As S		Sb		
2	47	0,70	13,64	11,29	3,27	71,10	0,0	100,0	$(Fe_{0,50}Co_{0,39}Ni_{0,11})_{1,01}(As_{1,95}S_{0,04})_{1,9}$
2	48	0,92	13,39	11,83	3,20	70,66	0,0	100,0	$(Fe_{0,49}Co_{0,41}Ni_{0,11})_{1,01}(As_{1,93}S_{0,06})_{1,99}$

Рис.3.66 – Лёллингит. Обратно-рассеянные электроны. Анш. 2. Горизонт 600м

Сплавы, самородные элементы

Электрум (Au, Ag) – Сплав золота и серебра в составе сульфидной минерализации Кия-Шалтырского месторождения был обнаружен в образце № 2. Во всех исследованных случаях благороднометальная минерализация была связана с сульфоарсенидами и арсенидами кобальта и никеля (рис.3.67).

Рис.3.67 — Включение самородного золота в арсенидах и сульфоарсенидах кобальта и никеля. А – отраженный свет. Б – обратно-рассеянные электроны. Анш. 2. Горизонт 600м

В составе аншлифа №2 минерал состава электрум имеет тесное срастание с мелкими зернами саффлорита, который, в свою очередь, располагается в окружении агрегатов аллоклазита. Размеры зерна электрума в этом образце составляют 6,9х8,1мкм. Содержание серебра в этом зерне составляет, в среднем, 37,53% (таблица 3.18, анш. 2) [2,3,6,7,8].

NoNo	Аншлиф	Спектр	Содержан	ия, мас. %	Сумма	Проба
п/п			Ag	Au		
1	2	1	36,74	65,35	102,09	640‰
2	2	2	39,63	59,32	98,95	599‰
3	2	3	36,23	61,92	98,16	631‰
	Среднее		37,53	62,20	99,73	623‰

Таблица 3.18 – Химический состав сплава золота и серебра в скарне

Графит (С) – образует пластинки и зональные зерна, обрастая пирротин.

Рис.3.68 – Графит развивается в пирротине. Анш. 2. Горизонт 600м

Фазы палладия

Минералы палладия обнаружены в сульфидных скоплениях Кия-Шалтырского месторождения впервые. В аншлифе 10-3, отобранном из метасоматитов, был выявлен минерал садбериит.

Садбериит PdSb – Редкий минерал сульфидного комплекса. Обнаружен в составе агрегата аллоклазита в срастании с галенитом (рис.3.69 А). Кроме галенита и садбериита, в аллоклазите присутствуют мелкие реликты пирротина и леллингита (см. рис. 3.69. Б). В свою очередь, скопления аллоклазитовых зерен и сростков располагаются в агрегате пирротина.

Рис.3.69 – Зерно садбериита в срастании с галенитом в агрегате аллоклазита. А – отраженный свет. Б – обратно-рассеянные электроны. Анш. 10-3. Горизонт 720м

Судя по взаимоотношениям, предполагается, что галенит замещает зерно садбериита. Размеры зерна садбериита крайне малы и составляют 1,8х3,5мкм. В составе садбериита отмечается достаточно значительная (до 11,9мас. %) примесь висмута. Несмотря на это, результаты анализов достаточно хорошо пересчитываются на теоретическую формулу минерала (таблица 3.19.).

Аншлиф	Спектр	Co	держани	я, мас. %		Сумма	Формула
		Pd Bi		Sb	Pb		
10-3	150	44,62	9,69	45,69	-	100,0	Pd1,00(Sb0,89Bi0,11)1,00
10-3	154	45,30	11,90	42,80	-	100,0	Pd _{1,02} (Sb _{0,84} Bi _{0,14}) _{0,98}

