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Introduction

The celebrated Hilbert 13th problem, even though it has been solved by A.N. Kolmogorov
and V. I. Arnold, leaves around itself many interesting questions. Thus, the original problem
about the representation of the solutions of a polynomial equation of seventh degree as a finite
superposition of continuous functions of two variables could be looked from a different angle,
if smooth, analytic or algebraic functions are being considered, instead of continuous functions.
Such interpretation of the Hilbert question gave rise to plenty of research and deep results about
the representation of functions with the help of superpositions of functions of lesser number of
variables in different functional classes (see, e.g., [1–4]).

If we replace superpositions of continuous functions by superpositions of germs of analytic
functions, then the beautiful and contensive theory, constructed in papers of V. K. Beloshapka,
arises ( [5,6]). This theory allows to introduce a natural preorder on the set of analytic functions
of several variables (the definition was proposed by V. K. Beloshapka). We shall restrict ourselves
to functions of two variables, although it is possible to study analogous structures also in the
case of larger number of variables.

Let two analytic functions f1(x, y) and f2(x, y) be given. We say that f1 is not more complex
then f2 (f1 4 f2), if f2 is representable as a superposition of analytic functions of one variable
and the function f1 (see Definition 1 in Section 1). The minimal depth of the superposition is
referred to as complexity (with respect to f1) and is designated by N(f1). Preorder 4 brings to
the set of analytic functions a new structure, which needs further comprehension.

In the paper, we give answers to the main questions arising here, which, as we see it, are
essential for the description of the complete picture. Let us note the following three main points
of our exposition:

1) Does there exist a function f(x, y), which is simpler than x+ y (i.e., such that f 4 x+ y)?
Here we suppose that the complexity Nx+y(f) of the function f with respect to addition x + y
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is greater than one, because otherwise the question ceases to be interesting, as we will show in
what follows.

2) Given functions f1 and f2. Is it possible that f1 is expressible in terms of f2 with depth
n > 1, and f2 is expressible in terms of f1 with depth m > 1?

3) Given functions f1 and f2. Is it possible that f1 is expressible in terms of f2 with depth
n > 1, and f2 is not expressible in terms of f1?

In all the cases the answer is affirmative. But if in 2) and 3) the answer is something we
should expect, in 1) the answer is counterintuitive: we obtain that the simpler object x+ y is a
superposition constructed with the help of the more complex object.

1. Definition of the preorder

The classes Cln = Cln(x + y) of functions of finite analytical complexity are constructed
inductively with the help of finite superpositions of analytic functions of one variable and ad-
dition x + y. In analogous way the classes Cln(φ) can be constructed, if we take as a binary
operation an arbitrary analytic function φ = φ(x, y) of two variables instead of addition. I.e.,
a function belongs to the class Cl0(φ), if it is an analytic function of one variable, and belongs
to the class Cln+1(φ), if in a neighbourhood of some point its germ has the form C(φ(An, Bn)),
where An, Bn ∈ Cln(φ), and C(t) is an analytic function of one variable. Here the expression
C(φ(An, Bn)) means the following: for any analytic function in the superposition we take such
germ that the whole expression is a well-defined germ. With the help of shifts of the form
(x −→ x+ a, y −→ y + b, t −→ t+ c), where a, b, c ∈ C, we can move the germs of all functions
to the origin. Therefore, it could be assumed that all germs are defined at the origin.

If one germ of an analytic function G(x, y) is representable with the help of the superposition
of the specified form, then almost all germs are also representable in that way (see [6]). Namely, if
G admits a holomorphic branch in some polydisc Π ∈ C2, then the representation takes place at
a generic point in Π (i.e., outside some proper analytic subset in Π). A function has complexity
n = Nφ with respect to the function φ, if it belongs to the set Cln(φ) \ Cln−1(φ). Next, if a
function does not belong to the set Cln(φ) for any finite value n, then we assume Nφ = ∞. The
complexity is also computed at a generic point. We denote the hierarchy of all functions of finite
complexity with respect to φ by Cl(φ), i.e., Cl(φ) = ∪∞

n=0Cln(φ).

Let us recall that a preorder 4 on a set is a binary relation, satisfying the two following
properties:

1) reflexivity (f 4 f ∀f),
2) transitivity (f1 4 f2, f2 4 f3 ⇒ f1 4 f3 ∀f1, f2, f3).
If in addition to this properties we have one more,
3) antisymmetry (f1 4 f2, f2 4 f1 ⇒ f1 = f2 ∀f1, f2),
then we say that on the set a partial order is defined.

