Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования «СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования «СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Хакасский технический институт – филиал ФГАОУ ВО
«Сибирский федеральный университет»
институт

«Электроэнергетика, машиностроение и автомобильный транспорт» кафедра

YTBEP.	ЖД	ĮАЮ
Заведую	ощі	ий кафедрой
		А.С. Торопов
подпись		инициалы, фамилия
«	>>	2023 г.

ЗАДАНИЕ НА ВЫПУСКНУЮ КВАЛИФИКАЦИОННУЮ РАБОТУ в виде бакалаврской работы

Студенту Белик Юлии Николаевне
(фамилия, имя, отчество) Группа <u>ЗХЭн 18-01(з-18)</u> Направление <u>13.03.02</u> «Электроэнергетика и электротехника»_
(код) (наименование)
Тема выпускной квалификационной работы Реконструкция системы электроснаб-
жения системы собственных нужд котельной МУП «Новый дом» г. Сорска
Утверждена приказом по институту № от22 г.
Руководитель ВКР Е. В. Платонова, доцент кафедры «ЭМиАТ»
(инициалы, фамилия, должность, ученое звание и место работы)
Исходные данные для ВКР данные по установленному электрооборудованию,
существующей системе электроснабжения котельной.
Перечень разделов выпускной квалификационной работы:
Введение
1 Характеристика объекта реконструкции
1.1 Характеристика действующей схемы электроснабжения объекта
1.2 Обоснование реконструкции системы электроснабжения системы собственных
нужд котельной
2 Расчет электрических нагрузок первого уровня
3 Расчет электрических нагрузок узлов электрической сети
4 Светотехнический расчет освещения
4.1 Расчет рабочего освещения
4.2 Расчет аварийного освещения
4.3 Мощность осветительной нагрузки
5 Выбор мощностей и количества трансформаторов. Проверка необходимости
компенсации реактивной мощности в сети 6 Выбор конструктивного исполнения электрической сети, марки проводов, кабе-
лей, способов их прокладки
7 Выбор защитных аппаратов
8 Выбор сечений кабелей
9 Электротехнический расчет электрического освещения. Выбор щитов освеще-
ния, кабелей и защитной аппаратуры
9.1 Электротехнический расчет рабочего освещения
9.2 Электротехнический расчет аварийного освещения
10 Расчет токов трехфазного и однофазного короткого замыкания и проверка
коммутационно-защитной аппаратуры
11 Анализ качества напряжения в цеховой сети
12 Расчет стоимости реконструкции системы электроснабжения котельной
Заключение
Список использованных источников
Перечень обязательных листов графической части:
1. План котельной с силовыми сетями
2. План котельной с осветительными сетями
3. Однолинейная схема электроснабжения
4. Анализ качества напряжения
Руководитель ВКР Е. В. Платонова
(подпись, инициалы и фамилия)
Задание принял к исполнению <u>Ю. Н. Белик</u> (подпись, инициалы и фамилия студента)
T

« 03 » мая 2023 г.

РЕФЕРАТ

Выпускная квалификационная работа по теме «Реконструкция системы электроснабжения системы собственных нужд котельной МУП «Новый дом» г. Сорска» содержит 66 страниц текстового документа, 25 использованных источников, 4 листа графического материала, приложений нет.

РЕКОНСТРУКЦИЯ, КОТЕЛЬНАЯ, СХЕМА ЭЛЕКТРОСНАБЖЕНИЯ, УРОВНИ ЭЛЕКТРОСНАБЖЕНИЯ, ЭЛЕКТРИЧЕСКИЕ НАГРУЗКИ, ОСВЕЩЕНИЕ, СИЛОВОЙ ТРАНСФОРМАТОР, АВТОМАТИЧЕСКИЙ ВЫКЛЮЧАТЕЛЬ, ПИТАЮЩИЙ ПРОВОДНИК, ТОК К.3.

Объект исследования – котельная МУП «Новый дом».

Предмет исследования – система электроснабжения котельной.

Целью бакалаврской работы является реконструкция действующей системы электроснабжения для повышения надежности электроснабжения потребителей котельной.

В ходе выполнения работы была дана характеристика объекта проектирования и действующей схемы его электроснабжения. На предварительном этапе были рассчитаны электрические нагрузки на первом уровне для силовых электроприемников, а также количество и мощность светильников, рассчитана нагрузка на втором уровне электроснабжения для узлов питания. На основании этих полученных результатов были выбраны актуальные марки трансформаторов соответствующей мощности и с учетом применения компенсирующих устройств для повышения коэффициента мощности и выполнения договорных условий по электроснабжению.

Для защиты узлов второго уровня и индивидуальных электроприемников выбраны защитные аппараты (автоматические выключатели), и далее, с ними согласованы сечения проводников (кабельные линии различного сечения). Для выбора щитов освещения, кабелей и защитной аппаратуры произведены электротехнические расчеты рабочего и аварийного освещения.

В конечном счете, произведен анализ качества напряжения в цеховой сети и расчет стоимости реконструкции системы электроснабжения котельной.

Практическая значимость исследований обусловлена тем, что предложенные виды электрооборудования и технические решения, касающиеся системы электроснабжения, могут быть использованы для реконструкции и проектирования котельных.

THE ABSTRACT

Final qualifying work on the topic "Reconstruction of the power supply system of the auxiliary needs system of the boiler house MUE "Novy Dom", Sorsk" contains 66 pages of a text document, 25 sources used, 4 sheets of graphic material, no application.

RECONSTRUCTION, BOILER ROOM, POWER SUPPLY SCHEME, POWER SUPPLY LEVELS, ELECTRIC LOADS, LIGHTING, POWER TRANSFORMER, AUTOMATIC SWITCH, SUPPLY CONDUCTOR, SHORT-CUT CURRENT

The object of the study is the boiler room of the municipal unitary enterprise "New House".

The subject of the study is the power supply system of the boiler house.

The purpose of the bachelor's work is the reconstruction of the existing power supply system to improve the reliability of power supply to consumers of the boiler house.

In the course of the work, a description of the design object and the current scheme of its power supply was given. At the preliminary stage, electrical loads were calculated at the first level for power receivers, as well as the number and power of lamps, the load at the second level of power supply for power units was calculated. Based on these results, the current brands of transformers of the appropriate power were selected, taking into account the use of compensating devices to increase the power factor and fulfill the contractual conditions for power supply.

To protect the nodes of the second level and individual electrical receivers, protective devices (circuit breakers) were selected, and further, the sections of conductors (cable lines of various sections) were coordinated with them. To select lighting panels, cables and protective equipment, electrical calculations of working and emergency lighting were made.

Ultimately, an analysis was made of the quality of the voltage in the workshop network and the calculation of the cost of reconstructing the power supply system of the boiler room.

