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Abstract. The study is devoted to the application of the asymptotic splitting method for solving static
problems of deformation of homogeneous isotropic and composite cylindrical shells. The problem of
deformation of a composite cylindrical shell subjected to an internal axisymmetric load is considered.
The solution is constructed by expanding the components of the stress tensor and the displacement
vector in powers of differential operators acting along the cylinder axis. A small parameter is the ratio of
the shell thickness to its length. A governing differential system of equations describing the deformation
of a cylindrical shell is obtained. It is shown that the developed mathematical model allows to compute
all components of the stress tensor for both thick-walled and thin-walled cylindrical shells. The obtained
analytic and numerical solutions are compared with the finite element solution of the 2D axisymmetric
problem.
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Cylindrical composite shells are popular and important structural elements which are widely
used in many high-tech industries, such as aircraft, rocket manufacturing, production of high-
pressure composite vessels etc. In the current study we use the asymptotic splitting (AS) method
to analyze three-dimensional stress-strain state (SSS) of homogeneous and composite cylindrical
shells. The AS method was developed in [1] and was successfully used to analyze composite beams
and plates [2—4]. Special attention is given to the study of short and thick-walled cylindrical shells,
where the resulting SSS is complex along the entire length of the shell.
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1. Problem statement

Consider an axisymmetric problem of deformation of a cylindrical shell within the framework
of the linear theory of elasticity. The Oz axis is directed along the cylinder axis, the Or axis
is directed along the radius, as shown in Fig. (1). In the two-dimensional region describing the
cross section of the shell, the equilibrium equations are expressed as follows

0oy 0o, Orr — 000 0o, 0o, Orz
= = 1
or + 0z + r 0, or 0z r 0, 1)

where o,.., 099, 0., — radial, circumferential and longitudinal stresses, respectively; o,, — shear

stresses acting in 7Oz plane.
A distributed axisymmetric load p(z) acts on the inner surface of the cylinder. The outer

side of the cylinder is free
(1, 2) =Ry, = —D(2), O (1,2)|r=Rp, =0, )
Orz (T7 Z)|T=Rm =0, UTZ(Ta Z)|T=Rout =0,
where R;,, R,y — inner and outer radius of the cylinder, respectively.
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Fig. 1. Loading scheme of a composite cylindrical shell subjected to an internal load

Circumferential displacement is equal to zero. Thus, Cauchy equations for the linear strain
tensor in cylindrical coordinate system are

ou, Uy ou, 1 0u, Ou,

e =g 0T G T g 2T 5(5 or ) (3)

The shell is made of an arbitrary number of layers of constant thickness as schematically

shown on figure 1 using a four layer shell as an example, where each layer has its own color. The

designations h, L on figure 1 correspond to the thickness and length of the shell. The layers are

counted from the inner surface from 1 to s, where s is the number of layers. On the interfaces
between shell layers, the displacements and contact stresses are continuous

[UTE =0, [UT'Z]g =0, (Ua)j = (uu)i7 S (7“,0,2’), i,] = (175) (4)
The material of each layer is assumed to be orthotropic and obeys generalized Hook’s law

(Uaa)i = E((Jg (err)i + Ege)) (609)i + Egz) (ezz)ia Q€ (Ta 03 Z)a

: 5
0r. =2G9 (e,.)s, i=(1,5). ©)

The orthotropic axes of the material are aligned with the axes of the main coordinate system.
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1.1. Non-dimensional problem

Let us pass to non-dimensional variables and functions, for simplicity retaining the same
designation. The exception is made for the variable r, which is replaced with non-dimensional

variable x
- Rzn
c=" , z:i, x,z € [0,1],
h L
u ES) - p ©)
_ Yo (1) _ ~ap _ 0OoB _
ua_ﬁv Eaﬁ_ E ) Oap = EN’ p_Ev

where E — the characteristic value of Young’s modulus.

