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Introduction

The fundamental property of the Mellin transform, which largely determines the scope of its
applications, is the correspondence between the asymptotic behavior of the original function g(x)
and the singularities of the transformed function. The role of this fundamental correspondence
for the Mellin transform of a function of one variable is noted in numerous papers by F. Flajolet,
in particular, in [4] in relation with the calculation of harmonic sums.

We recall that the Mellin transform of the function g(z) is defined by the integral

Mg)(2) = / g)e*"dz, (1)

n
where the differential form

dx dr
el de = e A A=
X I
acts as a kernel. Inversion formulae for multidimensional Mellin transforms and classes of holo-
morphic functions that can be translated into each other by direct and inverse Mellin transforms
are studied in [1]. In this paper we deal with the Mellin transform of rational functions with
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quasi-elliptic denominators f. Due to the specifics of the kernel, it suffices to consider the trans-
form of the function g(x) = 1/f(x). The concept of a quasi-elliptic polynomial was introduced
by T.Ermolaeva and A. Tsikh in [3].

So, we consider the following polynomial in n variables

f@)=f(z1,...,20) = Z Car® = Z Cay o, T aOm 2)

a€A acA
with coefficients ¢, € C\ {0} and the support A C Z% .

Definition 1. A polynomial f is called to be quasi-elliptic if for any non-zero covector a € R™
its truncation f, does not vanish in the torus (R\0)™.

Recall that the truncation of the polynomial f in the direction a € R™ is determined to be

the polynomial
fa = Z Ca$a7

acAa
where A% is the face of the Newton polytope of f in the direction a. The Newton polytope Ny
of a polynomial f is defined to be the convex hull in R™ of the support A of f.
Meromorphic continuations of the Mellin transforms for rational functions with quasi-elliptic
denominators were studied by L. Nilsson and M. Passare in [9], where the following representation

MI1/f)(z) = ®(2) ﬁ (0 = (u®,2)), (3)
k=1

was proved. Here ®(z) is an entire function, vectors k) € Z" are primitive and define outward
normal directions to facets of the Newton polytope N, and v(¥) € 7. The Newton polytope can
be given by the system of inequalities

N
Ny = ﬂ {u eR™: <u(k),u> < y(k)},

k=1
so each v(®) is interpreted as the weighted power of the polynomial f with respect to the cor-
responding weight u(®). As it follows from the results of [3], the Mellin transform M[1/f](2) is
a holomorphic function in the tube domain over the interior of the Newton polytope Ny, and
formula (3) reveals that its polar set is the finite set of families of parallel hyperplanes. In each
family, the hyperplanes are obtained by shifting of some facet of the Newton polytope of the
polynomial f.

This approach was generalized for Euler—-Mellin integrals in [2], and also found application in
the theory of Feynman integrals, see [7,§].

In this paper, we present alternative representations for the Mellin transform of rational func-
tions of the specified class. Note that we can define the quasi-ellipticity concept on the set R’ by
assuming that truncations f, do not vanish on it, because the R}, being a connected component
of the real torus (R\0)", is its subgroup under the operation of coordinatewise multiplication.

Theorem 1. Let us assume that the polynomial f is quasi-elliptic on R”}. Then for each nor-
mal vector u*) of the Newton polytope Ny there is a representation for the Mellin transform

M1/ f](2) of the following form
My () = =m0 (18 )P+ (1), 2)Di(2), (4)
in which

Dp(2) = v.p./v Resw, (5)
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where Resw is the Leray residue form of the integrand in (1), Vi is a surface of real dimension
n — 1, and v.p. denotes the principal value with respect to the set of singular points of the V.
The function ®(z) defined by the integral (5) is holomorphic in the tube domain U,y +iR™,

where
U = ﬂ {u eR™: <,u(j),u> < u(j)}.
Ji#k

1. Quasi-ellipticity and hypoellipticity

In this section, we characterize quasi-elliptic polynomials in more detail. First, note that
the polytope Ny has only a finite number of faces, so the condition in Definition 1 needs to be
verified only for a finite number of truncations f,.

