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Introduction
The fundamental property of the Mellin transform, which largely determines the scope of its

applications, is the correspondence between the asymptotic behavior of the original function g(x)
and the singularities of the transformed function. The role of this fundamental correspondence
for the Mellin transform of a function of one variable is noted in numerous papers by F. Flajolet,
in particular, in [4] in relation with the calculation of harmonic sums.

We recall that the Mellin transform of the function g(x) is defined by the integral

M [g](z) =

∫
Rn

+

g(x)xz−Idx, (1)

where the differential form

xz−Idx := xz1
1 · . . . · xzn

n

dx1

x1
∧ . . . ∧ dxn

xn

acts as a kernel. Inversion formulae for multidimensional Mellin transforms and classes of holo-
morphic functions that can be translated into each other by direct and inverse Mellin transforms
are studied in [1]. In this paper we deal with the Mellin transform of rational functions with
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quasi-elliptic denominators f . Due to the specifics of the kernel, it suffices to consider the trans-
form of the function g(x) = 1/f(x). The concept of a quasi-elliptic polynomial was introduced
by T. Ermolaeva and A.Tsikh in [3].

So, we consider the following polynomial in n variables

f(x) = f(x1, . . . , xn) =
∑
α∈A

cαx
α =

∑
α∈A

cα1...αnx
α1
1 . . . xαn

n (2)

with coefficients cα ∈ C \ {0} and the support A ⊂ Zn
> .

Definition 1. A polynomial f is called to be quasi-elliptic if for any non-zero covector a ∈ Rn∗

its truncation fa does not vanish in the torus (R\0)n.

Recall that the truncation of the polynomial f in the direction a ∈ Rn∗ is determined to be
the polynomial

fa =
∑

α∈∆a

cαx
α,

where ∆a is the face of the Newton polytope of f in the direction a. The Newton polytope Nf

of a polynomial f is defined to be the convex hull in Rn of the support A of f .
Meromorphic continuations of the Mellin transforms for rational functions with quasi-elliptic

denominators were studied by L.Nilsson and M. Passare in [9], where the following representation

M [1/f ](z) = Φ(z)

N∏
k=1

Γ
(
ν(k) −

⟨
µ(k), z

⟩)
, (3)

was proved. Here Φ(z) is an entire function, vectors µ(k) ∈ Zn are primitive and define outward
normal directions to facets of the Newton polytope Nf , and ν(k) ∈ Z. The Newton polytope can
be given by the system of inequalities

Nf =
N∩

k=1

{
u ∈ Rn :

⟨
µ(k), u

⟩
6 ν(k)

}
,

so each ν(k) is interpreted as the weighted power of the polynomial f with respect to the cor-
responding weight µ(k). As it follows from the results of [3], the Mellin transform M [1/f ](z) is
a holomorphic function in the tube domain over the interior of the Newton polytope Nf , and
formula (3) reveals that its polar set is the finite set of families of parallel hyperplanes. In each
family, the hyperplanes are obtained by shifting of some facet of the Newton polytope of the
polynomial f .

This approach was generalized for Euler–Mellin integrals in [2], and also found application in
the theory of Feynman integrals, see [7, 8].

In this paper, we present alternative representations for the Mellin transform of rational func-
tions of the specified class. Note that we can define the quasi-ellipticity concept on the set Rn

+ by
assuming that truncations fa do not vanish on it, because the Rn

+, being a connected component
of the real torus (R\0)n, is its subgroup under the operation of coordinatewise multiplication.

Theorem 1. Let us assume that the polynomial f is quasi-elliptic on Rn
+. Then for each nor-

mal vector µ(k) of the Newton polytope Nf there is a representation for the Mellin transform
M [1/f ](z) of the following form

Mk(z) = e−iπ⟨µ(k),z⟩Γ(−⟨µ(k), z⟩)Γ(1 + ⟨µ(k), z⟩)Φk(z), (4)

in which
Φk(z) = v.p.

∫
Vk

Resω, (5)
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where Resω is the Leray residue form of the integrand in (1), Vk is a surface of real dimension
n− 1, and v.p. denotes the principal value with respect to the set of singular points of the Vk.