With the help of the classes Cln(φ) we can introduce a preorder on the set A(x, y) of analytic
functions of two variables in the following way:

Definition 1. f1(x, y) 4 f2(x, y) if f2 ∈ Cl(f1).

Reflexivity and transitivity of the relation 4 follow from the definition.
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2. Properties of the preorder

On the set of germs of analytic functions f(x, y) acts the group of transformations

G = {x −→ α(x), y −→ β(y), f −→ γ(f)},

where α, β, γ are germs in the origin of holomorphic invertible functions of one variable, such
that α(0) = β(0) = γ(0) = 0. Here, as above, we assume that the germ of the function f is
defined at the origin and vanishes there.

We call two germs [f1]0 and [f2]0 at the origin of the functions f1 and f2 gauge equivalent, if
there exists an element g ∈ G, such that [f1]0 = g◦[f2]0. Next, two germs [f1]a and [f2]b at points
a = (a1, a2) and b = (b1, b2) are gauge equivalent, if germs of the functions

(
f1(x− a1, y − b1)−

f1(a1, b1)
)

and
(
f2(x− a2, y − b2)− f2(a2, b2)

)
at the origin are gauge equivalent. Finally, two

analytic functions f1 and f2 are gauge equivalent, if they have gauge equivalent germs (notation:
f1 ∼ f2).

Let us note an important property of the group G: it acts on the set of all analytic func-
tions without changing their complexity (with respect to any function φ). I.e., G ◦

(
Cln(φ) \

Cln−1(φ)
)
=

(
Cln(φ) \ Cln−1(φ)

)
for all n and φ.

2.1. The preorder is not a partial order

Let us show that the introduced preorder is not a partial order, i.e., the property of antisym-
metry fails.

Consider two arbitrary different functions f1 and f2 of complexity one with respect to addi-
tion. The action of G on such functions is transitive, i.e., there exists an element g ∈ G, such that
f1 = g ◦ f2. This means that the inequalities f1 4 f2 and f2 4 f1 hold, although f1 ̸= f2. Thus,
if we consider the preorder on the set of all functions, then it is easy to construct the counterex-
ample to the antisymmetry condition. But it seems natural to consider the quotient set of all
functions with respect to the action of the group G and ask the question about antisymmetry of
the introduced preorder for resulting equivalence classes.

On the set
(
A(x, y)� ∼

)
of classes of gauge equivalence the preorder . can be defined as

follows: [f1] . [f2], if for representatives f1 and f2 of classes [f1] and [f2] of gauge equivalence
we have f1 4 f2. This definition does not depend on the choice of representatives of the classes.

Let φ1 = φ1(x, y) = (x− 1)y +
y2

1 + y
, φ2 = φ2(x, y) = x2 + xy.

Theorem 2. 1) φ1 4 x+ y, and Nφ1(x+ y) = 2.
2) φ2 4 x+ y, and Nφ2(x+ y) = 2.

Proof. We have:

((x− 1)y +
y2

1 + y
)y +

y2

1 + y
= xy2,

whence
ln

(
((ex − 1)

√
ey +

ey

1 +
√
ey

)
√
ey +

ey

1 +
√
ey

)
= x+ y,

i.e., x+ y = ln
(
φ1(φ1(e

x,
√
ey) + 1,

√
ey)

)
∈ Cl2(φ1).
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We also have x+ y /∈ Cl1(φ1), because otherwise φ1 would have complexity one with respect
to addition, but it has complexity two.

Next, x3y = −φ2(x
2,−φ2(x, y)) and x3y ∼ x+y holds, i.e., x+y ∈ Cl2(φ2). And complexity

Nφ2(x+ y) also equals two, because the complexity Nx+y(φ2) equals two.
The proof of Theorem 2 is complete. 2

Thus, we have

x+ y 4 (x− 1)y +
y2

1 + y
4 x+ y, x+ y 4 x2 + xy 4 x+ y.

And also the functions x+y and φ1 = (x−1)y+
y2

1 + y
have different complexity with respect to

the hierarchy Cl, hence, they belong to the different classes [x+y] and [φ1] of gauge equivalence.
I.e., the relation . is also not a partial order. The same is true also for the pair of functions
x+ y and φ2 : the classes [x+ y] and [φ2] are different.