After transformations we obtain the equilibrium equations (1) and Cauchy equations (3) in
non-dimensional form

80’TT +€80'rz te Oryr — 006 =0
Oz 0z "1¥ezr

0oy, i 00, + Orz 0
€ 15 =0,
or 0z T+ 1T

_ Ou, Uy Oou, 1, 0u,  Ou,

o= or 66025114—613:’ G2 =50 6”_5(862« 8x)'

There are two parameters in the system: ¢ = h/L — characterizes the ratio of the shell
thickness to its length and is assumed to be small for asymptotic analysis; e1 = h/R;, —
characterizes the ratio of the shell thickness to its inner radius and does not have to be small.

2. Method of asymptotic splitting

According to the main idea of the AS method the following approximation rules for the
components of the displacement vector {u”} and stress tensor [¢"] are used

() S gy ™ (n) = pmwdn™
(@) (@, 2) = > (U) = et ) w2) = 3 (U = e,
k=0 k=0
n+3 k,,(n) ntl kyy(n)
n k) A" n k) d'n
(02" (2, 2) = Y ()P = e (L) @) = 3V ()
k=0 k=0
n+2 k., (n)
n y\(m) _ R AN g
R 0:2) = DTt aed)

where (U] )Ek) (x), (Tgﬂ)gk) (x) — stiffness functions describing distribution of displacements and
stresses across the thickness of the shell.

The approximation rules are considered in two directions n € (v,,v,), where v,(z) is the
average displacement of the shell along the z axis, v,.(z) is the average displacement of the shell
along the r axis.

The stresses and displacements could be determined as the sum of the components of each
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of the approximations according to the superposition rule

()™ (@, 2) = @)™ + W)™, () (2, 2) = (W2=)™ + (uer)™,

z z K3

(Gaa)™ (2, 2) = (02)™ + (62)™, (0.2)8" (3, 2) = (022)™ + (077)™, (10)

(002) (@, 2) = (622){" + (62){", @ € (r,6).

2.1. BVPs across the thickness of the shell

Let us substitute expressions (9) into the equilibrium equations (1) and equate the terms
at identical degree of the small parameter e. Then, we obtain a series of differential equations
across the thickness of the shell for different values of variables k and n € (v,,v;)

k k k
A ey, = @)
+ (Trz)i + €1 = 07
dxr 1461z
d(r )(k) (7 )(k) (11)
Trz)i n (k—l) Trz)i =0
dl‘ +(Tzz)z +€11+€1J}

The boundary conditions on the outer and inner surfaces are derived from the necessary
conditions for solvability of equations (11) and absence of load on the outer surface of the
cylinder

(rm)#0) = —BB® (71

rr

=0, @)PO =-Br®, P =0 (12

(k) g, (k)

where stiffness coefficients B, are expressed as follows

1 1
By® = / (er(rgp)? = (1 + 1) (7)) da, B = - / (1+ez)(r) 0. (13)
0 0

From the generalized Hooke’s law (5) it follows that the stiffness functions of stress tensor
(T;’B)(k) are related to the stiffness functions of displacement vector (U )l(-k)

i in the following way
(k) 7y (k)

(Taa)z ar dr + ah€1l 14+ €1z + az( z )z y

dun)

z /4 n (k—l)
d.fL' + (U'r‘ )7, )

Together, the expressions (11), (12), (14) form boundary value problems (BVPs) across the
shell thickness to determine the stiffness functions (Tga)gk), (Un )Ek) The sought-for functions

(14)
() = Gl

i TZ

(un )Ek), (U7 )Ek) are defined up to a constant. Therefore, additional conditions are needed, called
normalization rules. Depending on their choice the function 7(z) have a different physical mean-
ing. In the current study the normalization rules are chosen in such a way that n = v, is the
average displacement of the shell along the r axis for approximation in the radial direction

The normalization rules in the radial direction are the following one
1 1 1 1
[ena=1 [fonPaso [(omPa= [ona=o k1
0 0 0 0
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For approximation in the longitudinal direction the function 1 = wg is the average displace-
ment of the shell along the z axis

1 1
/ (upz) dex =0, v, = / (uy?) de.
0 0

The normalization rules in the longitudinal direction are the following one

1 1 1 1
/ U Ve =1, / )V de = 0, / )P dz = / U Pdr =0, k>1.
0 0 0 0

In particular cases BVPs across the shell thickness could be solved analytically. In the current
study the open source finite element package Fenics Project [5] is used to solve BVPs numerically
in general manner. For this purpose a weak formulation of BVPs is considered. Quadratic
Lagrangian elements for mesh discretization are used. Additional integral normalization rules
are implemented using Lagrange multipliers.