Following [3], we can single out two classes of polynomials that are quasi-elliptic in the sense
of Definition 1. The first class consists of polynomials in which all monomials have positive
coefficients and even powers «; in each variable x;. The second class consists of elliptic polyno-
mials that do not vanish on R™. Recall that a polynomial f is called elliptic if its homogeneous
polynomial of highest degree vanishes in R™ only at the point x = 0.

Let us consider a few examples.

1. The polynomial

f(z) =14 221 + 229 + (21 — 22)?

is not quasi-elliptic in Ri, because its truncation

f(171) = (z1— I2)2
vanishes on the diagonal 1 = x5.
2. The polynomial f =1 —z; + 2% — 29 + 23 — 2179 is quasi-elliptic in R?.
3. The polynomial f =1+ z1 + 23 is quasi-elliptic in RZ but not quasi-elliptic in R?.
The quasi-ellipticity property is related to the concept of hypoellipticity. A polynomial f is
said to be hypoelliptic if for any multi-index a # 0 the derivative f(®)(z) satisfies the condition

f19(z)
f(z)

for || z ||— oo [6]. The following sufficient test for hypoellipticity holds.

—0

Theorem 2 (E. Zubchenkova). If f is a quasi-elliptic polynomial and its Newton polytope is full,
then f is hypoelliptic polynomial.

Regarding the convergence of A-hypergeometric integrals, see articles [10] and [11]. The
fullness of the polytope means that its projections on all coordinate planes belong to it.
This condition in Theorem 2 is essential, as the following example confirms. The polynomial
f(x1,22) = 2823 + 27 + 1 is quasi-elliptic, but its Newton polytope is not full. The hypoelliptic-
ity condition is not satisfied for it, since for a = (4,0)

F) =24 4 0.

We note also that the hypoellipticity condition does not imply the quasi—ellipticity one. For
instance, the polynomial f(z1,2s) = (22 — 1)? 4 x5 is elliptic, and therefore hypoelliptic, but it
is not quasi-elliptic, since the truncation f 1) = (#§ — 1)? has zeros in the torus (R\0)?.

Following [3], we now formulate the condition for the convergence of the integral of a rational
function over R™ with a quasi-elliptic denominator .
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Theorem 3 (Ermolaeva—Tsikh). If Q is a quasi-elliptic polynomial non-vanishing in R™, then

the integral
P(xla"'vxn)

Rn Q(xl, .. .,xn)

is absolutly convergent if and only if

dzy...dx,

I+NpC (NQ)O,
that is, the translation of Np by I = (1,...,1) € R™ lies in the interior (Ng)° of Ng.

Regarding the convergence of A-hypergeometric integrals, see articles [10] and [11].

2. Sets V},

The ortant R} is a group with respect to the operation of coordinatewise multiplication. This
is a connected component of the real torus (R\0)". Any torus (R\0)" automorphism , as well as
an automorphism of the R, is defined by a monomial transformation

y—z=yl= ", . ..y,

where 11, ..., 7, are rows of some integer unimodular matrix n (detn = £1). The automorphism
allows to integrate over R} with fibers on shifts of one-parameter subgroups in R’}.

Let us define the construction of sets Vj. For each outward normal p*) of the Newton
polytope Ny of the polynomial (2), we define a one-parameter subgroup

*) (*) (k)
v(’“):{yf =y )EMMGR*}'

Next, we foliate the orthant R’} into shifts (cosets with respect to the subgroup 7)) as follows

(k) (k)
cOy® = (et . ent™).

The set of all shifts can be given as ¢ = (y')", where y' := (y2,...,yn), 0/ is an integer
(n x (n —1))-matrix such that n := (u*), ) is a unimodular (n x n)-matrix. The existence of
such a matrix is ensured by the condition the vector x*) to be primitive [13, Prop. 4.2.13].