2.2. Increase of dimension of the stabilizer of a function

The functions φ1 and φ2 demonstrate one more interesting effect. Namely, every function f
have the stabilizer St(f) with respect to the action of the group G, which consists of all elements
g ∈ G, such that g ◦ f = f . For the dimension of the stabilizer there exist only four possibilities
(see [7]):

1) infinity — in this case the function depends on only one variable,
2) three — in this case f ∼ x+ y,
3) one — in this case f ∼ r(x+ y)− x for an analytic function r(t),
4) zero in other cases.
For the functions φ1 and φ2 the dimensions of the stabilizers are the following: dimSt(φ2)=1,

dimSt(φ1) = 0 (it is easy to check by substituting φ1 in the published at the web page
vkb.strogino.ru criterion of one-dimensionality of a stabilizer, see section "Другое", item
"Maple-приложение к статье ’Об аналитических функциях двух переменных с одномерным
стабилизатором’"). But on the other hand, the function x + y, having the three-dimensional
stabilizer, belongs simultaneously to the classes Cl2(φ1) and Cl2(φ2). I.e., the more complicated
function (with respect to φ1 and φ2) has higher dimension of the stabilizer. Such effect is absent
in the standard hierarchy Cl with respect to addition: the simplest function x+y has the largest
stabilizer.

2.3. Partial order on the equivalence classes

Using the preorder 4, we can divide the set of analytic functions of two variables into equiv-
alence classes: f1(x, y) is equivalent to f2(x, y), if f1(x, y) 4 f2(x, y) and f2(x, y) 4 f1(x, y)

(notation: f1 ≈ f2). Note that the orbits of the action of the group G fall into the same equiva-
lence class. In accordance with the general set-theoretic construction the preorder relation 4 on
the set

(
A(x, y)� ≈

)
of equivalence classes become a partial order relation.

2.4. Existence of nonequivalent functions inside one hierarchy

It follows from Theorem 2 that some functions of different complexity are not equivalent with
respect to the relation ≈. The question arise: can all the functions from the hierarchy Cl(φ) fall
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into the same equivalence class for all φ? We will give an example of a function Φ = Φ(x, y),
such that among the functions from the hierarchy Cl(Φ) there exist nonequivalent ones. For this
purpose we will write down the function Φ of infinite complexity with respect to the standard
hierarchy Cl, such that the function x + y has complexity two with respect to the hierarchy
Cl(Φ).

We need some auxiliary constructions. Let F (x, y) be a function, satisfying the following
three conditions:

1) F (x, y) = F (y, x),

2) F (x, y) = F (−x, y),
3) the function y = χ(x,w) given by the implicit equation F (x, y) = w

has infinite complexity.

(1)

It can be shown that functions F (x, y) with these properties exists, and there are many
functions of the same sort (see below), but we will give explicit examples of functions F (x, y)
with the specified properties.

To begin with, there exists an entire function ψ, such that the implicit equation

ψ(y) + xy = w (2)

defines the function Ψ(x,w) of infinite complexity (see [8]). At the same time, there are plenty
of such functions ψ (further we will only need that there are more than two of them). By the
implicit function theorem, Ψ(x,w) is defined everywhere outside a proper analytic subset of the
space C2. Note that equation (2) for all possible ψ defines the general solution of the Hopf

equation
∂y

∂x
= y

∂y

∂w
.

Then the function F (x, y) = ψ(y2) + x2y2 + ψ(x2) satisfies all three conditions given above.
It is clear that conditions 1) and 2) are satisfied. Let us check condition 3).

If ψ(y2) + x2y2 + ψ(x2) = w, then y = χ(x,w) =
√
Ψ(x,w − ψ(x2)). Since Ψ(x,w) has

infinite complexity, then χ(x,w) also has infinite complexity, because the change of coordinates
{x −→ x, w −→ w − ψ(x2)} does not change complexity, and also extracting a root does not
change complexity.

Let Φ(x,w) = χ(x+ w,w) + w. The function Φ(x,w) also has infinite complexity.

Theorem 3. x+ w ∈ Cl2(Φ).

Proof. Since Φ(x,w) has infinite complexity with respect to w+ x, then w+ x /∈ Cl1(Φ). Let us
show that

Φ(−Φ(x,w), w) = x+ 2w. (3)

As before in the definition of the complexity classes, we understand equation (3) as equality
of the function x+ 2w to the correctly chosen composition of germs of the function Φ. Here we
consider this equality only in those points, in which it is possible to choose germs so that the
composition is well-defined (these are generic points). I.e., we will show that equality (3) holds
at a generic point.