2.2. Governing differential equations of an axisymmetrically loaded
cylindrical shell

Let us consider the equilibrium equations of a cylindrical shell in dimensionless variables,
which follow from the equations (1)

er NG

—ea1——— +p(2) =0,

dN, dM,
€ € €
dz 1+e1z

=0
’ dz

=Qr, (15)

where M, — bending moment in the plane Orz, @), — shear force in radial direction, N, and
Ny — normal forces in longitudinal and circumferential directions, respectively,

M, = /(1 +e12)0,, xdr, Qp= /(1 +e12)0,, dr,
(16)

Let us consider the approximation for n = 1 and substitute it into expressions (16) and into
the equilibrium equations (15). We arrive at the following governing system of equations for the
unknowns v,., v,

By 4 grr@ @ o pe @@ 4 pe @ e s 5
" dz

rr d 2 rr d 4 Tr rr d 3 £ p(z)’
d d®v d? (a7)
By WS 4 B S tees 4 gz — g
dz dz3 dz? ’

where stiffness functions B:];(k), B"®) are to be found by formulas (13). Let us eliminate a third

derivative from equations (17). We differentiate the second equation, express the third derivative
with respect to v, and substitute it into the first equation.

d Ur d Uy d’l)z
By, 4 B o e2 4 Bl i et 4 oo o= p(2), 8
1
v, (l)dvr v ()d’l}r 3 v (2)d Uy o ( )
B —re+ By ret 1 B e =0,
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~(2) B;‘j;7(4)

where stiffness corrections Byr could be found using the formulas

vy (1
o Bl
B;’;a@) ’

B:;,(Q) _ B:,’;’(Z) _ B:?’( B:;,(4) — B:f;’(4) _ B;{;,(:s)

B;};’@) ’
Boundary conditions at the ends are expressed in terms of generalized forces and average
values of displacements and rotation angles

Hinged: v, =N, =M, =0, Clamped: v, =v, = ¢, =0. (19)

The rotation angle of the normal is determined using the least squares method, minimizing
the standard deviation of the straight line given by the rotation angle ¢, from longitudinal
displacements [2]

1
¢r = 7 /uz(x —0.5)dz, J.= /(33 —0.5)? dx.

For comparison, consider a governing system of differential equations the the theory of com-
posite cylindrical shells based on Kirchhoff-Love hypothesis

d*v, dv,
Basv, + D11%84 + 321L5 = —p(2),
dz dz (20)
B —dvre +B d%ZsQ =0
12 dz 11 dZ2 — Y,

where B;;, D11 — laminate stiffness coefficients.

The system (18) contains terms for the second derivative with respect to v, in the first
equation and for the third derivative with respect to v, in the second equation, which are not
present in the system (20). Both systems have the same differential order of 6. However as will
be noted further the solution of the (18) system allows one to find all components of the stress
tensor in contrast to the Kirchhoff-Love theory. The stress tensor components in each layer
could be found using the formulas (9), (10).

3. Numerical examples

This section provides examples of numerical calculations in non-dimensional form for homo-
geneous and composite cylindrical shells subjected to an internal pressure.

The results of finite element modeling are presented to verify the accuracy of the AS method.
The open finite element analysis package CacluliX is used to solve the original axisymmetric
two-dimensional problem. Six node finite element CAXG6 [6] is used.

Comparison of the AS method with calculations based on Kirchhoff-Love theory (KL) and
the Andreev—Nemirovsky (AN) theory [7] is given. The governing system of differential equations
for the AS method (11) is solved using the collocation method in the python library Scipy [8].

3.1. Homogeneous cylindrical shell subjected to an internal pressure

Let us consider a homogeneous isotropic cylindrical shell subjected to an internal pressure.
At the ends of the shell boundary conditions assumed to be clamped. The parameters of the
problem are equal to the following ones: h =1, p =1, E = 1, v = 0.32. The parameters e=h/L,
€1 = h/R;, is varied by changing the values of the shell length L and the inner radius R;,.

