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Abstract. In this paper we study the inverse problem on identification of the leading coefficient in
the pseudoparabolic equation. The problem involves the mixed boundary condition. The unknown
coefficient is recovered by additional integral boundary data. The existence and uniqueness of the strong
solution are proved. The result concerns with the identification of the hydraulic properties of fissured
medium.

Keywords: filtration, inverse problem, pseudoparabolic equation, existence, uniqueness.

Citation: A.Sh.Lyubanova, An Inverse Problem for Pseudoparabolic Equation with the
Mixed Boundary Condition, J. Sib. Fed. Univ. Math. Phys., 2023, 16(5), 661-672. EDN:
TDISWG.

Introduction

This paper is devoted to the inverse problem of identification of an unknown coefficient in
the pseudoparabolic equation

(u+ Liu)y + Lou = f (0.1)
with the initial data
Biuli—o = Uy (0.2)
and the boundary condition
Boulaa = plt, z, k(t)) (0.3)

where Q is a bounded domain in R™ with a boundary 092, Ly = nM, Ly = k(t)M, M and B, are
linear differential operators of the second order in the spacial variables, Bs is a linear operator.
To find the unknown coeffcient k(t), the additional data is used in the form of the condition of
overdetermination

By (t)(nus + k(t)u) w(t, z) ds + k(t)r(t) = @2(t) (0.4)
o9
where B3(t) is a linear operator in the spacial variables for every t € (0,T), w(t,z) and ¢;(¢),
i = 1,2, are known functions. The conditions (0.3) and (0.4) must be independent in that (0.4)
may not be evident from (0.3).
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A main goal of this article is to investigate the correctness of the problem (0.1)—(0.4) with

Biu = u, Bou = a%(nut + k(t)u) 4+ o(x)(nue + k(t)u), p(t, z, k() = pa(t, ) — pi(t, 2)k(t) and

0
Bs = I where I is the identity operator, o(z) and w;(t,x), ¢ = 1,2, are known functions, B is

the conormal derivative associated with the operator M (see Problem 1 below).

In [9,11,12], the problem (0.1)—(0.4) was considered in the case where L; = nM, Ly =
=k(t)M+g(t,z)I, Bju = u+ Liu, Bou = u, By = 3% In [11], the existence and uniqueness of
the strong solution are proved. The regularity of the solution is also investigated. The work [12]
discusses the stabilization and the asymptotic behavior of the solution as ¢t — +oo. It is shown
in [9] that under certain conditions this solution tends to the solution of the appropriate parabolic
inverse problem when 1 — 0.

Applications of the inverse problems for (0.1) with various operators L; and Lo involve the
recovery of the unknown parameters indicating physical properties of a medium (the heat con-
ductivity, the permeability of a porous medium, the elasticity, etc.). In particular, the equation
(0.1) considered in [9,11,12] describes the filtration of a liquid in a fissured medium [1]. The
coefficient k(t) is in inverse proportion to the total effect of compressibility of the liquid and
the fissured medium. Since the natural stratum is involved, the parameters in (0.1) should be
determined on the basis of the investigation of its behaviour under the natural non-steady-state
conditions. This leads to the interest in studying the inverse problems for (0.1) and its analogue.

The study of inverse problems for pseudoparabolic equations (0.1) goes back to 1980s. The
first result [16] refers to the inverse problems of determining a source function f in (0.1) with
L1 = Ls. Most of the results on inverse problems are concerned with the identification of
an unknown source f and coefficient in the lowest order term u as in [4-6,15]. The work [8] is
devoted to the inverse problem on reconstruction of the kernels in the integral term of the integro-
differential operator Ly. We should mention also the results [5,14,15] concerning with coefficient
inverse problems for (0.1). In [14], the uniqueness theorem is obtained and an algorithm of
determining a constant a in the second order term is constructed. In [5], the solvability is
established for two inverse problems of recovering the unknown coefficients in terms u (the
lowest term of Lou) and u; of (0.1). In [15], an inverse problem of recovering time-depending
right-hand side and coefficients of (0.1) is considered. The values of the solution at separate
points are employed as overdetermination conditions. The existence and uniqueness theorems
are proven for this problem.

The paper is organized as follows. Section 1 presents the formulation of the inverse problem
and certain preliminary results concerning the direct initial boundary value problem for (0.1). In
Section 2, the existence and uniqueness of the strong solution of the inverse problem are proved.