The practical significance of the research is due to the fact that the proposed types of electrical equipment and technical solutions related to the power supply system can be used for the reconstruction and design of boiler houses.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	7
1 Характеристика объекта реконструкции	8
2 Расчет электрических нагрузок первого уровня	12
3 Расчет электрических нагрузок узлов электрической сети	16
4 Светотехнический расчет освещения	20
4.1 Расчет рабочего освещения	20
4.2 Расчет аварийного освещения	23
4.3 Мощность осветительной нагрузки	25
5 Выбор трансформаторов с учетом компенсации реактивной мощности	26
6 Выбор конструктивного исполнения электрической сети, марки проводов,	,
кабелей, способов их прокладки	32
7 Расчет защитных аппаратов	33
8 Выбор сечений кабелей	35
9 Электротехнический расчет электрического освещения. Выбор щитов	
освещения, кабелей и защитной аппаратуры	38
9.1 Электротехнический расчет рабочего освещения	38
9.2 Электротехнический расчет аварийного освещения	42
10 Расчет токов трехфазного и однофазного короткого замыкания и проверка	a
коммутационно-защитной аппаратуры по условиям устойчивости токам	
короткого замыкания	45
11 Анализ качества напряжения в цеховой сети	56
12 Расчет стоимости реконструкции системы электроснабжения котельной	61
ЗАКЛЮЧЕНИЕ	
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	65

ВВЕДЕНИЕ

Проблемы высокой энергоемкости экономики, больших энергетических издержек в жилищно-коммунальном хозяйстве и государственном секторе актуальны как для России в целом, так и для любого региона.

С появлением и развитием инженерных технологий, а также в соответствии с актами присоединения к электросетям перед специалистами возникает проблема должно и правильного оформления проекта реконструкции устаревшей электросети. Схемы подключения объекта и трассировка питающих линий должны быть рациональными и как можно меньшего метража проводов и кабелей. Одной из особенностей надежного питания одного из электропотребителей объекта является его запитка по персональной линии.

Объект исследования – котельная МУП «Новый дом».

Предмет исследования – система электроснабжения котельной.

Целью бакалаврской работы является реконструкция действующей системы электроснабжения для повышения надежности электроснабжения потребителей котельной.

Задачами данной ВКР являются:

- произвести расчет электрических нагрузок первичных групп электроприемников котельной;
- сделать светотехнический расчет освещения, в том числе аварийного и рабочего освещения котельной на различных уровнях и оценить в киловаттах мощность осветительной нагрузки с учетом применения светодиодных светильников;
- произвести расчет электрических нагрузок узлов электрической сети в соответствии с актуальной методикой расчета;
- выбрать мощности и количество трансформаторов; произвести проверку необходимости компенсации реактивной мощности в сети;
- выбрать конструктивное исполнение электрической сети, марки проводов, кабелей, способов их прокладки;
- произвести расчет защитных аппаратов электрических приемников и электрических сетей;
- выбрать сечения проводов и жил кабелей для подключения электроприемников;
- выполнить электротехнические расчеты рабочего и аварийного освещения для выбора щитов освещения, кабелей и защитной аппаратуры;
- произвести расчет токов трехфазного и однофазного короткого замыкания и проверить коммутационно-защитную аппаратуру по условиям устойчивости токам короткого замыкания;
- произвести анализ качества напряжения в реконструированной цеховой сети котельной;
- сделать расчет стоимости реконструкции системы электроснабжения котельной, учитывая стоимость кабельно-проводниковой продукции, распределительных пунктов, автоматических выключателей.

1 Характеристика объекта реконструкции

Индивидуальными источниками теплоснабжения оборудована часть индивидуальных жилых домов, однако большая часть застройки города Сорска подключена к централизованным источникам тепловой энергии. На территории города Сорка в сфере теплоснабжения осуществляет свою деятельность два предприятия — ООО «Сорский ГОК» и МУП «Новый дом». Которые занимаются производством, транспортировкой и реализацией тепловой энергии.

Дадим характеристику действующей схемы электроснабжения объекта и произведем обоснование реконструкции системы электроснабжения системы собственных нужд котельной.

Существующая схема электроснабжения городской котельной г. Сорска представлена на рисунке 1.1.

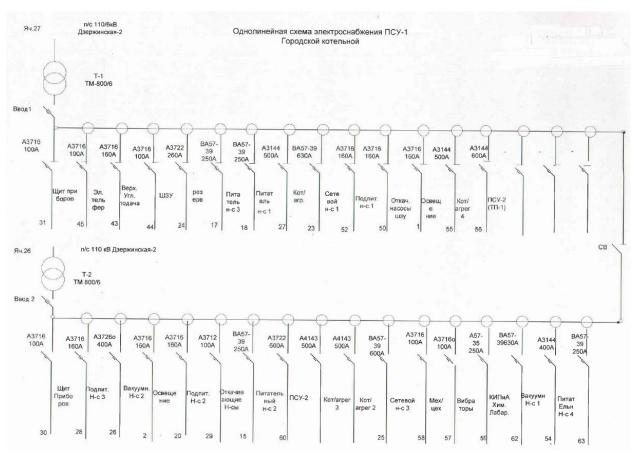
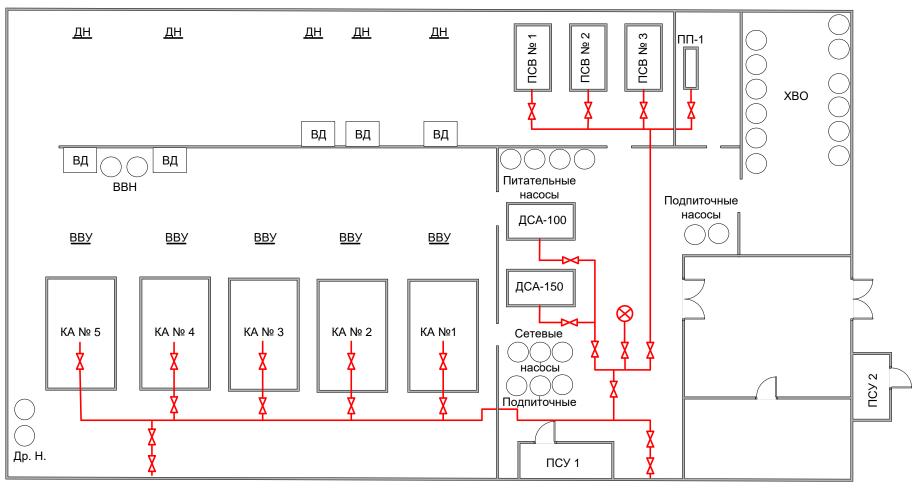


Рисунок 1.1 – Существующая схема электроснабжения городской котельной г. Сорска

Электроснабжение котельной осуществляется от яч. 26 и 27 отходящих фидеров подстанции 110/6 кВ Дзержинская-2. Питание осуществляется по проводам СИП 6 кВ. На подстанции котельной установлены два трансформатора типа ТМ-800/6, которые проработали более 30 лет и устарели. Кроме того, на отходящих линиях в качестве защитных аппаратов установлены морально устаревшие и ненадежные на сегодняшний день автоматические вы-

ключатели серии A, а именно A3712, A3716, A3722, A3726, A3144, A4143, BA57-39 (тип и цифровое обозначение аппарата зависит от потребляемого тока электроприемника и расположено в порядке возрастания мощности ЭП). Номинальный ток аппаратов и их уставок колеблется в пределах от 100 до 630 A. Они используются на подавляющем большинстве питающих линий для электроприемников котельной.

Ведомость существующих электрических нагрузок городской котельной МУП «Новый дом» представлена в таблице 1.1.