The function Φk(z) defined by the integral (5) is holomorphic in the tube domain U[k] + iRn,
where

U[k] =
∩
j ̸=k

{
u ∈ Rn :

⟨
µ(j), u

⟩
< ν(j)

}
.

1. Quasi-ellipticity and hypoellipticity

In this section, we characterize quasi-elliptic polynomials in more detail. First, note that
the polytope Nf has only a finite number of faces, so the condition in Definition 1 needs to be
verified only for a finite number of truncations fa.

Following [3], we can single out two classes of polynomials that are quasi-elliptic in the sense
of Definition 1. The first class consists of polynomials in which all monomials have positive
coefficients and even powers αi in each variable xi. The second class consists of elliptic polyno-
mials that do not vanish on Rn. Recall that a polynomial f is called elliptic if its homogeneous
polynomial of highest degree vanishes in Rn only at the point x = 0.

Let us consider a few examples.
1. The polynomial

f(x) = 1 + 2x1 + 2x2 + (x1 − x2)
2

is not quasi-elliptic in R2
+, because its truncation

f(1,1) = (x1 − x2)
2

vanishes on the diagonal x1 = x2.
2. The polynomial f = 1− x1 + x2

1 − x2 + x2
2 − x1x2 is quasi-elliptic in R2.

3. The polynomial f = 1 + x1 + x2 is quasi-elliptic in R2
+ but not quasi-elliptic in R2.

The quasi-ellipticity property is related to the concept of hypoellipticity. A polynomial f is
said to be hypoelliptic if for any multi-index α ̸= 0 the derivative f (α)(x) satisfies the condition

f (α)(x)

f(x)
→ 0

for ∥ x ∥→ ∞ [6]. The following sufficient test for hypoellipticity holds.

Theorem 2 (E. Zubchenkova). If f is a quasi-elliptic polynomial and its Newton polytope is full,
then f is hypoelliptic polynomial.

Regarding the convergence of A-hypergeometric integrals, see articles [10] and [11]. The
fullness of the polytope means that its projections on all coordinate planes belong to it.
This condition in Theorem 2 is essential, as the following example confirms. The polynomial
f(x1, x2) = x8

1x
2
2 + x4

1 +1 is quasi-elliptic, but its Newton polytope is not full. The hypoelliptic-
ity condition is not satisfied for it, since for α = (4, 0)

f (α)(x)

f(x)

∣∣∣∣
x1=0

= 24 ̸→ 0.

We note also that the hypoellipticity condition does not imply the quasi–ellipticity one. For
instance, the polynomial f(x1, x2) = (x2

1 − 1)2 + x4
2 is elliptic, and therefore hypoelliptic, but it

is not quasi–elliptic, since the truncation f(0,−1) = (x2
1 − 1)2 has zeros in the torus (R\0)2.

Following [3], we now formulate the condition for the convergence of the integral of a rational
function over Rn with a quasi-elliptic denominator .
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Theorem 3 (Ermolaeva–Tsikh). If Q is a quasi-elliptic polynomial non-vanishing in Rn, then
the integral ∫

Rn

P (x1, . . . , xn)

Q(x1, . . . , xn)
dx1 . . . dxn

is absolutly convergent if and only if

I +NP ⊂ (NQ)
◦
,

that is, the translation of NP by I = (1, . . . , 1) ∈ Rn lies in the interior (NQ)
◦ of NQ.

Regarding the convergence of A-hypergeometric integrals, see articles [10] and [11].

2. Sets Vk

The ortant Rn
+ is a group with respect to the operation of coordinatewise multiplication. This

is a connected component of the real torus (R\0)n. Any torus (R\0)n automorphism , as well as
an automorphism of the Rn

+, is defined by a monomial transformation

y → x = yη = (yη1 , . . . , yηn),

where η1, . . . , ηn are rows of some integer unimodular matrix η (detη = ±1). The automorphism
allows to integrate over Rn

+ with fibers on shifts of one-parameter subgroups in Rn
+.

Let us define the construction of sets Vk. For each outward normal µ(k) of the Newton
polytope Nf of the polynomial (2), we define a one-parameter subgroup

γ(k) =

{
yµ

(k)

1 := (y
µ
(k)
1

1 , . . . , y
µ(k)
n

1 ) ∈ Rn
+ : y1 ∈ R+

}
.