Таблица 3.19 – Химический состав садбериита

Минералы		Этапы							
_	Магмати	ческий	Контактово-	Гидротермальны	Вторичные				
			метасоматический	й	изменения				
		стади	1						
	Нефелин-	Титаномагнетит-	Пирит-халькопиритовая	Кобальтин-	Графитовая				
	плагиоклазовая	гематитовая		никелиновая					
Нефелин									
Титан-авгит									
Плагиоклаз									
Апатит									
Титаномагнетит									
Ильменит-1									
Ильменит-2									
Магнетит									
Гематит-1									
Пирротин			+						
Пентландит									
Пирит-1									
Марказит									
Пирит-2									
Халькопирит									
Кобальтин			_						
Арсенопирит				•					
Герсдорфит									
Гессит									
электрум									
Никелин									
Графит									
Форма проявления	Зернистые	Зернистые,	Прожилки, зернистые	Ли	НЗЫ				
ассоциаций		полосчатые	зональные						
РН, среда	Основная	Кислая							

Таблица 3.20 – схема минералообразования в скарнах

3.2.3. Диаграммы распределения сульфоарсенидов, диарсендов и распространённость минералов в породах

С результатами анализов спектров минералов в разных типах пород была построена диаграмма по содержанию миналов сульфоарсенидов и диарсенидов для сравнения с результатами раннее проведенных работ Сазоновым. А. М. более 20 лет назад [3]. По экспериментальным данным, были определены температуры образования габбро, йиолитов, уртитов и скарнов по содержаниям в них сульфоарсенидов и диарсенидов. [8]

3.2.3.3. Сульфоарсениды

Группа кобальтин CoAsS – арсенопирит FeAsS – герсдорфит NiAsS.

Рис.3.70 – Диаграмма распределения сульфоарсенидов в габбро, скарнах и уртитах. Температурные линии приведены по экспериментальным работам [6,7,8].

Выводы

В уртитах с повышением содержания кобальта и никеля в сульфоарсенидах, растёт температура минералообразования до 650°С.

Данная группа минералов в уртитах располагается локально и отделена от других типов пород высоким содержанием (от 70%) минала арсенопирита.

В скарнах сульфоарсениды образуют локальную группу в интервале от 60 до 80% минала кобальтина с температурой образования в интервале 400- 500⁰ С.

В габбро нижних горизонтов массива, сульфоарсениды распределены менее равномерно и характеризуются повышенным содержанием минала

герсдорфита (повышенной никеленносностью), в отличие от данных Сазонова А.М. [3].

Исходя из линий температур, нанесенных согласно экспериментальным работам, выясняется, что уртиты самые высокотемпературные; температура их образования находится в интервале от 300 до 650° С. Температуры образования скарнов и габбро находятся в интервале от 400 до 600° С. В целом полученные авторские данные хорошо соответствуют данным Сазонова А.М. [3,6,7,8].

3.2.3.4. Диарсениды

Группа саффролит CoAs₂ – лёллингит FeAs₂ – раммельсбергит NiAs₂.

Рис.3.71 – Диаграмма распределения диарсенидов в скарнах и уртитах. Температурные линии даны по экспериментальным работам [8].

Выводы

В уртитах и скарнах картина распределения арсенидов аналогично, но, отличаются по следующим параметрам:

- по содержанию для уртитов от 40% до 60% минала лёллингта, для скарнов от 40% до 50%.

По содержанию минала саффлорита до 30% в уртитах, а в скарнах на 10% больше.

Исходя из линий температур, нанесенных согласно [6,7,8]: выясняется, что уртиты самые высокотемпературные, температура их образования от 200-300⁰ С до 625 ⁰ С. Температура образования скарнов колеблются до 200-300⁰ С.

В целом сопоставление данных автора и полученных Сазоновым. А.М. находится на одном уровне. [3,6,7,8]