Таблица 1.1 – Ведомость существующих электрических нагрузок городской котельной МУП «Новый дом»

№ п/п	Электроприемник	Количество шт	Мощность одно-	Суммарная мощ-
			го ЭП, кВт	ность ЭП, кВт
1,2,3	Дымосос ДН-15,5	3	132	396
4	Дымосос ДН - 17	1	160	160
5,6,7,8	Вентилятор	4	75	300
9-12	ВВУ (вентилятор возврата уноса)	4	5,5	22
13,14	Вакуумные насосы	2	90	180
15,16	ШЗУ(шлакозолоудаление)	2	15	30
17,18	Дренажные насосы	2	15	30
19-22	Питательные насосы	4	75	300
23,24,25	Сетевые насосы	3	200	600
26-30	Подпиточные насосы	5	45	225
31,32	Конденсатные насосы	2	15	30
33	Дренажные насосы	1	15	15
	ИТОГО	33		2288

Кабельные линии в котельной проложены по конструкциям, коммуникациям и в полу, однако не отвечают требованиям надежности и пожарной безопасности, поскольку последние проверки (прозвоны, испытания) кабелей показали сопротивления их изоляции, близком к минимально допустимому.

Экономия энергетических ресурсов должна осуществляться путем перехода на энергосберегающие технологии производства; совершенствование энергетического оборудования; реконструкцию устаревшего оборудования; сокращение всех видов энергетических потерь, улучшение структуры производства.

Передача распределение и потребление выработанной электроэнергии на предприятиях должны производиться с высокой экономичностью и надежностью. Имеющейся мощности котлов достаточно для производства требуемого для г. Сорск количества теплоты в базовом режиме, однако, учитывая большой коэффициент неравномерности теплопотребления в течение суток (равный 5,65), предлагается включение в тепловую схему котельной еще одного котла КЕ-25-13с разбивкой котельной на два рабочих группы — три котла ДКВр-20-13 и два котла КЕ-25-13, с работой одной из групп, покрывающей нужды тепловой энергии города. Схема с установкой нового оборудования котельной представлена на рисунке 1.2.

КА № 1,2,3,4,5 – котлоагрегаты, ВВУ – вентилятор возврата уноса, ВД – вентилятор дутьевой, ДН – дымосос, ВВН – вакуумные насосы, ДР.Н – дренажные насосы. ПСВ 1,2,3 – подогреватели сетевой воды, ДСА 100, 150 – деаэраторы, ХВО – химводоотчистка, ПСУ 1, 2 – пункт силового управления

Рисунок 1.2 – Схема с установкой нового оборудования котельной

Резюмируя вышесказанное, можно сделать вывод о том, что всю систему электроснабжения собственных нужд котельной нужно модернизировать, заменять существующее электрооборудование на современное и отвечающее реалиям действующих стандартов.

Кроме того, электрические нагрузки котельной существенно выросли (примерно на 500 кВт) за счет установки нового высокопроизводительного и энергоэффективного оборудования (дымососов, вентиляторов, насосов, устройств шлакозолоудаления, транспортера). Ведомость электрических нагрузок после реконструкции городской котельной МУП «Новый дом» представлена в таблице 1.2.

Таблица 1.2 – Ведомость электрических нагрузок после реконструкции городской котельной МУП «Новый дом»

№ п/п	Электроприемник	Количество шт	Мощность одного	Суммарная мощ-
			ЭП,	ность ЭП, кВт
			кВт	
1,2,3	Дымосос ДН-15,5	3	132	396
4,5	Дымосос ДН - 17	2	160	320
6-10	Вентилятор	5	75	375
11-15	ВВУ (вентилятор возврата уноса)	5	5,5	27,5
16,17	Вакуумные насосы	2	90	180
18,19	ШЗУ(шлакозолоудаление)	2	15	30
20,21	Дренажные насосы	2	15	30
22-25	Питательные насосы	4	75	300
26-29	Сетевые насосы	4	200	800
30-34	Подпиточные насосы	5	45	225
35,36	Конденсатные насосы	2	15	30
37	Дренажные насосы	1	15	15
38	Транспортер	1	15	15
	ИТОГО	38		2743,5

По режиму работы электроприёмники работают в продолжительном режиме с постоянной или мало изменяющейся нагрузкой работают двигатели вентиляторов, насосы, транспортеры и другое оборудование.

По режиму работы электроприёмники работают в продолжительном режиме с постоянной или мало изменяющейся нагрузкой работают двигатели вентиляторов, насосы, транспортеры и другое оборудование.

По мощности и напряжению электроприемники относятся к потребителям малой, средней и большой мощности (5,5-15 кВт, 45-90 кВт, 132-200 кВт), питание которых возможно и экономически целесообразно на напряжении 380 В. По роду тока электроприёмники относятся к потребителям, работающим от сети переменного тока промышленной частоты (50 Гц). Все они трехфазные. Все электроприемники котельной рассчитаны на напряжение 380 В. По категории надежности электроприемники городской котельной относятся к ІІ категории.

Стоимость электроэнергии: высокое напряжение 2,62 кВт.час.; среднее напряжение 3,71 кВт.час. Предприятие работает в четыре смены.

2 Расчет электрических нагрузок первого уровня

Для осуществления данного расчета сформируем первичные группы трехфазных электроприемников. В качестве исходных данных для расчетов будем использовать технические характеристики электроприемников, представленные в таблице 2.1.

Таблица 2.1 – Технические характеристики электроприемников котельной

		D	пр				Число
No	Наименование ЭП	Р _{ном} кВт	ПВ, %	Ки	cosφ	tgφ	число фаз
1	2	3	4	5	6	7	φ <i>as</i> 8
1	Дымосос	132	100	0,65	0,8	0,75	3
2	Лымосос	132	100	0,65	0,8	0,75	3
3	Дымосос	132	100	0,65	0,8	0,75	3
4	Дымосос	160	100	0,65	0,8	0,75	3
5	Дымосос	160	100	0,65	0,8	0,75	3
6	Вентилятор	75	100	0,6	0,8	0,75	3
7	Вентилятор	75	100	0,6	0,8	0,75	3
8	Вентилятор	75	100	0,6	0,8	0,75	3
9	Вентилятор	75	100	0,6	0,8	0,75	3
10	Вентилятор	75	100	0,6	0,8	0,75	3
11	ВВУ	5,5	100	0,6	0,8	0,75	3
12	ВВУ	5,5	100	0,6	0,8	0,75	3
13	ВВУ	5,5	100	0,6	0,8	0,75	3
14	ВВУ	5,5	100	0,6	0,8	0,75	3
15	ВВУ	5,5	40	0,6	0,8	0,75	3
16	Вакуумный насос	90	100	0,95	0,85	0,62	3
17	Вакуумный насос	90	100	0,95	0,85	0,62	3
18	ШЗУ	15	100	0,75	0,8	0,75	3
19	ШЗУ	15	100	0,75	0,8	0,75	3
20	Дренажный насос	15	100	0,75	0,8	0,75	3
21	Дренажный насос	15	100	0,75	0,8	0,75	3
22	Питательный насос	75	40	0,75	0,8	0,75	3
23	Питательный насос	75	100	0,75	0,8	0,75	3
24	Питательный насос	75	100	0,75	0,8	0,75	3
25	Питательный насос	75	100	0,75	0,8	0,75	3
26	Сетевой насос	200	100	0,75	0,8	0,75	3
27	Сетевой насос	200	100	0,75	0,8	0,75	3
28	Сетевой насос	200	100	0,75	0,8	0,75	3
29	Сетевой насос	200	100	0,75	0,8	0,75	3
30	Подпиточный насос	45	100	0,75	0,8	0,75	3
31	Подпиточный насос	45	100	0,75	0,8	0,75	3
32	Подпиточный насос	45	100	0,75	0,8	0,75	3
33	Подпиточный насос	45	100	0,75	0,8	0,75	3
34	Подпиточный насос	45	100	0,75	0,8	0,75	3
35	Конденсатный насос	15	100	0,75	0,8	0,75	3
36	Конденсатный насос	15	100	0,75	0,8	0,75	3
37	Дренажный насос	15	100	0,75	0,8	0,75	3
38	Транспортер	15	100	0,6	0,7	1,02	3
	ИТОГО	2743,5					