Next, we foliate the orthant Rn
+ into shifts (cosets with respect to the subgroup γ(k)) as follows

c⊙ γ(k) = (c1y
µ
(k)
1

1 , . . . , cny
µ(k)
n

1 ).

The set of all shifts can be given as c = (y′)η
′
, where y′ := (y2, . . . , yn), η′ is an integer

(n × (n − 1))-matrix such that η := (µ(k), η′) is a unimodular (n × n)-matrix. The existence of
such a matrix is ensured by the condition the vector µ(k) to be primitive [13, Prop. 4.2.13].

Consider a section of the complex hypersurface V := {x ∈ Cn : f(x1, . . . , xn) = 0} by a
family of shifts of the subgroup γ(k). As a result, we get the set

Vk =
∪

y′∈Rn−1
+

(
V
∩{

x = yµ
(k)

1 ⊙ (y′)
η′T})

,

of the real dimension n−1. This observation allows us to apply Fubini’s theorem doing integration
over arbitrary one-parameter fibers.

Let us describe this construction using the example of a complex hyperplane

V =
{
x ∈ (C \ 0)2 : 1 + x1 + x2 = 0

}
.

The Newton polytope of the defining polynomial is a triangle, it has outward normals
µ(1) = (−1, 0), µ(2) = (0,−1), µ(3) = (1, 1) (Fig. 1 on the left). Fig. 2 shows the real part
of V and its sections by shifts of the one-parameter subgroups γµ(1)

(red ray), γµ(2)

(green ray )
and γµ(3)

(blue segment). These are the sets V1, V2, V3 respectively. Their logarithmic images
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Fig. 1. Newton polytope (left) and amoeba AV (right) for f = 1 + x1 + x2

Fig. 2. Sets V1, V2, V3

are connected components of the contour of the amoeba AV of the hyperplane V (see Fig. 1
on the right). Recall that the amoeba of an algebraic hypersurface V is defined to be its image
under the mapping

Log : (x1, . . . , xn) → (log|x1|, . . . , log|xn|),

see, for example, [5]. The contour of the amoeba is determined as the set of critical values of
the specified projection Log|V , i.e. the set Log(γ−1(RPn−1)), where γ : V → CPn−1 is the
logarithmic Gauss mapping [12].

3. Proof of Theorem 1

Consider a polynomial (2) that has no multiple irreducible factors, i.e. df ̸≡ 0 on each
irreducible component of V . According to (1), the Mellin transform of the function 1/f is
expressed by the integral

M [1/f ](z) =

∫
Rn

+

xz−I

f(x)
dx.

Fix a normal vector µ(k) = (µ
(k)
1 , . . . , µ

(k)
n ), k = 1, . . . , N , of the polytope Nf . Let us
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construct an integer unimodular matrix η in which the vector µ(k) is the first column:

η =


η(1) η(2) . . . η(n)

µ
(k)
1 η

(2)
1 . . . η

(n)
1

. . . . . . . . . . . .
µ
(k)
n η

(2)
n . . . η

(n)
n

.

The monomial transform x = yη with coordinates

x1 = y
µ
(k)
1

1 y
η
(2)
1

2 . . . y
η
(n)
1

n ,

. . .

xn = y
µ(k)
n

1 y
η(2)
n

2 . . . y
η(n)
n

n

is an automorphism of Rn
+ due to the unimodularity of the matrix η. Let us write in variables y

the expression
dx

x
. The result looks as follows

dx

x
= J

n∏
j=1

(y
µ
(k)
j

1 . . . y
η
(n)
j

n )−1dy1 ∧ · · · ∧ dyn,

where

J =

∣∣∣∣∣∣∣∣
µ
(k)
1 y

µ
(k−1)
1

1 . . . y
η
(n)
1

n η
(2)
1 y

µ
(k)
1

1 y
η
(2)
1 −1

2 . . . y
η
(n)
1

n . . . η
(n)
1 y

µ
(k)
1

1 . . . y
η
(n)
1 −1

n

. . . . . . . . . . . .