In Fig. 2 the values of radial displacements on the middle surface of the shell are shown for
four different sets of parameters ¢, £1:

- 32 —



Arseniy G. Gorynin. .. Mathematical Modeling of Three-dimensional Stress-strain. ..
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v— CalculiX, 10X u,, €=0.2,61=0.2
—— AS,10xu, £€=0.01,6,=0.2
---- KL, 10xu,, £€=0.01,¢,=0.2

4— CalculiX, 10 x u,, €=0.01,6;=0.2
—— AS,10xu,, £€=0.2,6,=0.05
---- KL, 10 X u,, €=0.2,6,=0.05

e CalculiX, 10 X ur, €=0.2,&, =0.05
—— AS, u, €=0.01,&, =0.05
---- KL, u, €=0.01,&,=0.05

x— CalculiX, u, €=0.01,&£; =0.05
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Fig. 2. Radial displacements of the shell middle surface for different values of €, 1

e the first set of parameters (black color) is extreme in the sense that in this case the shell
is short enough (¢ = 0.2) and thick-walled (g1 = 0.2);

e for the second set of parameters (green color), the shell still remains short (¢ = 0.2) and
could be considered thin-walled (g1 = 0.05);

e the third set of parameters (blue color) corresponds to a long shell (¢ = 0.01) and at the
same time thick-walled (¢; = 0.2);

e the fourth set of parameters (purple color) describes a long (¢ = 0.01) and thin-walled shell
(e1 = 0.05).

The results are obtained using the first approximation of the AS method, Kirchov—Love (KL)
theory and using two-dimensional finite element analysis in the CalculiX package. Based on the
results obtained one could conclude that for short shells KL theory significantly underestimates
the radial displacements in the shell (up to 40 %). For short shells the AS method estimates
radial displacements much better (within 10 % percent for thick-walled and 5 % for thin-walled).
The difference in the results could be explained by presence of boundary layers at the ends of the
shell. One could notice that the selected parameter values are not small compared to unity, thus
the asymptotic method begins to diverge from the exact solution of the problem. For long shells
the KL theory predicts radial displacement within 10 % percent. For long thick-walled shells the
KL theory slightly overestimates the real values of radial displacements. In turn for long shells
the AS method gives excellent agreement for both thick-walled and thin-walled shells (< 1 %).

One of the advantages of the AS method is that it allows to compute all components of the
stress tensor. Fig. 3 shows the values of the stress tensor components for ¢ = 0.2, €y = 0.05. The
values of the longitudinal o,, and circumferential og9 components are computed on the outer
surface of the shell. Shear o,, and radial o, stresses are computed on the middle surface of the
shell. It could be concluded that for short cylindrical shells the stress-strain state is strongly
dependent on bending moment along the entire length of the shell in contrast to long shells.
Longitudinal and circumferential components are calculated with good accuracy using both the
KL theory (within 5 %) and the AS method (within 1 %) except for a narrow region at the ends
where stress concentrators arise. The finite element mesh was refined near the ends of the shell in
order to correctly show that stress concentrators appear at the ends of the shell. It could be seen
that the AS method predicts shear and radial stresses in the main part of the cylindrical shell
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Fig. 3. Stress tensor components at € = 0.2, £ = 0.05

with good accuracy. Analysis of the results for the AS method revealed that boundary layers
appear near the ends, where the values of the obtained radial and shear stresses begin to differ
from the solution of the original problem. The size of the boundary layer directly depends on
the length of the shell. The area of influence of the boundary layer on shear and radial stresses
will only decrease as the length of the shell increases. In turn, the KL theory does not allow to
directly compute shear and radial stresses. For short shells the contribution of shear stresses is of
the same order as for longitudinal and circumferential stresses. Therefore, radial displacements
in the KL theory for short shells are significantly underestimated.