Let Φ(−Φ(x,w), w) = χ
(
−
(
χ(x+ w,w) + w

)
+ w,w

)
+ w = u. Then

χ
(
− χ(x+ w,w), w

)
= u− w,
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which is equivalent to
w = F

(
− χ(x+ w,w), u− w

)
.

Using properties 2) and 1), we obtain

w = F
(
χ(x+ w,w), u− w

)
= F

(
u− w,χ(x+ w,w)

)
,

whence
χ(x+ w,w) = χ

(
u− w,w

)
.

Therefore we can suppose u − w = x + w, whence u = x + 2w. Following back the chain of
equalities obtained in the proof of the theorem, we obtain that the function u = x+ 2w satisfies
the equality Φ(−Φ(x,w), w) = u. After the change

{
x −→ x, w −→ w

2

}
we get what we need.

The proof of Theorem 3 is complete. 2

Corollary 4. Any function f(x, y) of finite complexity with respect to addition belongs to the
hierarchy Cl(Φ), but in the same time Φ /∈ Cl(f).

2.5. Pairs of functions of different finite relative complexity

Thus, we have constructed the function Φ, such that NΦ(x+y) = 2, but Nx+y(Φ) = ∞ for all
natural n. The given above construction can be slightly modified to obtain examples of functions
Φn, such that NΦn(x+ y) = 2, but Nx+y(Φn) = ν(n) for some natural ν(n) ∈ [n− 2, n+ 2]. For
this purpose we need to construct a function Fn(x, y) satisfying the following three conditions:

1) Fn(x, y) = Fn(y, x),

2) Fn(x, y) = Fn(−x, y),
3) the function y = χn(x,w), given by the implicit equation Fn(x, y) = w, has complexity

not less than n− 1 and not greater than n+ 1.

To construct the functions Fn(x, y) with the given properties it is necessary to choose, as
above, an entire function ψn, such that the implicit equation

ψn(y) + xy = w

defines the function Ψn(x,w) of complexity n (see [8]). Note that there are also plenty of such
functions ψn.

Then the function Fn(x, y) = ψn(y
2) + x2y2 + ψn(x

2) satisfies all the three conditions. It is
clear that conditions 1) and 2) are satisfied. Let us check condition 3).

If ψn(y
2) + x2y2 + ψn(x

2) = w, then y = χn(x,w) =
√
Ψn(x,w − ψn(x2)). Since Ψn(x,w)

has complexity n, then the complexity of the function χn(x,w) differs from n by no more than
one, because the coordinate change {x −→ x, w −→ w − ψn(x

2)} can change complexity by not
more than one, and extracting a root does not change complexity.

Let Φn(x,w) = χn(x+w,w) +w. Complexity ν(n) of the function Φn(x,w) differs from the
complexity of the function χn by no more than two, therefore n− 3 6 ν(n) 6 n+ 3.

2.6. Metric and continuous dependence on function

For functions f and g, which are holomorphic in U , the metric ρU (f, g) is introduced in a
standard way with the help of the enumerable sequence of seminorms in the Frechet space.
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In the same time, it is clear that there is a continuous dependence of the classes Cln(φ)
on the function φ. Namely, let a function f = f(B,S, φ)(x, y) ∈ Cln(φ) be given. Here
B = (B1(t), . . . , BN (t)) for N = (2n+1 − 1) is the set of functions of one variable, which en-
ter into the superposition of the function f(B,S, φ)(x, y), and S is a scheme of the composition,
i.e., a way of arrangement of the functions from the set B inside the superposition (see [6] for
more information on schemes). Consider a function f̃ = f(B,S, φ̃)(x, y) ∈ Cln(φ̃), which differs
from f only by replacing φ by φ̃. And let the functions φ and φ̃ have holomorphic elements(
φ(U), U

)
and

(
φ̃(U), U

)
in a common domain U . Then ∀ ε > 0 ∃ δ > 0, such that for

ρU (φ(U), φ̃(U)) < δ the functions f, f̃ have holomorphic elements
(
fV , V

)
and

(
f̃V , V

)
in a

common domain V = V (ε), for which ρV (fV , f̃V ) < ε holds.
In particular, from the property of continuity follows that the condition that a function does

not belong to the class Cln(φ) is an open condition. Namely, we have the following

Proposition 5. Let f /∈ Cln(φ). Then there exists a number δ > 0, such that for
ρU (φ(U), φ̃(U)) < δ we have f /∈ Cln(φ̃).