Consider a section of the complex hypersurface V := {z € C" : f(z1,...,2,) = 0} by a
family of shifts of the subgroup v*). As a result, we get the set

vi= U (vN{e=u"0 (y')",T}) :
y/ERi’l

of the real dimension n—1. This observation allows us to apply Fubini’s theorem doing integration
over arbitrary one-parameter fibers.
Let us describe this construction using the example of a complex hyperplane

V= {xE (C\O)231+$1+1‘2=0}-
The Newton polytope of the defining polynomial is a triangle, it has outward normals
pM = (=1,0), u® = (0,-1), u® = (1,1) (Fig. 1 on the left). Fig. 2 shows the real part

of V' and its sections by shifts of the one-parameter subgroups 'y"(l) (red ray), 'y“<2) (green ray )
and 'y“(z) (blue segment). These are the sets Vi, Va, V3 respectively. Their logarithmic images
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Log(Va)

)
#e—— Log(VA)

0 1 Log(V3)

Fig. 1. Newton polytope (left) and amoeba Ay (right) for f =1+ z1 + 22

Rexs Rexs Rexs

"

1 ) Rex, = Rex, = Rex,
\ Vs
—1 -1 N —1

Flg 2. Sets Vl, VQ, V3

are connected components of the contour of the amoeba Ay of the hyperplane V' (see Fig. 1
on the right). Recall that the amoeba of an algebraic hypersurface V' is defined to be its image
under the mapping

LOg : (xla s 7xn) - (lOg|£L’1|,. < ,log‘an,

see, for example, [5]. The contour of the amoeba is determined as the set of critical values of
the specified projection Logly, i.e. the set Log(y ' (RP"')), where v : V. — CP" ! is the
logarithmic Gauss mapping [12].

3. Proof of Theorem 1

Consider a polynomial (2) that has no multiple irreducible factors, i.e. df # 0 on each
irreducible component of V. According to (1), the Mellin transform of the function 1/f is
expressed by the integral
z—1

My = [ G
iy

@
Fix a normal vector p(f) = (Mgk),...,,u%k)), k =1,...,N, of the polytope Ny. Let us
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construct an integer unimodular matrix 1 in which the vector p(*) is the first column:

n® p@ 0
k 2
w? o
u
The monomial transform x = y” with coordinates
® @ (n)
=yt Yy
®) (2 (n)
Ty = y’f” yg“' .. .yZ“'

is an automorphism of R due to the unimodularity of the matrix . Let us write in variables y

d
the expression —x. The result looks as follows
x

dx HE
?:Jn(yfj oyl )Ty A Adyn,

=1

n (k) D)
J:

where
B pE—D (n) 9y u®) @ (n) ) (n)_q
ug )yfl yzl 775 )yfl ygl yﬂl n%n)y‘fl yﬂl
J = L. e . .
B a1 (n) 9 ) 2 _q (n) ) (n)_q
ugl )yf” y:{" né)yf" yg"' yﬂ" ny(ln)yf" yﬁ"
is the Jacobian of the monomial mapping. Multiplying the jth row of the Jacobian by
@ )\ ~1
(yfj y;’j oy ) , we get the representation
k) — 2) _ _
g | et Pyt My
= e dyr A Adyy.
k) — 2) _ _
uyrt @yt iy

Further, from the j-th column of the determinant we take out the multiplier y;l. As a result,

we get

do = det n@,
T Y

where detn = +1, i. e. the matrix 7 is unimodular.
As a result of the change of variables, the Mellin transform is represented by the integral

1 (u®.2) (n®) (n™ 2) dy

M1/ f(y"))(z) = det y Y Y —,
/7" e T y
where
18 o) (0@ o 2™ o
fly") = Zaayf B T U
a€cA
Remark that maxaea{(u®), a)} = v*) and this quantity is the degree of f(y") over y;. Next,
we integrate over y; for the fixed value ¥’ = (y2,...,yn) € }Rf__l:
*2)
@2y (pme)dy [T yf“ ldy
M1/ f(y" z:detn/ y<n Sy —= = -
W) =detn [ of A [
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Im¢

Re¢

Fig. 3. The integration contour I'