3.2. Three-layer composite cylindrical shell subjected to an internal
pressure

Let us consider a three-layer composite cylindrical shell subjected to an internal pressure p.
The layers are assumed to be made from isotropic materials. The parameters of the problem are

Rmid/L = 15, El/E2 = E3/E2 = 10, Vv; = 03, hl = h3 = 01, h2 = 08,

21
p:]-a h,Zl, E2:17 ( )

where R,,;q — shell middle surface radius, F;, v; — Young s modulus and Poisson coefficients of i-
th layer, h; — thickness of i-th layer. In this section the parameter €1 is defined in different manner
as the ratio of the shell thickness to the radius of the middle surface of the shell € = h/Ri4.
Due to the parameters chosen, the following relation between € and e; is valid: € = 1.5 X £5.
The boundary conditions for a cylindrical shell with rigid ends are expressed as follows
pRmid

v (0) =v.(1) =0, ¢(0)=¢-(1) =0, v,(0)=0, N,(1)= 5 (22)

To verify the results of the AS method a comparison is made with the results obtained by
the theory of composite shells based on the Kirchhoff-Love (KL) hypotheses and the Andreev—
Nemirovsky (AN) theory. AN theory allows to take into account shear deformations as described
in [7]. A reference numerical solution of a 2D axisymmetric problem is obtained using finite
element method and the CalculiX software.
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In the Tab. 1 the maximum radial displacements of the middle surface for a three-layer
cylindrical shell with rigid ends are shown. It could be seen that the difference between the
AS method and finite element solution is within 11 % for small values of 1/e1 and within 5 %
for large values. The results for simplified scheme of the AS method (AS*) are also shown in
the table 1. Simplified scheme (AS*) means that the factor 1 + ;2 is assumed to be equal to
unity. In this case, BPVs across the thickness of the shell are significantly simplified. It could
be seen that AS and AS* give approximately the same results. Therefore, the factor 1/¢; could
be neglected when solving BVPs across the shell thickness.

Table 1. Maximum radial displacement of the middle surface for a three-layer cylindrical shell

10~% x u,.(0.5)

1/e; || CacluliX AS, % AS* % KL, % AN, %
10 || 0.0131 | 0.0146 (11 %) | 0.0144 (11 %) | 0.0072 (45 %) | 0.0130 (1 %)
20 || 0.0834 | 0.0886 (6 %) | 0.0869 (6 %) | 0.0740 (11 %) | 0.0846 (1 %)
30 || 0.2388 | 0.2468 (4 %) | 0.2429 (4 %) | 0.2327 (3 %) | 0.2489 (4 %)
55 || 0.9607 | 0.9788 (1 %) | 0.9683 (1 %) | 0.9765 (1 %) | 0.9815 (1 %)

At small values of 1/e1 the theory of composite shells based on the KL hypotheses significantly
underestimates radial displacements (up to 45 % at 1/e; = 10). AN theory determines radial
movements with good accuracy (within 5 %). However, we note that the order of the governing
differential system in the AN theory is 8, which is 2 orders higher than in the AS method and
the theory of composite shells based on the KL hypotheses.

Comparison of maximum values of the stress tensor components for composite shell with rigid
ends is difficult due to the presence of stress concentrators near the ends. In order to exclude
consideration of concentrators, the stresses were calculated near the ends with a small offset
about 10 % of the shell thickness.
and shear stresses for a composite shell with rigid ends are shown. The AS method predicts
circumferential stresses within 10 %. The accuracy of the method increases with increasing the
value 1/e1. In the Tab. 2 results for longitudinal stresses are shown if the shell is hinged at
the ends. In this case the maximum normal stresses are achieved away from the ends and the

In the Tab. 2 the values of the maximum circumferential

AS method gives good enough agreement for all values of the parameter 1/e; for maximum
longitudinal stresses (within 10 %).