Для электроустановок, работающих в длительном режиме [5, 6]:

$$P_{\rm p1} = P_{\rm HOM}, \tag{2.1}$$

Другие необходимые для вычисления нагрузки величины:

$$Q_{\rm p1} = P_{\rm p1} t g \varphi = P_{\rm p1} t g(\arccos(\cos\varphi)), \tag{2.2}$$

$$S_{\rm p1} = \sqrt{P_{\rm p1}^2 + Q_{\rm p1}^2} \,\,\,\,(2.3)$$

$$I_p = \frac{S_{p1}}{\sqrt{3} U_{HOM}},\tag{2.4}$$

$$I_{\Pi} = K_{\Pi} I_{\mathsf{p}},\tag{2.5}$$

Пример расчета для ЭП №1 – дымосос:

$$P_{p1} = 132 \text{ KBT};$$

$$Q_{p1} = 132 \cdot \text{tg}(\arccos(0,8)) = 99 \text{ KBap};$$

$$S_{p1} = \sqrt{132^2 + 99^2} = 165 \text{ KBA}.$$

$$I_{p1} = \frac{165 \cdot 10^3}{\sqrt{3} \cdot 380} = 250,69 \text{ A};$$

$$I_{II} = K_{II} \cdot I_{p1} = 5 \cdot 250,69 = 1253,45 \text{ A}.$$

Для прочих ЭП котельной расчет нагрузок котельной аналогичен продемонстрированному примеру выше (таблица 2.2).

Таблица 2.2 – Расчет нагрузок котельной

№	Наименование ЭП	Р _{ном} кВт	ПВ, %	Ки	cosφ	tgφ	Р _{p1} , кВт	Q _{p1} , кВар	S _{p1} , кВА	I _p , A	Іпуск, А
1	2	3	4	5	6	7	8	9	10	11	12
1	Дымосос	132	100	0,65	0,8	0,75	132	99	165	250,69	1253,45
2	Дымосос	132	100	0,65	0,8	0,75	132	99	165	250,69	1253,45
3	Дымосос	132	100	0,65	0,8	0,75	132	99	165	250,69	1253,45
4	Дымосос	160	100	0,65	0,8	0,75	160	120	200	303,87	1519,35
5	Дымосос	160	100	0,65	0,8	0,75	160	120	200	303,87	1519,35
6	Вентилятор	75	100	0,6	0,8	0,75	75	56,25	93,75	142,44	712,20
7	Вентилятор	75	100	0,6	0,8	0,75	75	56,25	93,75	142,44	712,20
8	Вентилятор	75	100	0,6	0,8	0,75	75	56,25	93,75	142,44	712,20
9	Вентилятор	75	100	0,6	0,8	0,75	75	56,25	93,75	142,44	712,20
10	Вентилятор	75	100	0,6	0,8	0,75	75	56,25	93,75	142,44	712,20
11	ВВУ	5,5	100	0,6	0,8	0,75	5,5	4,13	6,88	10,45	52,25
12	ВВУ	5,5	100	0,6	0,8	0,75	5,5	4,13	6,88	10,45	52,25
13	ВВУ	5,5	100	0,6	0,8	0,75	5,5	4,13	6,88	10,45	52,25
14	ВВУ	5,5	100	0,6	0,8	0,75	5,5	4,13	6,88	10,45	52,25
15	ВВУ	5,5	40	0,6	0,8	0,75	3,48	2,61	4,35	6,61	33,05
16	Вакуумный насос	90	100	0,95	0,85	0,62	90	55,8	105,89	160,87	804,35
17	Вакуумный насос	90	100	0,95	0,85	0,62	90	55,8	105,89	160,87	804,35
18	ШЗУ	15	100	0,75	0,8	0,75	15	11,25	18,75	28,49	142,45
19	ШЗУ	15	100	0,75	0,8	0,75	15	11,25	18,75	28,49	142,45
20	Дренажный насос	15	100	0,75	0,8	0,75	15	11,25	18,75	28,49	142,45
21	Дренажный насос	15	100	0,75	0,8	0,75	15	11,25	18,75	28,49	142,45
22	Питательный насос	75	40	0,75	0,8	0,75	47,43	35,57	59,29	90,08	450,40
23	Питательный насос	75	100	0,75	0,8	0,75	75	56,25	93,75	142,44	712,20
24	Питательный насос	75	100	0,75	0,8	0,75	75	56,25	93,75	142,44	712,20
25	Питательный насос	75	100	0,75	0,8	0,75	75	56,25	93,75	142,44	712,20
26	Сетевой насос	200	100	0,75	0,8	0,75	200	150	250	379,84	1899,20
27	Сетевой насос	200	100	0,75	0,8	0,75	200	150	250	379,84	1899,20
28	Сетевой насос	200	100	0,75	0,8	0,75	200	150	250	379,84	1899,20
29	Сетевой насос	200	100	0,75	0,8	0,75	200	150	250	379,84	1899,20
30	Подпиточный насос	45	100	0,75	0,8	0,75	45	33,75	56,25	85,46	427,30
31	Подпиточный насос	45	100	0,75	0,8	0,75	45	33,75	56,25	85,46	427,30
32	Подпиточный насос	45	100	0,75	0,8	0,75	45	33,75	56,25	85,46	427,30
33	Подпиточный насос	45	100	0,75	0,8	0,75	45	33,75	56,25	85,46	427,30
34	Подпиточный насос	45	100	0,75	0,8	0,75	45	33,75	56,25	85,46	427,30
35	Конденсатный насос	15	100	0,75	0,8	0,75	15	11,25	18,75	28,49	142,45
36	Конденсатный насос	15	100	0,75	0,8	0,75	15	11,25	18,75	28,49	142,45
37	Дренажный насос	15	100	0,75	0,8	0,75	15	11,25	18,75	28,49	142,45
38	Транспортер	15	100	0,6	0,7	1,02	15	15,3	21,43	32,56	162,80

Расстановка вновь введенного оборудования на плане котельной показана на рисунке 2.1.



Рисунок 2.1 — Расстановка вновь введенного оборудования на плане котельной

3 Расчет электрических нагрузок узлов электрической сети

В соответствии с [9] произведем все необходимые расчеты для узлов второго уровня и для котельной в целом (таблицы 3.1-3.2).