µ
(k)
n y

µ(k)
n −1

1 . . . y
η(n)
n

n η
(2)
n y

µ(k)
n

1 y
η(2)
n −1

2 . . . y
η(n)
n

n . . . η
(n)
n y

µ(k)
n

1 . . . y
η(n)
n −1

n

∣∣∣∣∣∣∣∣ .
is the Jacobian of the monomial mapping. Multiplying the jth row of the Jacobian by(
y
µ
(k)
j

1 y
η
(2)
j

2 . . . y
η
(n)
j

n

)−1

, we get the representation

dx

x
=

∣∣∣∣∣∣∣
µ
(k)
1 y−1

1 η
(2)
1 y−1

2 . . . η
(n)
1 y−1

n

. . . . . . . . . . . .

µ
(k)
n y−1

1 η
(2)
n y−1

2 . . . η
(n)
n y−1

n

∣∣∣∣∣∣∣ dy1 ∧ · · · ∧ dyn.

Further, from the j-th column of the determinant we take out the multiplier y−1
j . As a result,

we get
dx

x
= det η

dy

y
,

where det η = ±1, i. e. the matrix η is unimodular.
As a result of the change of variables, the Mellin transform is represented by the integral

M [1/f(yη)](z) = det η

∫
Rn

+

1

f(yη)
y
⟨µ(k),z⟩
1 y

⟨η(2),z⟩
2 . . . y

⟨η(n),z⟩
n

dy

y
,

where

f(yη) =
∑
α∈A

aαy
⟨µ(k),α⟩
1 y

⟨η(2),α⟩
2 . . . y

⟨η(n),α⟩
n .

Remark that maxα∈A{⟨µ(k), α⟩} = ν(k), and this quantity is the degree of f(yη) over y1. Next,
we integrate over y1 for the fixed value y′ = (y2, . . . , yn) ∈ Rn−1

+ :

M [1/f(yη)](z) = det η

∫
Rn−1

+

y
⟨η(2),z⟩
2 . . . y

⟨η(n),z⟩
n

dy′

y′

∫ +∞

0

y
⟨µ(k),z⟩
1

f(y η)

dy1
y1

.
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Fig. 3. The integration contour Γ

In order to calculate the inner integral over y1, we introduce the complex variable ξ, setting
y1 = Reξ. Traditionally, we consider the integral over the contour Γ (see Fig. 3) of the following
type

∫
Γ

ξ⟨µ
(k),z⟩

f ((ξ, y′)η)

dξ

ξ
=

(
1− e2πi(⟨µ

(k),z⟩−1)
) R∫

ρ

ξ⟨µ
(k),z⟩−1

f ((ξ, y′)η)
dξ +

∫
CR

ξ⟨µ
(k),z⟩−1

f ((ξ, y′)η)
dξ +

∫
Cρ

ξ⟨µ
(k),z⟩−1

f ((ξ, y′)η)
dξ.

Since the degree of f(yη) by y1 equals ν(k), then, by the residue total sum theorem, this integral
vanishes if

⟨
µ(k),Rez

⟩
< ν(k). Passing to the limit as ρ → 0, R → ∞ and applying the residue

theorem, we obtain∫ +∞

0

y
⟨µ(k),z⟩
1

f(yη)

dy1
y1

=
2πi

1− e2πi(⟨µ(k),z⟩−1)

∑
j

(
ξj(y′)

)⟨µ(k),z⟩−1

f ′
y1
(ξj(y′), y′)

,

where ξj(y′) are roots of f(yη). Thus we get

M [1/f(yη)] =
2πi

1− e2πi(⟨µ(k),z⟩−1)

∫
Rn−1

+

∑
j

(
ξj(y′)

)⟨µ(k),z⟩−1

f ′
y1
(ξj(y′), y′)

y
⟨η(2),z⟩
2 . . . y

⟨η(n),z⟩
n

dy′

y′
=

=
2πi

1− e2πi(⟨µ(k),z⟩−1)

∫
Vk

Res
(
xz−I

f(x)
dx

)
.

The factor before the integral can be rewritten as follows

2πi

1− e2πi(⟨µ(k),z⟩−1)
=

Γ(−⟨µ(k), z⟩)Γ(1 + ⟨µ(k), z⟩)
eiπ(⟨µ(k),z⟩) .