1. The statement of the problem and preliminaries

Let 0Q € C?, Q be the closure of Q. Qr = Q x (0,7) is a cylinder with the lateral surface
St = (0,T) x 09, Qr is the closure of Q7 and the pair (¢,) is a point of Q.

Throughout this paper we use the following notation: || - ||g and (-, ) are the norm and the
inner product of R"; | - || and (-,-) are the norm and the inner product of L?(£2), respectively;
| -]l; and (-, ~>j are the norm of W7 (Q) and the duality relation between W (Q) and W, 7 (Q),
respectively (j = 1,2).

We introduce the operator M by the following rule: for every u € W (Q) the element Mu
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gives the functional
J(v) = (Mu,v)p +/ o(z)uvdz
o0
defined for all v € W} (Q) where

(Mu,v)p = Q{(M(m)Vu, Vou)r + m(z)uv}de.

Here M(x) = ((my;(x))) is a matrix of functions m;;(x), ¢,j = 1,2,...,n, m(z) and o(z) are
scalar functions. We assume that the following conditions are fulfilled.

L. mgj(x), Oms;/0xy, 4,5, = 1,2,...,n, and m(z) are bounded in Q. M is an elliptic
operator, that is, there exist positive constants mg and m; such that for any v € W3 () and
almost all x € Q)

mollo2 < (Mo, vy +/a o(zyuvdz < ma Jo]2 (L1)
Q

II. myi(z) =myi(x), 4,5 =1,2,...,nfor x € QL

We are studying the following inverse problem.

PrROBLEM 1. For a given constant n and functions f(t,z), g(t,x), uo(x), pi(t,z), ua(t,x),
o(x), w(t,x), ¢1(t), p2(t) find the pair of functions (u(t,x), k(t)) satisfying the equation

ug +nMu + k(t) Mu = f(t,z), (t,z) € Qr, (1.2)
and the conditions
u|t=0 =up(zr), =€, (1.3)
{n% + k(t)% + o(x)(nus + k(t)u)} s + k)t x) = pa(t, z), (1.4)
/‘m(nut + k() uw)w(t, z) dS + v1(H)k(t) = p2(t), te€(0,T). (1.5)

Here ai = (n, M(z)V) and n is the unit outward normal to 9.

The conditions (1.4) and (1.5) may seem peculiar. However, such formulation of this condi-
tions are rather natural for pseudoparabolic equations. For a deeper discussion of the conditions
(1.4), (1.5) we refer the reader to [10].

We introduce functions b(t,z) and h"(t, z) as the solutions of the boundary value problems

Mb=0 inQ, {% + a(x)b}’aﬂ — w(t,z),
"+ nMh" =0 1in Q, {% + U(ﬂc)h”}’aQ =w(t,x).

The existence and uniqueness results for Problem 1 rely upon two propositions for the direct
problem (1.2)—(1.4) with the known function k(t).

The first proposition concerns with the existence and uniqueness of the solution of the direct
problem (1.2)—(1.4), which follows from the the results of [19] in the case of the constant coefficient
k(t) = k.

Lemma 1.1. 1) Let the assumptions I-11 be fulfilled, n > 0, k € C([0,T)), f € C([0,T]; L*(%)),
ug € W3(Q) and p, s € C’l([O,T];Wzl/Q(aQ)). Then there exists a unique solution u(t,z) of
problem (1.2)-(1.4) such that uw € C*([0,T]; W()).
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Proof. Let us consider the problem

ve + G(v) = f, (t,z) € Qr, 16
V|i=0 = (I + nM)uyg, x €, (1.6)

where v = (I +7M)u and the operator G acting from C([0,7]; L(£2)) into itself is defined as

G=k(t)M(I +nM)~' = k?(;) (I—I+nM)™).
The function v is the solution of the problem (1.6) if and only if the function u = (I +nM) v
is a solution of problem (1.2)—(1.4). Therefore Theorem 1.1 will be proved once we prove the
existence and uniqueness of the solution of the problem (1.6). From the hypotheses of the lemma
it follows that G is a Lipschitz-continuous linear operator. Then, by Theorem 1.2 of [3, Chapter
V], the problem (1.6) has a unique solution v € C*([0,T]; L*(€2)). The lemma is proved. 0

The next lemma is a maximum principle (a comparison theorem) for the direct problem (1.2)—
(1.4). In general, the maximum principle does not hold for the pseudoparabolic equation [17].
However it has been possible to prove such assertions under certain additional assumptions on
the input data of the initial boundary value problems. In [17, 18, 20], comparison theorems
were proved for the first initial boundary value problem for (0.1) with the general linear elliptic
operators L1 = Ly = L of the second order and k = 1. In [2], the comparison theorem is proved
for (0.1) with the constant coefficient k, Ly = Ly = —A in the case of the mixed boundary
conditions.