При расчетах электрических нагрузок используются специальные таблицы [9]. Эта таблица является сводной как при подсчете силовых нагрузок по отдельным узлам сети, так и на шинах ТП. На данном этапе проектирования необходимо определить нагрузку на шинах вводного распределительного устройства РУ-0,4 кВ КТП котельной.

В графу 1 записываем наименование ЭП.

В графу 2 записываем количество ЭП.

В графу 4 записываем номинальную мощность ЭП.

В графу 5 записываем сумму номинальных активных мощностей ЭП

В графе 6 и 7 записываются коэффициенты использования и коэффициенты мощности для ЭП.

В графу 8 и 9 записываются построчно величины $K_{\rm u} P_{\rm H}$ и $K_{\rm u} P_{\rm H}$ tg φ . В итоговой строке определяются суммы этих величин

$$K_{\mu} = \sum K_{\mu} P_{H} \div \sum P_{H} \tag{3.1}$$

В графу 11 при значительном числе ЭП n_9 можем определить по упрощенной формуле

$$n_{\rm a} = 2\sum_{\rm H} P_{\rm H} \div p_{\rm H,Makc} \tag{3.2}$$

Расчетная активная мощность подключенных к узлу питания ЭП напряжением до 1 кВ графа 13 определяется по формуле

$$P_{p} = K_{H} \sum K_{H} P_{H}$$
 (3.3)

Для магистральных шинопроводов и на шинах цеховых трансформаторных подстанция, а так же при определении реактивной мощности в целом по цеху, корпусу, предприятию определяем по формуле (графа 14)

$$Q_p = K_p \sum K_{\text{\tiny H}} P_{\text{\tiny H}} \operatorname{tg} \varphi = P_p \operatorname{tg} \varphi \tag{3.4}$$

Значение токовой расчетной нагрузки, по которой выбирается сечение линии по допустимому нагреву, определяется по выражению

$$I_p = S_p \div \sqrt{3}U_{\rm H} \tag{3.5}$$

где
$$S_p = \sqrt{{P_p}^2 + {Q_p}^2}$$
 полная расчетная мощность, кВа (3.6)

Применяем распределение электроэнергии по котельной с помощью распределительных силовых пунктов, шинопроводы в данной среде прокладывать нецелесообразно. На рисунке 3.1 представлено данное распределение (с указанием силовых сборок, ЭП, трасс кабельных линий).

Таблица 3.1 – Расчет электрической нагрузки по котельной

		Ис	ходные да	анные							ű	250				
	по задани		огов		HO 00	равочны	M TON	Dag	четные велі		Эффективное число Э.П., п.	Коэффициент расчетной нагрузки Кр	Door	четная мощі	IO OTT	Α,
		Ξ.		нальная вленная)	110 C11	равочны ным	м дан-	тасчетные величины				асче Кр	rac	четная мощі	юсть	Расчетный ток Ір,
		эЭ.П.	мощно	сть, кВт							чис	нт р зки				йто
На	именование ЭП	Количество	Π p ₊	Эбщая Р₁=пр₁	Коэффициент использова- ичя Ки			7.	tgo, кВар		ное	цие	H	ġ.	∢	THIS
		жи	<u>و</u>	н Р.	риц пъзс	cosφ	tgφ	н, кВт	žφ, 1	np²,	СТИВ	рфи	, ĸBr	кВар	ĸBA	сче
		Koı	ПЄ олонио	оща	спо.			К"Р",	K"P" tg	=	афф	Хоэс	Pp,	Qp,	Sp,	Pa
	1	2	3	4	∑ ¤		<u> </u>	7	8 <u>K</u>	9	10	11	12	13	14	15
1	Дымосос	1	132	132	0,65	0,8	0,75	85,8	64,35	17424	10	11	12	13	14	13
2	Дымосос	1	132	132	0,65	0,8	0,75	85,8	64,35	17424						
3	Дымосос	1	132	132	0,65	0,8	0,75	85,8	64,35	17424						
5	Дымосос Дымосос	1	160 160	160 160	0,65 0,65	0,8	0,75 0,75	104 104	78 78	25600 25600						
6	Вентилятор	1	75	75	0,6	0,8	0,75	45	33,75	5625						
7	Вентилятор	1	75	75	0,6	0,8	0,75	45	33,75	5625						
8	Вентилятор Вентилятор	1	75 75	75 75	0,6 0,6	0,8	0,75 0,75	45 45	33,75 33,75	5625 5625						
10	Вентилятор	1	75	75	0,6	0,8	0,75	45	33,75	5625						
11	ВВУ	1	5,5	5,5	0,6	0,8	0,75	3,3	2,48	30,25						
12	BBY BBY	1	5,5 5,5	5,5 5,5	0,6	0,8	0,75	3,3	2,48	30,25 30,25						
13	ВВУ	1	5,5	5,5	0,6	0,8	0,75	3,3	2,48	30,25						
15	ВВУ	1	5,5	5,5	0,6	0,8	0,75	3,3	2,48	30,25						
16	Вакуумный насос	1	90	90	0,95	0,85	0,62	85,5	53,01	8100						
17	Вакуумный насос	1	90	90	0,95	0,85	0,62	85,5	53,01	8100						
18	ШЗУ	1	15	15	0,75	0,8	0,75	11,25	8,44	225						
19	ШЗУ	1	15	15	0,75	0,8	0,75	11,25	8,44	225						
20	Дренажный насос	1	15	15	0,75	0,8	0,75	11,25	8,44	225						
21	Дренажный насос	1	15	15	0,75	0,8	0,75	11,25	8,44	225						
22	Питательный насос	1	75	75	0,75	0,8	0,75	56,25	42,19	5625						
23	Питательный насос Питательный	1	75	75	0,75	0,8	0,75	56,25	42,19	5625						
24	насос Питательный	1	75	75	0,75	0,8	0,75	56,25	42,19	5625						
25	насос	1	75	75	0,75	0,8	0,75	56,25	42,19	5625						
26	Сетевой насос	1	200	200	0,75	0,8	0,75	150	112,5	40000 40000						
27	Сетевой насос Сетевой насос	1	200	200	0,75 0,75	0,8	0,75 0,75	150 150	112,5 112,5	40000						
29	Сетевой насос	1	200	200	0,75	0,8	0,75	150	112,5	40000						
30	Подпиточный насос	1	45	45	0,75	0,8	0,75	33,75	25,31	2025						
31	Подпиточный насос	1	45	45	0,75	0,8	0,75	33,75	25,31	2025						
32	Подпиточный насос	1	45	45	0,75	0,8	0,75	33,75	25,31	2025						
33	Подпиточный насос	1	45	45	0,75	0,8	0,75	33,75	25,31	2025						
34	Подпиточный насос	1	45	45	0,75	0,8	0,75	33,75	25,31	2025						
35	Конденсатный насос Конденсатный	1	15	15	0,75	0,8	0,75	11,25	8,44	225						
36	насос Дренажный	1	15	15	0,75	0,8	0,75	11,25	8,44	225						
37	насос	1	15	15	0,75	0,8	0,75	11,25	8,44	225						
38	Транспортер	1	15	15	0,6	0,7	1,02	9	9,18	225						
	ИТОГО СИЛОВАЯ НАГРУЗКА	38		2743,5	0,71	0,8	0,74	1947,89	1449,79	342373,25	22	0,9	1753,1	1297,29	2180,9	3313,53
	ОСВЕЩЕНИЕ												5,7	1,16	5,82	8,84
	ВСЕГО		l	<u> </u>			<u> </u>				l	l	1758,8	1298,45	2186,17	3321,54

Мощные электроприемники, мощностью 132, 160 и 200 кВт запитываем напрямую от шин КТП, остальные объединяем в силовые сборки второго уровня.