Table 2. Maximum ogyg, 0., and o,, stresses in a three-layer cylindrical shell

Rigid ends Hinged ends
1072 X ogg 1072 x o,., 1072 x 0.,
1/e; || CalculiX AS KL AN CalculiX AS CalculiX AS
10 0.1997 0.2175 | 0.1679 | 0.2136 1.8976 2.2589 0.2313 0.2509
20 0.5856 0.6154 | 0.5804 | 0.5936 3.4213 3.7342 0.3529 0.3584
30 1.0450 1.0750 | 1.0700 | 1.0728 4.3800 4.6633 0.4429 0.4442
55 2.1369 2.1542 | 2.1885 | 2.1567 6.1037 6.3649 0.7866 0.7911
Conclusions

A mathematical model for calculating three-dimensional SSS of cylindrical axisymmetric
shells has been developed based on the first approximation of the AS method. The first approx-
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imation of the AS method effectively solves the problem of deformation of composite cylindrical
shells if the boundary conditions at the ends are not absolutely rigid. The governing differential
system has the same order of 6 as in the KL theory. At the same time its solution allows one to
find all components of the stress tensor with good enough accuracy for both thin and thick-walled
shells. For short cylindrical shells AS method gives much better predictions compared to the
theory of composite shells based on KL hypotheses. The AN theory determines the components
of displacements and stresses (except for radial ones) with good accuracy (within 5 %). At the
same time the order of the governing differential system in the AN theory is 8, which is 2 orders
of magnitude higher than in the AS method and the theory of composite shells based on the KL
hypotheses.

For thick-walled and short cylindrical shells or shells with a large difference in elastic moduli
(more than 100 times), the first approximation of the AS method cannot exactly satisfy the
absolutely rigid boundary conditions at the ends of the shell. It is advisable to study the second
approximation of the AS method to take into account the boundary conditions at the shell ends
more precisely.
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HoBocubupckuit rocy1apCcTBeHHBII YHUBEPCUTET
Hosocubupck, Poccuiickast @enepartust

OUIT BT

Hosocubupck, Poccuiickas ®eneparums

Amwnnoranusi. Pabora mocBsiiiieHa TpUMEHEHUIO METO/Ia ACUMIITOTUIECKOTO PACIIEIIEHNS JIJIsT PEIeHUsT
CTATUYECKUX 331249 JePOPMUPOBAHUS OJHOPOIHBIX U30TPOMHBIX U KOMIIO3UTHBIX IIHIMHIPUIECKUX 000-
Jgouek. PaccMoTpena 3aa4da ynpyroro 1edOpMUPOBAHAS KOMIIO3UTHOMN IUJINHIPUYECKON 000I0YKH IO
JeficTBHEM BHYTPEHHEH OCECHMMETPHYHON HArpy3ku. PelreHme mOCTPOEHO IMyTeM Pa3JIOyKEHUS KOMIIO-
HEHT TEH30Da HAIPSKEHUI W BEKTOPa IIePEMENIEHN MO CTeneHsaAM AuddepeHInaIbHbIX OIePATOPOB,
JeMCTBYIOMMX BJIOJIb Oocu muuHApa. [Ipu 3TOM MaJsibM I1apaMeTpoM BBICTYIIAE€T OTHOIIEHUE TOJIIIIHHBI
060JI0YKY K JyIHe nuiauHApa. [lorydena pasperiatorias cucreMa ypaBHEHU 1epOPMUPOBAHUS TTAIH-
apudeckoit obosouku. [lokazano, 4To pazpaboraHHas MaTeMaTHYECKas MOJEIb MO3BOJISET BOCCTAHAB-
JIMBATh BCEe KOMIIOHEHTBHI TE€H30pa HAIPSXKEHUil KaK JJisd TOJCTOCTEHHBIX, TaK M JJjIs TOHKUX I[UJIMH-
apudeckux obosouek. [Ipomsseeno cpaBHEHUE MOTYYEHHBIX AHAJUTHIECKUX W YHUCJIEHHBIX PENIeHUil C
KOHEYHO-3JIEMEHTHBIM PeIlIeHNEM HMCXOJIHONW OCECUMMMETPUYHON 3aJIadu.

KiroueBbie ciioBa: TUJINHAPpUYIEeCKNe O6OJ’IO‘-IKI/I7 Hal'[pH)KeHHO-,ZLe(lZ)Opl\/II/IpOBaHHOG COCTOdAHHE, METO
ACUMIITOTUYIECKOTO pPacCIlelJIeHud, JIMHEHA s Teopuda YIPYroCcTHu, OCeCUMMeETpUYIHAad 3a/ada, METOJ KO-
HEYHbIX 3JIEMEHTOB.
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