Lemma 1.2. Under the assumptions of Lemma 1.1, let u(t,z) be the solution of the problem
(1.2)—(1.4) in C1([0, T); WZ(Q)). In addition, let f(t,z) > 0 for almost all (t,x) € Qrp, uo(z) =0

almost everywhere in Q, k(t) > 0 for t € [0,T], u1 < 0 and pz > 0 for almost all (t,z) € Sp.
Then

1/t
u(t,x) > ugp(z) exp ( — 5/0 k(9)d9)
for almost all (t,z) € Qr.

Proof. 1t is sufficient to prove the assertion of Lemma 1.2 for the smooth solution of problem
(1.2)—(1.4) since the following arguments can be justified by using the method of difference

quotients or mollifiers.
t

1
The function v = u — up exp ( -= k(@)d@) is the solution of the equation
Mo

v+17Mv/0t {f+k(n7—)v} eXp(/7—tk§70)d0)d7+quXp(/0tk§79)d9>, (1.7)

and obeys the boundary condition

_1 /th ~ k(r)m)exp ( 1/tkd9)dr (1.8)

{6—1—&-0(96)1)} s ) )

ON
Let us define the functions vy = ming zyeq,{v,0} and vy = max( ;e {v,0}. We multiply
(1.7) by vy in terms of the inner product of L?(2) and integrate by parts in the second summand
of the left side of the resulting equation. In view of (1.8) this gives

¢ k bk
||v1H2—|—77<M111,v1>M+77/ av%ds—/ / (f—l—fvg)exp(—/ fde)dﬂ)ldx—
o0 QJo n r n
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t t t
—/ /(MQ—kul)exp(—/ &de)drvlds—exp(—/ Ed@)/uovldx:
a0 Jo + N ) Q
bk bk
z// fvlexp(—/ fd9>d7v1d1:.
QJo 7 1N

In the hypotheses of the lemma this relation implies the inequality

t
jll? < C© / Jon2dr.
0

with the constant C' > 0 depending on T, 7, max,c[o,r] k(t), whence by Gronwall’s lemma it
follows that v; = 0, that is, v > 0 almost everywhere in Q7. The lemma is proved. O

2. The existence and uniqueness

In this section we discuss the sufficient conditions for the solvability and the uniqueness of
the solution of Problem 1. By a solution {u, k} of Problem 1 we mean that

1) ue CH([0,T]; W3(Q)), k(t) € C([0,T]);

2) the pair {u, k} obeys the equation (1.2) almost everywhere in Qr and the conditions (1.3)
for almost all z € Q, (1.4) almost everywhere in Sz and (1.5) for all t € [0, T].

The main result of this article is established by our next theorem.

Theorem 2.1. Let the assumptions I-11 be fulfilled, 0 € C? and n be a positive constant.
Assume that

() f € CU0, T L), pi, po € C([0,T]; Wo'?(0)), ug € WE(Q), 0 € C(OQ), w €
(10, T W, *(09). 1.2 € C([0.T));

(ii) the assumptions of Lemma 1.2 are fulfilled and there exist constants ag > 0 and @y > 0 such
that

P1 /aQM1WS>ao (2.1)
®(t) = ¢2(t) = (f, ") = / p2hds > . (2.2)
89

Then Problem 1 has a solution {u,k} and this solution is unique. Moreover, u > 0 almost
everywhere in QT and the estimates

0 < ko < k(t) < Pa?, (2.3)

[[ull2 + [Jue]l2 < Ch (2.4)

hold with positive constants ko and C1. Here ® = max;co, 7] P-

Proof. Following the idea in [11,13], we reduce Problem 1 to an equivalent inverse problem with
a nonlinear operator equation for k(¢). To do this, we multiply (1.2) by A" in terms of the inner
product of L?(Q) and integrate by parts twice. This yeilds