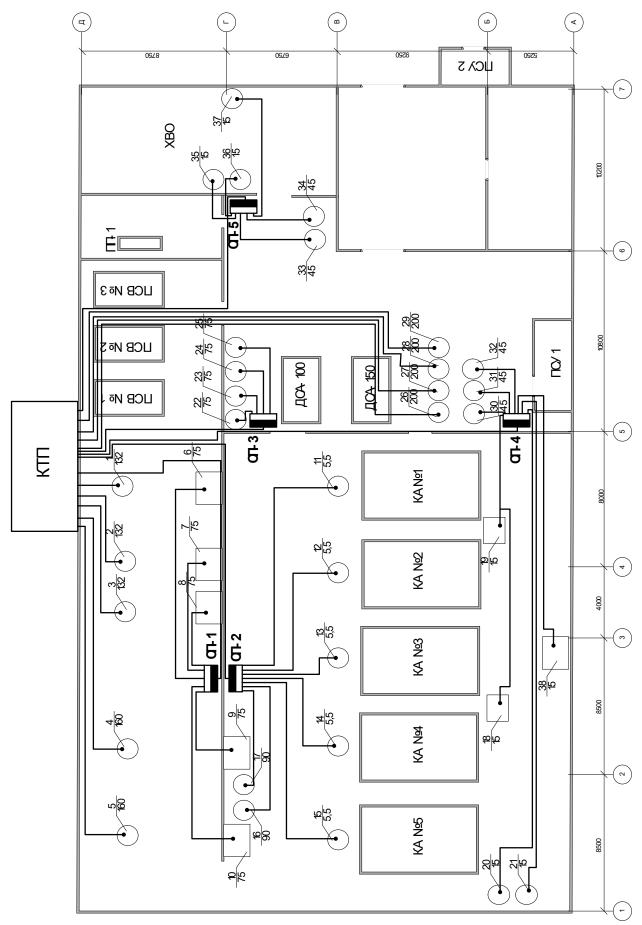


Рисунок 3.1 — Распределение электроэнергии по котельной (с указанием силовых сборок, ЭП, трасс кабельных линий)

Таблица 3.2 – Расчет нагрузок по силовым сборкам второго уровня

	Исходные данные															
	по задан	нию тех	нологов								Эффективное число Э.П., п _э	ой				
			Номинальная	я, (уста-	по спра	по справочным данным				ичины	Э.П	Коэффициент расчетной нагрузки Кр	Расч	Расчетный ток Ір, А		
		E	новленная) мощность,		поспра	. ,,					OILS	асч Кр				кI
		.e	кВт								МР	T P				, T
Цог	менование ЭП	Количество Э.П.	рн	ьф	нт ия,				ар		10e	рициент расче нагрузки Кр				HBI
114	іменование ЭП	эь	Одного ЭП	Общая Р"=пр	Коэффициент использования, Ки			Ψ	К"Р" tgφ, кВар	_	HB1	риц нат	B _T	Ор, кВар	кВА	Чет
		HE	2	яР	фиі 530	cosφ	tgφ	К"Р", кВт	8€,	np²,	ekt	фę	Рр, кВт	Α.	고	Pac
		ž	ОЩ	E E	фе			K.F.	P _H t	_	фф	Κo	Pp	Q	Sp,	
			Ŏ	Ö	Ксисп				K,		e e					
	1	2	3	4	5	(5	7	8	9	10	11	12	13	14	15
	СП-1															
6	Вентилятор	1	75	75	0,6	0,8	0,75	45	33,75	5625						
7	Вентилятор	1	75	75	0,6	0,8	0,75	45	33,75	5625						
8	Вентилятор	1	75	75	0,6	0,8	0,75	45	33,75	5625						
9	Вентилятор	1	75	75	0,6	0,8	0,75	45	33,75	5625						
10	Вентилятор	1	75	75	0,6	0,8	0,75	45	33,75	5625						
	ИТОГО	5		375	0,6	0,8	0,75	225	168,75	28125	5	1,08	243	200,48	315,03	478,64
	СП-2															
	Вакуумный						0,62	85,5	53,01	8100						
16	насос	1	90	90	0,95	0,85	0,02	0,5	55,01	0100		<u> </u>			<u></u>	
	Вакуумный						0,62	85,5	53,01	8100						
17	насос	1	90	90	0,95	0,85										
11	ВВУ	1	5,5	5,5	0,6	0,8	0,75	3,3	2,48	30,25						
12	ВВУ	1	5,5	5,5	0,6	0,8	0,75	3,3	2,48	30,25						
13	ВВУ	1	5,5	5,5	0,6	0,8	0,75	3,3	2,48	30,25						
14	ВВУ	1	5,5	5,5	0,6	0,8	0,75	3,3	2,48	30,25						
15	ВВУ	1	5,5	5,5	0,6	0,8	0,75	3,3	2,48	30,25						
	ИТОГО	7		207,5	0,9	0,85	0,63	187,5	118,42	16351,25	3	1	187,5	129,94	228,12	346,59
	СП-3															
	Питательный						0,75	56,25	42,19	5625						
22	насос	1	75	75	0,75	0,8	0,75	30,23	42,17	3023						
	Питательный						0,75	56,25	42,19	5625						
23	насос	1	75	75	0,75	0,8	0,75	50,25	.2,17	5025						
	Питательный						0,75	56,25	42,19	5625						
24	насос	1	75	75	0,75	0,8	*,	,	,	**						
	Питательный						0,75	56,25	42,19	5625						
25	насос	1	75	75	0,75	0,8										
	итого	4		300	0,75	0,8	0,75	225	168,76	22500	4	1,03	231,75	191,19	300,44	456,47
	СП-4															
20	Подпиточный	,	45	45	0.75	0.0	0,75	33,75	25,31	2025						
30	насос	1	45	45	0,75	0,8										
31	Подпиточный насос	1	45	45	0,75	0,8	0,75	33,75	25,31	2025						
31	Подпиточный	1	43	43	0,73	0,8										
32	11одпиточныи насос	1	45	45	0,75	0,8	0,75	33,75	25,31	2025						
32	Дренажный	1	73	43	0,73	0,0	-	-		-	-	-		-	1	1
20	дренажныи насос	1	15	15	0,75	0,8	0,75	11,25	8,44	225						
20	Дренажный	-		1.7	5,75	0,0										
21	насос	1	15	15	0,75	0,8	0,75	11,25	8,44	225						
38	Транспортер	1	15	15	0,6	0,7	1,02	9	9,18	225					1	1
18	ШЗУ	1	15	15	0,75	0,8	0,75	11,25	8,44	225						
19	ШЗУ	1	15	15	0,75	0,8	0,75	11,25	8,44	225					1	1
	ИТОГО	8	-	210	0,74	0,79	0,77	155,25	118,87	7200	6	1,02	158,36	134,13	207,53	315,31
	CII-5				.,	.,	.,	,==	.,			,	,	,	. ,	,
	Подпиточный			1			0.55	22.77	25.21	2027	1	1		1	1	
33	насос	1	45	45	0,75	0,8	0,75	33,75	25,31	2025						
	Подпиточный						0.77	22.75	25.21	2027						
34	насос	1	45	45	0,75	0,8	0,75	33,75	25,31	2025						
	Конденсатный						0.75	11.25	0.44	225						
35	насос	1	15	15	0,75	0,8	0,75	11,25	8,44	223	<u> </u>	<u> </u>		<u> </u>	<u></u>	<u> </u>
	Конденсатный						0,75	11,25	8,44	225						
36	насос	1	15	15	0,75	0,8	0,73	11,23	0,44	223	<u> </u>	<u></u>		<u> </u>	<u> </u>	<u> </u>
	Дренажный						0,75	11,25	8,44	225						
37	насос	1	15	15	0,75	0,8			, i							
	ИТОГО	5		135	0,75	0,8	0,75	101,25	75,94	4725	4	1,03	104,29	86,04	135,2	205,42