In order to calculate the inner integral over y;, we introduce the complex variable &, setting
y1 = Reg. Traditionally, we consider the integral over the contour I" (see Fig. 3) of the following

type
)271 ,u 271 (’”)
§+/f §+/f sy

(k) (k
/fé‘y T (1ot /f

Since the degree of f(y") by y1 equals v®)then, by the residue total sum theorem, this integral
vanishes if <,u(k),Rez> < v%)_ Passing to the limit as p — 0, R — oo and applying the residue
theorem, we obtain

D I I e e e M GICONTD N

/+oo yf;ﬂ-);) % o (é_j(y/))<u(k),z>_1
0

where &7 (y’) are roots of f(y"). Thus we get

1— v'),y') Yy

27i a*!
= R d :
1 2mil{n®,2)-1) /Vk . (f(w) m)

The factor before the integral can be rewritten as follows

2mi _ T(=(u® )0 (B, 2))
1_ 627ri(<,u(k),z>—1) eim (1) ,2)) :

i( < )z)-1 2 W A du
Rﬂ 1

Thus, we obtain the first assertion of Theorem 1. The second one follows from the fact that the
integral over Vj, vanishes if (u*) Rez) = (u™®), u) < v,

4. Examples

I. Consider the quasi-elliptic polynomial f(z) =2 — x1 + 2% — 23 + 23 — 2122 and the Mellin
transform
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21 ,,R22

M1/ A1) = |

Rz 2— 21+ 23 —wo 423 —mT0 T

2
7
The Newton polytope of the polynomial f(x) is given by three inequalities:
Ny ={—21 <0} N{—22 <0} N{z1 + 22 < 2}.
It has outward normals ") = (—1,0), u® = (0, 1), u® = (1,1).
We consider the monomial change of variables

Mo :tila .T2:T71,

associated with the vector u(!) = (—1,0). As a result, the integral (6) will take the form:
tlleTlfzg

MI[1/f](z) = /R dt A dr. (7)

2 272 — 72 472 — 27 12 —tr

The denominator of the integrand in (7) has roots

t(1)272+7+i7 712 — 67 + 3 and t(2):T2+T—iT 77’2—67'—1—3'

20212 —7+1) 20212 —7+1)

According to Theorem 1, the Mellin transform M|[1/f](z) admits the representation

M (2) = T(21)T(1 — z;)e™™ / Resw,
Vi
where
Vi={x1=1/tW, 2y =1/7, 7 € [0;+00]} U {21 = 1/t?, 2y = 1/7, T € [0; +00]}.

Since the hypersurface V = {f(z) = 0} is smooth, the principal value v.p. in the representation
is omitted. Thus,
My (2) = T(21)T(1 — z)e™ 127171
/°° (T2 + 7 +irV772 —67'—1—3)1_21 — (P + 7 —irV7r? —674'3)1_21
X
0 T2 (212 — 7 4 1)17“2‘ T2 — 67+ 3

Now let us define the domain of convergence of the integral in (8). At the origin, its conver-
gence is ensured by the condition

dr. (8)

UL + ug < 2,

where u; = Rezy, us = Rezs. Next, we study the convergence in the neighborhood of the infinity
using the substitution 7 = 1/\. As a result, we obtain the integral

/oo (1+A+iVT—6A+3N) " —(1+A—ivVT—6r+322)
0 =22 (2 — X+ A2) 77 i /T —6A + 3A2

The convergence of this integral at the origin is ensured by the condition uwy > 0. Thus,
the integral on the right side of (8) converges in the tube domain with the base Uy =
={ueR?:u +uy <2u >0}

Next, consider the monomial change of coordinates

dA.