) (n% + ka—ﬁ)hndw

(ut7 h’]) + (UMUt + kMu, hn) = (ut’ hn) - / N ON

2]
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+(nMug + EMu, h") pr = (ug, B") + k/

,ulh”ds—/ wohds+
oQ o0

n
+/ o(z)(nus + ku)h"ds + / (nue + ku)ids + (nus + ku, MR™) =
ble) P ON

Q

7 1 U, 7

:’“[—@ﬁ/ ulh’ds—f(uyh’ﬂ—/ p2hds + 2 = (f,h"),
o0 n 0

whence we obtain that )
k[gpl - / i hds + = (u, h")} - a(1)
a0 n

We define the operator A which maps every element y € C([0,T]) = {y |y € C([0,T]),y > 0}
into the element Ay € C([0,77]) by the rule

Ay=a®)er— [ uids ()] (2.5)

where u,, is the solution of the problem (1.2)—(1.5) with k(¢) = y. The element Ay is meaningful
for every y € C([0,T)]). Indeed, the direct problem (1.2)—(1.4) with k = y has a unique solution
uy € C1([0,T]); WZ()) for every y € C1([0,T]) by Lemma 1.1. Moreover, by Lemma 1.2 and
the maximum principle for elliptic equation (u,, ") > 0, which implies in view of (2.1) that

1
v1 —/ purhds + = (uy, B") = ao. (2.6)
o0 n
It can be shown that Problem 1 is solvable if and only if the operator equation
y = Ay (2.7)

has a solution in C ([0, 7). Really, the deduction of the equation (2.7) shows that if {u,,y} isa
solution of Problem 1, then y is a fixed point of the operator A by (2.5). On the other hand, let
y* is a solution of equation (2.7) and u* is a solution of (1.2)—(1.4) with k(¢) = y*(¢). Multiplying
(1.2) by A" in terms of the inner product of L?(f) and integration by parts twice in the second
and third summands implies in view of (1.4), (2.5), (2.7) that the pair {u*(¢,z),y*(¢)} obeys the
condition of overdetermination (1.5).

The relations (2.2), (2.5) and (2.6) imply the estimate

0< Ay < Dag .
Let us prove that there exists such yg > 0 that the operator A maps the set
Y ={yly € C0,T]),y0 <y < Doy '}

into itself. We multiply (1.2) with £ =y € Y by the solution u, of the problem (1.2)—(1.4) in
terms of the inner product of Ly(2) and integrate by parts in the second and third summands.
It gives

1d
3 el + 10y uas 0 [

Juids} + y(Muy, uy) v + y/ Juids =
oN

[219]

= (fuy) — /aQ(:Wl — pa)uyds.
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We next integrate the last relation with respect to t from 0 to 7, 0 < 7 < T, and rewrite as

||uy|\2—|—77[<Muy,uy>M—|—/ Jujds} +2/ y[(Muy,uy>M—|—/ auzds}dt:
0 0 a0
= ool + n[ Mo, wohas + [ oudds| +2 [ {(rw) = [ o - popwdshar 28)
o0 0 o0

By (1.1), the left side of this equality is estimated from below as

ey I + sy I3 + /6 s

One can estimate the right term of (2.8) with the help of the embedding theorem and the Cauchy
inequality. This gives

ol + 1[0, w0} + |

Qougds} + Q/OT {(f, u,) — /QQ(y'ul — MQ)uyds}dt <

2

nmo

/N

—_ 2
(q)% Yl L2esey + ||/~L2||L2(ST)) + 1172 (@) + lluol®+

[ (00w, + ool o] + [ g+ ol 1)

where ¢ = [|o|[¢ ), ¢ > 0 is the constant of the embedding W3 (Q) — L?(09Q). Thus, we obtain
from (2.8) that

A o= _ 2
g 1 + mmo g 1T < %(@% Hraallpacse + liszllzegsn) + 17132@m+

+luoll® + TI[<MU0,UO>M + 5—”“0“%2(89)} +/ (llugl® + nmeolluy |17)dt,
0

whence by Gronwall’s lemma we have

ety 12 =+ sy 17 < {77707120(‘1’0401|M1||L2(ST) +lallasn) + 171+
o+ ol + (Mo, uohrr + lluo 2200 ) [ 7 = B (29)
Coming back to (2.5) we can determine yo. By (2.2), (2.9),
Ay = @ [@1 + e {Ilall 2200 llwll L2 00) + 777102||hn||}} = Yo, (2.10)
where &1 = |l¢1llc(o,r7). Thus, the operator A maps the set Y with yo defined by (2.10) into
itself.