Thus, we obtain the first assertion of Theorem 1. The second one follows from the fact that the
integral over Vk vanishes if ⟨µ(k),Rez⟩ = ⟨µ(k), u⟩ < ν(k).

4. Examples
I. Consider the quasi-elliptic polynomial f(x) = 2− x1 + x2

1 − x2 + x2
2 − x1x2 and the Mellin

transform
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M [1/f ](z) =

∫
R2

+

xz1
1 xz2

2

2− x1 + x2
1 − x2 + x2

2 − x1x2

dx

x
. (6)

The Newton polytope of the polynomial f(x) is given by three inequalities:

Nf = {−z1 6 0} ∩ {−z2 6 0} ∩ {z1 + z2 6 2}.

It has outward normals µ(1) = (−1, 0), µ(2) = (0,−1), µ(3) = (1, 1).
We consider the monomial change of variables

x1 = t−1, x2 = τ−1,

associated with the vector µ(1) = (−1, 0). As a result, the integral (6) will take the form:

M [1/f ](z) =

∫
R2

+

t1−z1τ1−z2

2t2τ2 − tτ2 + τ2 − t2τ + t2 − tτ
dt ∧ dτ. (7)

The denominator of the integrand in (7) has roots

t(1) =
τ2 + τ + iτ

√
7τ2 − 6τ + 3

2(2τ2 − τ + 1)
and t(2) =

τ2 + τ − iτ
√
7τ2 − 6τ + 3

2(2τ2 − τ + 1)
.

According to Theorem 1, the Mellin transform M [1/f ](z) admits the representation

M1(z) = Γ(z1)Γ(1− z1)e
iπz1

∫
V1

Resω,

where

V1 = {x1 = 1/t(1), x2 = 1/τ, τ ∈ [0; +∞]} ∪ {x1 = 1/t(2), x2 = 1/τ, τ ∈ [0;+∞]}.

Since the hypersurface V = {f(x) = 0} is smooth, the principal value v.p. in the representation
is omitted. Thus,

M1(z) = Γ(z1)Γ(1− z1)e
iπz12z1−1×

×
∫ ∞

0

(
τ2 + τ + iτ

√
7τ2 − 6τ + 3

)1−z1 −
(
τ2 + τ − iτ

√
7τ2 − 6τ + 3

)1−z1

τz2 (2τ2 − τ + 1)
1−z1 i

√
7τ2 − 6τ + 3

dτ. (8)

Now let us define the domain of convergence of the integral in (8). At the origin, its conver-
gence is ensured by the condition

u1 + u2 < 2,

where u1 = Rez1, u2 = Rez2. Next, we study the convergence in the neighborhood of the infinity
using the substitution τ = 1/λ. As a result, we obtain the integral∫ ∞

0

(
1 + λ+ i

√
7− 6λ+ 3λ2

)1−z1 −
(
1 + λ− i

√
7− 6λ+ 3λ2

)1−z1

λ1−z2 (2− λ+ λ2)
1−z1 i

√
7− 6λ+ 3λ2

dλ.

The convergence of this integral at the origin is ensured by the condition u2 > 0. Thus,
the integral on the right side of (8) converges in the tube domain with the base U[1] =

=
{
u ∈ R2 : u1 + u2 < 2, u2 > 0

}
.

Next, consider the monomial change of coordinates

x1 = τ, x2 = t−1,
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associated with the vector µ(2) = (0,−1). As a result of this change of variables, the Mellin
transform is expressed by the integral

M [1/f ] =

∫
R2

+

t1−z2τz1−1

2t2 − τt2 + τ2t2 − t+ 1− tτ
dt ∧ dτ,

in which the denominator of the integrand has roots:

t(1) =
τ + 1 + i

√
3τ2 − 6τ + 7

2(τ2 − τ + 2)
, t(2) =

τ + 1− i
√
3τ2 − 6τ + 7

2(τ2 − τ + 2)
.

According to Theorem 1, the Mellin transform M [1/f ](z) admits the representation

M2(z) = Γ(z2)Γ(1− z2)e
iπz2

∫
V2

Resω,

where

V2 = {x1 = τ, x2 = 1/t(1), τ ∈ [0;+∞]} ∪ {x1 = τ, x2 = 1/t(2), τ ∈ [0;+∞]}.