4 Светотехнический расчет освещения

4.1 Расчет рабочего освещения

Светотехнический расчет осветительной сети котельной выполняется методом коэффициента использования светового потока.

Размещение светильников определяется размерами, указанными на рисунке 4.1. Здесь h_c — высота подвески светильников, м; h_p — высота рабочей поверхности, м; h_u — высота подвеса светильников над полом, м; h — расчетная высота, м; H — высота здания, м; l_a — расстояние от стенки до светильников в поперечной оси, м; l_b — расстояние от стенки до светильников в продольной оси, м; L_a — расстояние между светильниками в продольной оси, м; L_b — расстояние между светильниками в поперечной оси, м; L_b — длина помещения, м; E_b — ширина помещения, м.

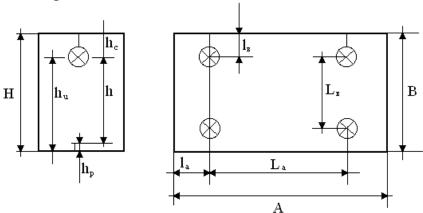


Рисунок 4.1 – Размещение светильников

Согласно ПУЭ [7] высота рабочей поверхности h_p = от 0,8 до 1 м (принимаем 0,8 м), а для подвесных светильников общего освещения рекомендуется иметь свесы длиной не более 1,5 м [7, п.6.6.4].

Размеры котельной: $L_{II} \times B_{II} \times H_{II} = 50 \times 30 \times 10 M$.

Высота расчётной поверхности $h_P = 0.8\,\mathrm{M}$, расстояние от перекрытия до светильника $h_C = 1,0\,\mathrm{M}$.

Расстояние от светильников до рабочей поверхности (расчетная высота):

$$h = H_{_{\mathcal{U}}} - h_{_{C}} - h_{_{P}} = 10 - 1, 0 - 0, 8 = 8, 2 \,\text{m}.$$

 $\lambda_{\,_{9}}=$ $\it L$ / $\it h$ $\,$ – расстояние между светильниками к расчётной высоте.

Принимаем $\lambda_9 = 1,0$ (из диапазона $0,9 \div 1$) [12, таблица 10.4] для светильников с глубокой силой света. Тогда расстояние между светильниками в ряду:

$$L_{_A} \,=\, \lambda_{_{\, 9}} \,\cdot h \,=\, 1\,.0\,\cdot 8\,,\, 2\,=\, 8\,,\, 2\, \, m\,.$$

В ряду можно разместить n=6 светильников, тогда расстояние от крайних светильников до стены:

$$2 \cdot 1_{\Lambda} = 50 - (6 - 1) \cdot 8, 2 = 9 \Rightarrow 1_{\Lambda} = 4, 5 \text{ M}.$$

Принимаем число рядов m=5 , тогда $L_{_{\rm B}}=7$ м и расстояние от крайних светильников до стены:

$$2 \cdot 1_{_{\rm B}} = 30 - (5 - 1) \cdot 7 = 2 \Rightarrow 1_{_{\rm B}} = 1 \text{ M}.$$

В итоге общее число светильников в цехе

$$N = n \cdot m = 6 \cdot 5 = 30 \text{ m} \text{ T}.$$

Отношение

$$\frac{L_A}{L_B} = \frac{8,2}{7} = 1,17 < 1,5.$$

Размещение светильников рабочего освещения представлено на рисунке 4.2.

Расчет освещения выполняется методом коэффициента использования светового потока, по формуле [12, с. 261]:

$$\Phi_{p} = \frac{E_{H} \cdot K_{3A\Pi} \cdot F \cdot z}{N \cdot \eta}, \qquad (4.1)$$

где в н - норма освещенности;

 $K_{3A\Pi} = 1,5 - коэффициент запаса [10, таблица 4.4],$

F – площадь освещаемой поверхности, M^2 ,

 $z = E_{CP}/E_H - коэффициент минимальной освещенности,$

N – число светильников,

 η — коэффициент использования светового потока источника света, доли единиц.

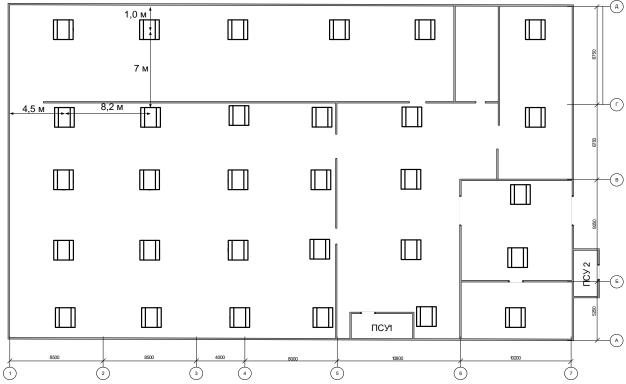


Рисунок 4.2 – Размещение светильников рабочего освещения

Коэффициент использования светового потока является функцией индекса помещения:

$$i = \frac{L_{ii} \cdot B_{ii}}{h \cdot (L_{ii} + B_{ii})}.$$

$$i = \frac{50 \cdot 30}{8, 2 \cdot (50 + 30)} = 2, 2.$$
(4.2)

Тогда коэффициент использования светового потока по [10, таблица 4.9, с.134] составит $\eta = 0.63$.

Норма освещенности принимается по таблице 1 (СП 52.13330.2016) для производственных помещений при системе общего освещения:

 $_{\rm E_{\, H}} = 200$ лк (при работах средней точности).

Тогда по формуле (4.1) световой поток одной лампы:

$$\Phi_{P} = \frac{200 \cdot 1, 5 \cdot (50 \cdot 30) \cdot 1, 15}{30 \cdot 0, 65} = 26539 \text{ Лм}.$$

По величине Φ_p в [11, таблица 14.17, с. 373] подбираем светодиодный промышленный светильник KEDR CБУ 200 Вт, 5000К, КСС тип Γ мощностью 200 Вт со световым потоком Φ_{HOM} = 26700 лм.