Proof. Indeed, assume the contrary, i.e., let for all δ > 0 there exist a function φδ(U), such that
ρU (φ(U), φδ(U)) < δ, and f ∈ Cln(φδ) holds. But the sequence of functions φδ converges to φ
in the metric for δ −→ 0, whence by the property of continuity we obtain f ∈ Cln(φ), which
contradicts the condition. 2

2.6. Almost all hierarchies contain nonequivalent functions

Choose a function Φ̃, such that the following condition hold:

1) there exist a domain U , such that elements Φ(U) and Φ̃(U) of the functions Φ and Φ̃ are
defined in it,

2) ρ(Φ(U), Φ̃(U)) < ε,

3) Φ̃ /∈ Cl(Φ).

Condition 3) can be attained, because the set Cl(Φ) is equal to the countable union of nowhere
dense sets Cln(Φ). Hence, Cl(Φ) can not include an entire neighbourhood of the function Φ(U).

For small enough ε we obtain that Φ̃(−Φ̃(x,w), w) /∈ Cl(Φ̃), because Φ(−Φ(x,w), w) /∈ Cl(Φ)

and the condition that a function does not belong to the set Cl(Φ) is an open condition by
continuous dependence of the differential criteria Jn(φ) on φ. This means that the set Cl(Φ̃)/ ≈
also contain more than one equivalence class. It is also clear that almost all (in the sense of the
metric ρU ) functions Φ̃ possess this property.

2.7. Intersecting hierarchies, which do not coincide

Suppose that two hierarchies Cl(φ1) and Cl(φ2), based on different functions φ1 and φ2,
intersect, i.e., there exists a function f , such that f ∈ Cl(φ1) and f ∈ Cl(φ2), and also f

depends on both variables x and y. This takes place, for example, if φ2 ∈ Cl(φ1) or φ1 ∈ Cl(φ2)

holds. In this case one hierarchy is nested within one another. It is natural to ask: is it the only
reason for intersection? We will show in what follows that the answer is negative – intersecting
hierarchies are not necessary nested within one another.

Consider the set F of functions F (x, y), satisfying properties 1) and 2) in (1), which are
holomorphic in a domain U and for which the nonequality ρU (Φ(U), F ) < ε for some ε > 0
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holds. The set F defines the set Y of functions y = χ(x,w). The set Y is a complete metric
space, which can be represented as the countable union Y = ∪16n6∞Yn of the sets Yn, consisting
of functions of complexity n. Moreover, the sets Yn for n <∞ are nowhere dense. By the Baire
theorem we obtain from here that the set Y∞ can not be represented as an at most countable
union of nowhere dense sets. Note that Y∞ coincide with the set of all functions y = χ(x,w),
given by property 3) in (1).

The set Cln(Φ) is nowhere dense for all fixed n. Hence, there exists a function Φ1 ∈ Y (and
there are plenty of such functions), such that x+ y ∈ Cl2(Φ1), but Φ1 /∈ Cln(Φ)∀n. We also can
obtain the condition Φ(U) /∈ Cln(Φ1)∀n in an analogous way.

This means that the hierarchies Cln(Φ) and Cln(Φ1) intersect (in the function x + y and
some others), but are not nested within one another. It is clear that the intersection contains
the set Cl(x+ y).

In conclusion, let us formulate a question, which was left out of our considerations.
Question 6. Fix a function φ. Does there exist the minimal element in the hierarchy Cl(φ)?
Here we mean the following. As was shown, there exists the function Φ, in terms of which we

can express the function x+ y, such that the hierarchy Cl(Φ) contains the hierarchy Cl(x+ y),
and moreover, this inclusion is strict. The question arise: is it possible to find an infinite sequence
of functions Ψj , j = 1, 2, 3, . . . , such that the strict inclusion Cl(Ψ1) ⊂ Cl(Ψ2) ⊂ Cl(Ψ3) ⊂ . . .

holds?

This work was supported by the Russian Science Foundation, project no. 19-11-00316,
https:// rscf.ru/en/project/19-11-00316/.
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Отношение предпорядка на множестве аналитических
функций

Мария А. Степанова
Математический институт им. В.А.Стеклова РАН

Москва, Российская Федерация

Аннотация. В работе изучено отношение предпорядка, которое естественно определяется на мно-
жестве аналитических функций двух комплексных переменных с помощью суперпозиций анали-
тических функций одной переменной.

Ключевые слова: аналитическая сложность, суперпозиции аналитических функций.
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