Thus, we obtain the formula

M2(z) = Γ(z2)Γ(1− z2)e
iπz22z2−1×

×
∫ ∞

0

(
τ + 1 + i

√
3τ2 − 6τ + 7

)1−z2 −
(
τ + 1− i

√
3τ2 − 6τ + 7

)1−z2

τ1−z1 (τ2 − τ + 2)
1−z2 i

√
3τ2 − 6τ + 7

dτ. (9)

The integral on the right side of (9) converges in a tube domain with the base U[2] =

=
{
u ∈ R2 : u1 > 0, u1 + u2 < 2

}
.

Finally, consider the third normal µ(3) = (1, 1) and the corresponding monomial mapping:

x1 = t, x2 = τt.

The Mellin transform takes the form:

M [1/f ](z) =

∫
R2

+

tz1+z2−1τz2−1

t2 (τ2 − τ + 1) + t (−1− τ) + 2
dt ∧ dτ.

The denominator of the integrand in the resulting integral has two roots:

t(1) =
τ + 1 + i

√
7τ2 − 10τ + 7

2(τ2 − τ + 1)
, t(2) =

τ + 1− i
√
7τ2 − 10τ + 7

2(τ2 − τ + 1)
.

According to Theorem 1, the Mellin transform M [1/f ](z) admits the representation

M3(z) = Γ(−z1 − z2)Γ(z1 + z2 + 1)e−iπ(z1+z2)

∫
V3

Resω,

where

V3 = {x1 = t(1), x2 = τt(1), τ ∈ [0;+∞]} ∪ {x1 = t(2), x2 = τt(2), τ ∈ [0;+∞]}.

Calculating the residue, we get the representation

M3(z) = Γ(−z1 − z2)Γ(z1 + z2 + 1)e−iπ(z1+z2)21−z1−z2×

×
∫ ∞

0

(
τ + 1 + i

√
7τ2 − 10τ + 7

)z1+z2−1 −
(
τ + 1− i

√
7τ2 − 10τ + 7

)z1+z2−1

τ1−z2 (τ2 − τ + 1)
z1+z2−1

i
√
7τ2 − 10τ + 7

dτ. (10)
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Fig. 4. Contour of the amoeba for f(x)=2−x1+x2
1−x2+x2

2−x1x2 and Log(V1), Log(V2), Log(V3)

The integral in (10) converges in a tube domain with the base U[3] = R2
+.

In Fig. 4, the logarithmic projections of the sets V1, V2, and V3 are shown in blue, green, and
yellow, respectively. The contour of the amoeba is highlighted in red.

II. Consider a quasi-elliptic polynomial f(x) = 5+ x1 + x2 + x1x2 and the Mellin transform:

M [1/f ](z) =

∫
R2

+

xz1
1 xz2

2

5 + x1 + x2 + x1x2

dx

x
. (11)

The Newton polytope of the polynomial f(x) is given by the inequalities

Nf = {−z1 6 0} ∩ {−z2 6 0} ∩ {z1 6 1} ∩ {z2 6 1}

and therefore has outward normals µ(1) = (−1, 0), µ(2) = (0,−1), µ(3) = (1, 0), µ(4) = (0, 1).
We consider the monomial change of variables

x1 = t−1, x2 = τ−1,

associated with the vector µ(1) = (−1, 0). The Mellin transform after the change of variables
will take the form:

M [1/f ](z) =

∫
R2

+

t−z1τ−z2

5tτ + t+ τ + 1
dt ∧ dτ.

According to Theorem 1, the Mellin transform M [1/f ](z) admits the representation

M1(z) = Γ(z1)Γ(1− z1)e
iπz1v.p.

∫
V1

Resω,

where
V1 =

{
x1 = −5τ + 1

τ + 1
, x2 = τ−1, τ ∈ [0;+∞]

}
.

Calculating the residue, we get the following result:

M1(z) = Γ(z1)Γ(1− z1)e
iπz1

∫ ∞

0

(−1)
−z1 τ−z2(τ + 1)−z1

(5τ + 1)
1−z1

dτ. (12)
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The integral in (12) converges in the domain {(z1, z2) ∈ C2 : 0 < Rez2 < 1}}.
Next, consider the monomial change of coordinates

x1 = τ, x2 = t−1,

associated with the vector µ(2) = (0,−1). As a result of this change of variables, the Mellin
transform is expressed by the integral

M [1/f ](z) =

∫
R2

+

τz1−1t−z2

5t+ τt+ τ + 1
dt ∧ dτ.