Минералы		породы								
N₂	Название	формулы		Габбро		Уртиты		Йиолит		Скарны
П/П		ing basin provi	Этап	Распространённость, %	этапы	Распространённость, %	Этапы	Распространённость, %	Этапы	Распространённость, %
1	Титаномагнетит	Fe(FeTi) ₂ O ₄	Α	1,5	A	2,0	A	2,0	A	1,5
2	Ильменит-2	FeTiO ₃	Α	0,1	Α	0,1	A	0,1	Б	0,5
3	Гематит-1	Fe ₂ O ₃	Α	0,1	Α	0,1	A	0,05	Б	0,1
4	Гематит-2	Fe ₂ O ₃	Α	0,1	Α	0,2	A	0,05	Б	0,1
5	Магнетит	FeFe ₂ O ₄	Α	0,1	A	0,1	A	0,01	Б	0,1
6	Пирротин	Fe _{x-1} S _x	Α	2	A	1,5	A	1,2	Б	2
7	Пентландит	(Fe, Ni, Co) ₉ S ₈	Α	0,01	A	0,1	A	0,05	Б	0,1
8	Пирит-1	FeS ₂	С	0,1	Б	0,2	Б	0,2	Б	0,1
9	Марказит	FeS ₂	С	0,01	Б	0,01	Б	0,01	Б	0,01
10	Пирит-2	FeS ₂	С	0,1	Б	0,2	Б	0,2	Б	0,1
11	Халькопирит	CuFeS ₂	С	0,05	Б	0,1	Б	0,05	Б	0,1
12	Арсенопирит	FeAsS	С	0,01	Б	0,01	Б	0,01	Б	0,02
13	Галенит	PbS	С	0,01	Б	0,01			Б	0,01
14	Сфалерит	ZnS	С		Б		Б	0,01	Б	0,01
15	Графит	C	С	0,5	Б	0,3	Б	0,8	Б	0,2
16	Кобальтин	CoAsS	С	0,1	C	0,02	C	0,01	C	0,01
17	Электрум	Au, Ag	С	0,01					C	0,01
18	Герсдорфит	NiAsS	С	0,1	С	0,01	C	0,01	C	0,01
19	Гессит	Ag ₂ Te	С	0,01	C	0,01	C	0,01	C	0,05
20	Никелин	NiAsS	С	0,01			C	0,01	C	0,01
21	Лёллингит	FeAs ₂	С	0,01	C	0,01			C	0,01
22	Саффлорит	CoAs ₂							C	0,01
23	Аллоклазит	(Co, Fe) AsS							C	0,1
24	Кубанит	CuFe ₂ S ₃	С	0,01		×		-		
25	Глаукодот	(Co, Fe) AsS	С	0,1						
26	Садберит	PdSb	С	0,01					C	0,01
27	Полярит	PdBi	С	0,01					C	0,01
28	Молибденит	MoS ₂			C	0,005				
29	Цумоит	BiTe	С	0,01						
30	Джерфишерит	K ₆ (Fe, Cu, Ni) ₂₄ S ₂₆ Cl	С	0,01						

А – магматический этап

Б – Контактово-метасоматический этап

С – Гидротермальный этап

Рис.3.72 – распространённость минералов в типах пород

В результате данной работы была охарактеризована геология Кия-Шалтырского массива свойства, по которым он заинтересовал ученых. Были перечислены кондиционные параметры многократных разведок, охарактеризованы стратифицированные и интрузивные образования, а также предложена последовательность образования самого массива вместе с своими комплексами.

Строение Кия-Шалтырского массива относится ко второй категории сложности, что указывает на наличие неоднородности в рудном теле.

Неоднородность обусловлена наличием, во-первых, интрузивных образований, например дайки разных составов, прорывающие рудное тело во всех направления, а во-вторых, неравномерным распределением глинозёма в рудном теле. В связи с этим установлена дифференциация первоначальной щелочно - базальтовой магмы, а затем внутриочаговая дифференциация.

Вторичные изменения (сульфидизация, сканирование, ороговикование, графитизация), процессы внедрения по разломам, зонам трещиноватости и раздробленным зонам служат источником внедрения вместе и распределения сульфидов в пределах массива.

Рудные минералы, например сульфиды, макроскопически встречаются во всех интрузивны породах массива, в том числе в дайках.

По анализам типов пород, выяснилось, что, рудные присутствуют и оказывают влияние на долю глинозёма в уртитах. Построенные нами диаграммы показывают, что рост содержания серы и железа занижает содержание глинозёма.

Рудные минералы делятся на раннемагматические и постмагматические ассоциации:

Раннемагматические (титаномагнетит, ильменит, магнетит и гематит) формированные распадом твердого раствора титаномагнетитового состава.