Let y1,y2 € Y and uy,,u,, be the solutions of the problem (1.2)-(1.4) with £ = y; and
k = ya, respectively. In view of (2.5)

-1
|Ayr — Ayo| = n71¢(t)|(uy2 — uyl,h")|{<p1 + /89 urhds + nil(uyl,h")} X

_ -1 dmax 1 ||R7
fort [ minds 4w} < O Wy,
a0 nag
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On the other hand, the difference w, = u,, — u,, satisfies the equation

wyr + nMwy +y1 Mwy = (y2 — y1) Muys (2.12)
and the conditions
wy (0, ) =0,
T ] (G2 +oua), +m]
Uy — (g — . (213
G e @)y )| = e - ) [(G5E Fowe)|, tm]. 213)

We multiply (2.12) by w, in terms of the inner product of L?(£2) and integrate by parts in the
second and third summands and the right side. In view of (2.13) this gives

1d
5l + o[y wae + [

. Uwids}} + y1{<Mwy,wy>M +/

awﬁ ds} =
N )

= (y2 — yl){<MU2y,wy>M + / (ngy + u1)wyds}. (2.14)
0
By (1.1), (2.9) and the embedding theorem,

‘(y2 — y1){<MU2yawy>M +/ (ougy +M1)wyd8}‘ <
a0

< clyz =l {(m1 + o) lug, 1 + llpallzzon) } llwyll <

c? (my + co)C: > gm
< g2 d I T o) : L0, |2, 2.15
2,’7m |y2 Y1 ‘ { (nmo)l/Q + |u’1||L2(dQ)} + D) Hwy”l ( )

Integrating (2.14) with respect to ¢ from 0 to 7, 0 < 7 < T, and estimating the left side of the
result with the use of (1.1) we obtain in view of (2.) that

2
mq + co)Cy
[[wy|I” 4+ nmollw, |7 < \yz -l ( 1)2 + lpallz2o0) ¢ dt+
(nmmo)/

+ / (w12 + mmolluwy |12) dt

Accordig to Gronwall’s lemma the last relation implies the estimate

Hwy”2 <

el [ (my + ¢5)C: 2
<( (717m0)1/)2 :+ “1||C([0,T];L2(asz))> /0 ly2 — 1| ?dt. (2.16)

nmo

Combining (2.11) and (2.16) we are led to the inequality

|Ay1 — Ays| < / \y1—y2|2dt

where
T/2

c@maxte[o T) ||h77|| <(m1 + CC_T)CQ
K= ’ + lpeilleqorezea) | €
n3/2m(1)/2a% (nmo)'/2 ([0,77;L2(0%))

Let us introduce an equivalent norm in C([0,T]) as

I - u—gggg]{e -1y
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with a positive constant v to be determined later. Then
K
|Ay1—Ay2|V<W lvyi—w2 |, -
Choosing v = 2K 2, we obtain the inequality

1
| Ay = Ay 1, < 5 1=l (2.17)

This means that the operator A : Y — Y is a contraction. Thus, in accordance with the principle
of contracting mappings the operator A has a unique fixed point k* € Y. The pair {u*, k*} gives
the solution of the inverse problem (1.2)—(1.5) where u* satisfies (1.2)—(1.4) with k¥ = k* and
u* € CH([0,T); W2(Q2)) by Lemma 1.1. Moreover, the estimates (2.3) and (2.9) are valid for k*
and u*.