According to Theorem 1, the Mellin transform M [1/f ](z) admits the representation

M2(z) = Γ(z2)Γ(1− z2)e
iπz2v.p.

∫
V2

Resω,

where
V2 =

{
x1 = τ, x2 = −τ + 5

τ + 1
, τ ∈ [0;+∞]

}
.

Calculating the residue, we obtain the result:

M2(z) = Γ(z2)Γ(1− z2)e
iπz2

∫ ∞

0

(−1)
−z2 τz1−1(τ + 1)−z2

(5 + τ)
1−z2

dτ. (13)

The integral in (13) converges in the domain {(z1, z2) ∈ C2 : 0 < Rez1 < 1}}.
Further we consider the vector µ(3) = (1, 0) and do the substitution

x1 = t, x2 = τ.

As a result, the Mellin transform takes the form

M [1/f ](z) =

∫
R2

+

tz1−1τz2−1

5 + τ + t+ tτ
dt ∧ dτ.

According to Theorem 1, the Mellin transform M [1/f ](z) admits the representation

M3(z) = Γ(−z1)Γ(1 + z1)e
−iπz1v.p.

∫
V3

Resω,

where
V3 =

{
x1 =

−τ − 5

τ + 1
, x2 = τ, τ ∈ [0;+∞]

}
.

Calculating the residue, we get the representation

M3(z) = Γ(−z1)Γ(1 + z1)e
−iπz1

∫ ∞

0

(−1)
z1−1 τz2−1(τ + 5)z1−1

(1 + τ)
z1 dτ. (14)

The integral in (14) converges in the domain {(z1, z2) ∈ C2 : 0 < Rez2 < 1}}.
Finally, we consider the normal µ(4) = (0, 1) and the corresponding monomial mapping:

x1 = τ−1, x2 = t.

The Mellin transform after the change of variables is as follows:

M [1/f ] =

∫
R2

+

τ−z1tz2−1

5τ + 1 + t+ tτ
dt ∧ dτ.
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Fig. 5. Contour of the amoeba of V ={5+x1 +x2 +x1x2= 0} and logarithmic projections of Vk

According to Theorem 1, the Mellin transform M [1/f ](z) admits the representation

M4(z) = Γ(−z2)Γ(1 + z2)e
−iπz2v.p.

∫
V4

Resω,

where
V4 =

{
x1 = τ−1, x2 =

−5τ − 1

τ + 1
, τ ∈ [0;+∞]

}
.

Calculating the residue, we get the representation

M4(z) = Γ(−z2)Γ(1 + z2)e
−iπz2

∫ ∞

0

(−1)
z2−1 τ−z1(5τ + 1)z2−1

(1 + τ)
z2 dτ. (15)

The integral in (15) converges in the domain {(z1, z2) ∈ C2 : 0 < Rez1 < 1}. The contour of
the amoeba of V = {5 + x1 + x2 + x1x2 = 0} is shown in Fig. 5. The sets Log(V1) and Log(V3)
coincide with the green part of the contour, and the sets Log(V2) and Log(V4) coincide with the
yellow one.
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Преобразование Меллина для рациональных функций
с квазиэллиптическими знаменателями

Ирина А. Антипова
Сибирский федеральный университет

Красноярск, Российская Федерация
Тимофей А. Ефимов

МАОУ Гимназия №10
Дивногорск, Красноярский край, Российская Федерация

Август К. Цих
Сибирский федеральный университет
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Аннотация. В статье рассматриваются вычетные представления n-мерных преобразований Мел-
лина для рациональных функций с квазиэллиптическим знаменателем. Эти представления задают-
ся интегралами по (n−1)-мерным относительным циклам. Количество представлений (или циклов)
равно числу граней многогранника Ньютона знаменателя рациональной функции.

Ключевые слова: многомерное преобразование Меллина, квазиэллиптический полином, форма-
вычет Лере, амёба.
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