1 =T, $2:t_17
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associated with the vector u(? = (0,—1). As a result of this change of variables, the Mellin
transform is expressed by the integral

t1732 7—3171

M1 =
[1/7] /R’iQtQ—TtQ—i-TQtQ—t—l-l—tT

dt N dr,

in which the denominator of the integrand has roots:

() _ THL+iVB — 6T+ 7 () _ TH1-iV3r? — 67 +7

2(12 —=17+4+2) ’ 2(r2—742)

According to Theorem 1, the Mellin transform M[1/f](z) admits the representation

Mo(2) = T'(29)T(1 — 23)e"™>2 /V Resw,
2

where
Vo={z1 =7, 22 =1/t 7 € [0;4+00]} U{z1 =7, 2o = 1/t 7 € [0; +00]}.
Thus, we obtain the formula
My(2) = T(22)(1 — z9)e™*22727 1 x
. /°° (r+1+iV32—6r+7) " —(r+1—iV3r2—6r17)
0 =5 (72 — 7+ 2)' 72032 —6r + 7

The integral on the right side of (9) converges in a tube domain with the base Up =
= {UER2:u1 > 0,u1 + uo <2}.
Finally, consider the third normal x(3) = (1,1) and the corresponding monomial mapping:

dr. (9)

r, =t, x9 = Tt.

The Mellin transform takes the form:

t21+22—17_22—1

VYN = [ merr s et o

The denominator of the integrand in the resulting integral has two roots:

t(l)_7+1+i\/77'2—107'—|—7 t(g)_7+1—i\/772—107'—|—7
o 2(r2 —7+1) ’ o 2(r2 —7+1) '

According to Theorem 1, the Mellin transform M[1/f](z) admits the representation

Ms(2) = T(—21 — 22)T (21 + 20 + 1)~ 71 +22) / Resw,
Vs

where
Vs = {x; =tW, 2o = 7tW, 7 € [0;+00]} U {21 = t?), 25 = 7t 7 € [0;+00]}.
Calculating the residue, we get the representation
Ms(z) = T(—z1 — 22)[(21 4 29 + 1)e T (Fr+22)gl=21—22

/00 (r414+i/T 10+ 7)™ — (rr1— VT =107+ 7))
X
0 ml=za (72 — 7 4 1) /Tr 2 107 + 7

dr. (10)
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Fig. 4. Contour of the amoeba for f(z)=2—z;+23—z2+23—x122 and Log(V1), Log(Va), Log(V3)

The integral in (10) converges in a tube domain with the base Uy = R?.

In Fig. 4, the logarithmic projections of the sets Vi, V5, and V3 are shown in blue, green, and
yellow, respectively. The contour of the amoeba is highlighted in red.

IT. Consider a quasi-elliptic polynomial f(x) =5+ 21 + x2 + 2122 and the Mellin transform:

M1/ A1) = |

R2+5+:E1+x2+x1x2 x

21 %2

(11)

The Newton polytope of the polynomial f(x) is given by the inequalities
Np={-2 <0}N{—2 <0}n{zn <1} N{z <1}
and therefore has outward normals ") = (—1,0), u® = (0, —1), p® = (1,0), p* = (0,1).
We consider the monomial change of variables

T1 :tila I2:T717

associated with the vector u* = (—1,0). The Mellin transform after the change of variables

will take the form:
AN

M[l/f](z):/ T _dtndr

Ry BT +i+T+1
According to Theorem 1, the Mellin transform M[1/f](z) admits the representation
Mi(z) =T(z)'(1 — zl)eimlv.p./ Resw,
Vi

where

5 1
V= {xl = —7:_:1 Lo =T L T€E [O;—|—oo}}.

Calculating the residue, we get the following result:
TTR(T 4 1)

Ml(Z) = I‘(zl)I‘(l — Zl)eiwzl Aw (_1)721 (57_ + 1)1721

(12)
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The integral in (12) converges in the domain {(z1,22) € C? : 0 < Rezs < 1}}.
Next, consider the monomial change of coordinates

1 =T, x2:t71a

associated with the vector u(? = (0,—1). As a result of this change of variables, the Mellin
transform is expressed by the integral
Tzlfltfzg

According to Theorem 1, the Mellin transform M[1/f](z) admits the representation
Ms(z) =T (2)I(1 — zz)eimzv.p./v Resw,
2
where
Vo = {xl =T,L9 = —:71?,7 € [0;—1—00]}.
Calculating the residue, we obtain the result:

(4 1)7=

o0
My (z) = T(22)0(1 = zp)e'™ / (-1~ = (13)
0 (5+7) 7
The integral in (13) converges in the domain {(z1,22) € C?: 0 < Rez; < 1}}.
Further we consider the vector u® = (1,0) and do the substitution
r, =t, To =T.
As a result, the Mellin transform takes the form
M t21—1T22—1 d d
1 = —dt AN dT.
1/11(z) /Rgr5+7+t+t7 !
According to Theorem 1, the Mellin transform M[1/f](z) admits the representation
Ms(z) =T(—z)I'(1 + zl)e*”zlv.p./ Resw,
Vs
where .
r—
V3 = {l’l = 7'74—1,:52 =T,T € [O,+OO]} .
Calculating the residue, we get the representation
. oo zo—1 z1—1
My(z) = Do) DL+ z)e ™ [ (127! S (14)
0 (]. + T)

The integral in (14) converges in the domain {(z1,22) € C?: 0 < Rezs < 1}}.
Finally, we consider the normal p(% = (0,1) and the corresponding monomial mapping:

$1=7'71, xT9 =t.

The Mellin transform after the change of variables is as follows:
T t22—1

Mi/fl= T dgtndr
(/1] /Ri57+1+t+t7 T
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Fig. 5. Contour of the amoeba of V ={5+ 1 + 2 + 122 = 0} and logarithmic projections of Vj

According to Theorem 1, the Mellin transform M[1/f](z) admits the representation
My(2) = T(=29)['(1 + z9)e” ™ 2v.p. [ Resw,

where

—57—1
T+1

Calculating the residue, we get the representation

V4—{x1—71,x2— ,TE[O;Jroo]}.

w1 T (BT + 1)1
(1+7)7

o0
Ma(z) = D(—2)0(1 +z2)e—i“2/ (—1) dr. (15)
0
The integral in (15) converges in the domain {(21,22) € C? : 0 < Rez; < 1}. The contour of
the amoeba of V = {5 + 21 + 23 + x122 = 0} is shown in Fig. 5. The sets Log(V;) and Log(V3)
coincide with the green part of the contour, and the sets Log(V3) and Log(V}) coincide with the
yellow one.

The research is supported by the Russian Science Foundation, project no. 20-11-20117.
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IIpeobpazoBanue MestuHa Jijisi paliuoOHAJAbHBIX (DYHKITUA
C KBa3MJINNTUIECKNMHU 3HAMEHATeJaTMN

Npuna A. AuTumnosa

Cubupckuii deiepalibHblii YHUBEPCUTET

Kpacnosipck, Poccuiickast Pemeparust

Tumodeit A. Edumon

MAQOY T'umuazust Ne10

Husroropck, Kpacrospckuit kpait, Poccuiickas ®eneparus
Asryct K. Ilux

Cubupckuii dheepasbHbIil YHUBEPCUTET

Kpacnosipck, Poccuiickas Penepanus

Awnnoranusi. B crarbe paccMaTpuBaroTCs BRIUETHBIE IPEICTABICHUS N-MEPHBIX peobpazoBanmit Mesi-
JIMHA JIJIsl PAIMOHAJIBHBIX (DYHKIWI ¢ KBA3UIJUIMIITHIECKUM 3HAMEHATEJIEM. DTH IIPEJICTABJIEHUS 3a,/1a10T-
cs1 uHTErpasaMu 1o (n—1)-MepHbIM OTHOCHTEBHBIM IHKIaM. KomrdaecTBo npeacraBienuii (M UKIIOB)
paBHO YHUCIy rpaHeil MHOrorpananka HboTOHA 3HAMEHATENs PAIMOHATIBHON (DYHKIIIH.

KuroyeBbie ciioBa: MHOroMepHoe IpeodOpasoBanue MeimHa, KBa3UJIMIITHIECKUI TOJTMHOM, hopMa-
BoIvuer Jlepe, améba.
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