We are coming now to the estimates for u and u; in W2(2). Multiplying (1.2) by u; in terms
of the inner product of L?(Q2) and integrating by parts in the second and third terms of the left
side yields

||ut||2 + n(Mug,u)pr + 17/(‘3 o(x)ufds = —k{Mu,u)p — k/

o(x)uurds +/ Bugds + (f,ug).
a0 19)

Q

By (1.1), (2.3), (2.9) and the embedding theorem, the last equality implies the relation

d(my + o
e+ ol [ otayuas < { 2D uly b s, P+

Q

1 { 026(7711 + 625')

2 1
2nmy ap(nmg)t/? +CHB”L2(8Q)} +§Hf”2+

FIA el <

1
5 (el + mmollul[7)

which implies the estimate

1 {ng(rm +25)

2
nmo U ag(nmg)t/? * CHﬁHL?(aQ)} +|1f]1* = C3. (2.18)

el + mmollue || <

We are now in a position to get the estimates for v in WZ(Q2). To do this we rewrite the
boundary condition (1.4) in the form

o (2.19)

where

= (G

STexp(717/0tkd9)+717/0t(ﬂ2k,u1)exp(:}/:kd@)dr

Multiplying (1.2) by Mu in terms of the scalar product of L?(£2) gives

nd
2 dt

1Mu* + k(@) Mul|* = (f - ue, Mu).

By (2.3) and (2.18),

| =

7 1 Yo
> Mul? + yo | Mul* < 5—(|If[| + C3)* + S| Mul)?
2 20 2

U

t
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whence

v I v
[Mu? < || Muo|?e™ " + ?/ (1]l + C3)%e™ " ar. (2.20)
0 Jo
The inequality [7, Chapter 2]
[olle < K1 (1Mol + 18l yy172 g0y + 10111) (2.21)

is valid for all v € W#(Q) satisfying the boundary condition (2.19) where the constant K; > 0
depends on mg, my and mesQ). In view of (2.9), (2.18)—(2.21) we have

I 1/2 _
Julls < K [|Muoll + (- / (£l + Cs)2dr) " + 1Blly1/2 o + Calimo) 2] = Cu. (2.22)

The estimates (2.18) and (2.20) enable one to conclude from (1.2) that

)
il Muel| < |[F]l +Cs + 070C5' (2.23)
The positive constant C5 depends on Cy, Cs, yo, T, 1, |fl|z2(0r)- By (1.4), (2.18) and (2.23),

s+ R(tYulla < Ko (1M e + 5 (0) | + 118 = o (e + KWl y120p0, +
2

~ d
e+ k(@)uly) < K 17 = well +18lly272 oy + (o0 + 1) (nlluells + -l )| <

(Coa' + 1)

W(ncg + icg)} =g

< K [I1£1]+ Co + 1Blly172 5y +

whence

) )
Nuellz < Co + —llull2 < Cs + —C4.
(7)) (7))

The last inequality and (2.22) implies the estimate (2.4).

The uniqueness of the solution {u, k} follows from (2.17). Really, let {u1,k1} and {us, ka}
be two solutions of Problem 1. Hence, k; and ko satisfies the operator equation (2.7) and the
inequality (2.17) is valid. Then

1
| k1 —ka |, = |Ak1*Ak2|y<§ | k1 —ka |, ,

which proves that k1 = ko. From this in turn follows by (2.16) that u; = us. O
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Ob6paTHas 3aja49a JAJ1s MCEBJIONAPaAOOIMIECKOTO ypaBHEHUS
CO CMEINIaHHBIM I'PAHUYHBIM yCJIOBUEM

Awnna 1. JIrobanoBa

Cubupckuii de1epalibHbIl YHUBEPCUTET
Kpacnosipck, Poccuiickass @eneparus

Awnnoranusi. B nannoit craTbe ucciiemnyercs obpaTHas 3a1a4a UIeHTUUKAIINNA CTapIiero Kosdduimen-
Ta B ICEBIONAapabOINIECKOM yPABHEHUU CO CMEIIaHHbIM I'PAHUYHBIM ycjaoBueM. HeussecTHbIl KO3 du-
IIMEHT BOCCTAHABJIUBAETCS 10 JOMOJHUTEIHHBIM MHTErPAJIBHBIM I'PAHUYHBIM JaHHBIM. /lokazaHo cyiie-
CTBOBAHME W €INHCTBEHHOCTb CHJIBHOTO OOODIIEHHOTO perreHusi. Pe3ybTaT cBs3aH ¢ uaeHTuUKAIIER

TUAPABINIECCKAX CBOMCTB TPEHIMHOBATOU CpEbI.

KuaroueBsbie ciioBa: duibrpanusi, obparHas 3ajada, [ICeBI0NnapaboIndecKoe ypaBHeHne, CYIIeCTBOBA~

HUe, € IMHCTBEHHOCTD.
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