Постмагматические (пирротин, пентландит, халькопирит, пирит, сфалерит и др.) формировались в результате ликвации расплава на силикатную и сульфидную фацию. Они широко распространены в магматических, сканированных вмещающих толщах в виде вкраплеников.

В результате анализов типов пород, были обнаружены многие разные рудные минералы, из которых заинтересовали сульфиды источники благородных металлов как золото, серебро, минералы палладия.

Выяснилось, что, в скарнах и габброидах большие концентрации сульфидных минералов.

Показания позволяют сделать о возможной попутной добычи этих благородных элементов взяв в пример месторождение Лулекоп с содержанием 7мг / т золота, которое добывается попутно.

По химическим анализам были построены диаграммы сульфоарсенидов и диарсенидов которые позволили экспериментальным путем определить температуру образования габбро, скарнов, уртитов.

СПИСОК ИСПОЛЬЗОВАННЫХ ЛИТЕРАТУР

1. Барсегян В.Е., Голубев А.В. и др. Кия-Шалтырское месторождение нефелиновых руд: отчет о доразведке в 2009-2012 гг. с подсчетом запасов по состоянию на 01.01.2011 г. технический проект по состоянию на 01.01.2011 г. – Красноярск, 2012. – 234 с

2. Егоров В.К., Новиков Г.В., Соколов Ю.А. пирротины – г. Москва, 1988 г., 184 стр.

3. Сазонов А.М., О.М. Гринев, Леонтьев С.И., Звягина Е.А., В.С., Чекушин М.Я. Бетхер/Геология и золотоплатиноносность нефелиновых пород Западной Сибири. – Томск: Издательство Томского политехнического университета, 2000. – 248 с.

4. Сазонов А.М., Гринев О.М., Шведов Г.И., Сотников В.И. Нетрадиционная платиноидная минерализация Средней Сибири. – Томск: Издво ТПУ, 1997. – 148с.

5. Тихонов А.А., Ляхова Н.Е., Копанцева Г.Д. Технический проект на разработку кия-Шалтырского месторождения нефелиновых руд – том 1

6. Gervilla F., Ronsbo J. New data on (Ni, Fe, Co) diarsenides and sulfarsenides in chromite-niccolite ores from the Malaga Province, Spain. - Neues Jahrbuch für Mineralogie. Monatsh. 1992. H.5. S. 193-206.

7. Gervilla F., Leblanc M., Torres-Ruiz J., Hach-Ali P.F. Immiscibility between arsenide and sulphide melts: A mechanism for the concentration of noble metals. - Canadian Mineralogist.1996. Vol. 34, p. 3. P. 485-502.

8. Klemm D. Synthesen und Analysen in den Dreiecksdiagrammen FeAsS-CoAsS-NiAsS und FeS₂-CoS₂-NiS₂. - Neues Jahrbuch für Mineralogie. Abhandlungen. 1965. Bd. 103, H.3.

Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования «СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

> Институт цветных металлов институт Геологии месторождений и методики разведки кафедра

УТВЕРЖДАЮ аведующий кафедрой В.А. Макаров инициалы, фамилия 2024 г.

ДИПЛОМНАЯ РАБОТА

21.05.02. Прикладная геология код и наименование специальности

21.05.02.01 Геологическая съёмка, поиски и разведка месторождений

полезных ископаемых код и наименование специализации

Рудная минерализация интрузивных пород Кия-Шалтырского месторождения тема

Пояснительная записка

<u>Никвер 15,06.24</u>г. подпись, дата 25.06.24 г.

Г.И.Шведов инициалы, фамилия

Л. Т. Кулему инициалы, фамилия

Руководитель

Красноярск 2024

Выпускник

Продолжение титульного листа ДР по теме: «Рудная минерализация интрузивных пород Кия-Шалтырского месторождения»

Консультанты по разделам:

Real Providence

-

Геологическая часть наименование раздела

Геоинформатика наименование раздела

25.06.245.

подпись, дата

А. М. Сазонов инициалы, фамилия

<u>А.Б.Бородушкин</u> инициалы, фамилия

подпись, дата

20.06.2024г. М.Н. Киселева

подпись, дата

инициалы, фамилия

Нормоконтролер