Отклонение светового потока определяется по формуле:

$$\Delta \Phi = \frac{\Phi_{\text{HOM}} - \Phi_{\text{P}}}{\Phi_{\text{P}}} \cdot 100\% = \frac{26700 - 26539}{26539} \cdot 100\% = 0,6\%.$$

различие между Φ_{HOM} и Φ_p находится в допустимых пределах -10...+10%.

4.2 Расчет аварийного освещения

Расчет аварийного освещения производим по аналогии с расчетом рабочего освещения.

Высота подвеса светильников аварийного освещения (расчетная высота):

$$h = H_{_{II}} - h_{_{C}} - h_{_{P}} = 10 - 1, 0 - 0, 8 = 8, 2 \,\text{M}.$$

Принимаем $\lambda_9 = 1,0$ для светильников с глубокой силой света.

$$L_A = \lambda_3 \cdot h = 1, 0 \cdot 8, 2 = 8, 2 M.$$

В ряду можно разместить n=6 светильников, тогда расстояние от крайних светильников до стены:

$$2 \cdot 1_A = 50 - (6 - 1) \cdot 8, 2 = 9 \Rightarrow 1_A = 4, 5 \text{ m}.$$

Принимаем число рядов m=5 , тогда $L_{_{\rm B}}=8,2_{_{\rm M}}$ и расстояние от крайних светильников до стены:

$$2 \cdot l_{_B} = 30 - (5 - 1) \cdot 6, 5 = 4 \Rightarrow l_{_B} = 2 \text{ m}.$$

В итоге общее число светильников в цехе

$$N = n \cdot m = 6 \cdot 5 = 30 \text{ m} \text{ T}.$$

Отношение

$$\frac{L_{A}}{L_{B}} = \frac{8,2}{6,5} = 1,26 < 1,5 .$$

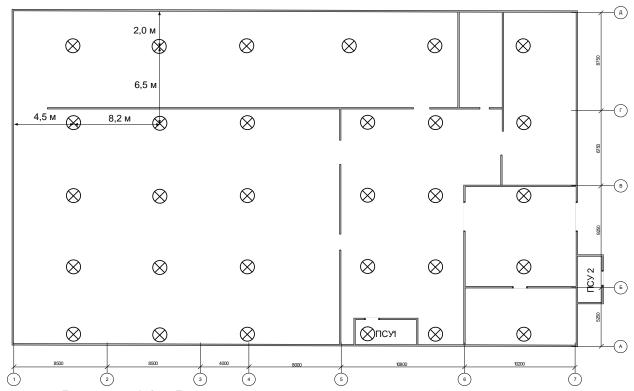


Рисунок 4.3 – Размещение светильников аварийного освещения

Коэффициент использования светового потока по формуле (4.2):

$$i = \frac{50 \cdot 30}{8, 2 \cdot (50 + 30)} = 2, 2.$$

Тогда коэффициент использования светового потока по [10] составит $\eta = 0,65$.

Норма освещенности принимается в соответствии с [10, с. 84] и составляет 5% от нормированной освещенности рабочего освещения:

$$_{\rm E_{\, H}}$$
 = 0,05 · 200 = 10 лк.

Коэффициент запаса для светильников аварийного освещения: $K_{3A\Pi}=1,5$ [10, таблица 4.4].

По формуле (4.1) световой поток одной лампы:

$$\Phi_{_{P}} = \frac{10 \cdot 1, 5 \cdot \left(50 \cdot 30\right) \cdot 1, 15}{30 \cdot 0, 65} = 1327 \ \text{Лм}.$$

По величине Φ_p подбираем светодиодный светильник типа RAMO 13 BL D45, мощностью 15 Bt со световым потоком Φ_{HOM} = 1400 лм.

Отклонение светового потока:

$$\Delta \Phi = \frac{1400 - 1327}{1327} \cdot 100\% = 5,5\%.$$

различие между Φ_{HOM} и Φ_{p} находится в допустимых пределах - 10...+10% .

4.3 Мощность осветительной нагрузки

Мощность освещения определяется по формуле: активная мощность освещения:

$$P_{\text{ocb}} = N P_{\text{hom}} K_c K_{\text{npa}}, \tag{4.4}$$

N — количество ламп; $P_{\text{ном}}$ — номинальная мощность светильника, кВт; K_c — коэффициент спроса, K_c = 0,95 — для производственных зданий, состоящих из отдельных крупных пролетов [12, c. 271];

 $K_{пра}$ — коэффициент пускорегулирующей аппаратуры. реактивная нагрузка осветительной сети:

$$Q_{\text{OCB}} = P_{\text{OCB}} tg\phi, \tag{4.5}$$

где коэффициент мощности для выбранного светодиодного светильника рабочего освещения $\cos \phi_{\text{СЛ}} = 0.98$, $\operatorname{tg}(\phi) = 0.203$.

Мощность освещения:

$$P_{\text{ocb}} = 30 \cdot 0, 2 \cdot 0, 95 \cdot 1, 0 = 5,7 \text{ kBt.}$$
 $Q_{\text{ocb}} = P_{\text{ocb}} \cdot \text{tg}(\phi) = 5, 7 \cdot 0, 203 = 1,16 \text{ kBap.}$
 $S_{\text{ocb}} = \sqrt{5,7^2 + 1,16^2} = 5,82 \text{ kBA.}$

5 Выбор трансформаторов с учетом компенсации реактивной мощности

Мощность III уровня системы электроснабжения цеха без учета мощности компенсирующих устройств определится как:

$$P_{III} = P_{cun} + P_{ocs} + \Delta P, \tag{5.1}$$

$$Q_{III} = Q_{cus} + Q_{ocs}, (5.2)$$

$$Q_{III} = Q_{cux} + Q_{ocs},$$

$$S_{III} = \sqrt{P_{III}^2 + Q_{III}^2},$$
(5.2)

 $P_{_{cun}},P_{_{ocs}},Q_{_{cun}},Q_{_{ocs}}$ – активные и реактивные расчетные мощности соответственно силовой и осветительной нагрузок;

 $\Delta P = 0,034 \left(P_{_{cun}} + P_{_{ocs}} \right)$ — ориентировочные потери активной мощности в сети 0,4 кВ [4].

По формулам (5.1) - (5.3) находим:

$$\Delta P = 0.034 (1753.1 + 5.7) = 59.8 \text{ KBT.}$$

$$P_{III} = 1753.1 + 5.7 + 59.8 = 1818.6 \text{ KBT.}$$

$$Q_{III} = 1297.29 + 1.16 = 1298.45 \text{ KBap.}$$

$$S_{III} = \sqrt{1818.6^2 + 1298.45^2} = 2234.56 \text{ KBA.}$$

Если известна расчетная мощность объекта и коэффициент допустимой перегрузки трансформатора, то можно определить расчетную номинальную мощность трансформатора по формуле [1], кВА:

$$S_{H.T.} = \frac{P_P}{\beta_{m.\delta}},\tag{5.4}$$

 $P_{\scriptscriptstyle P}$ – расчетная нагрузка цеха. где

 $\beta_{_{m.\delta}}$ – коэффициент допустимой перегрузки трансформаторов, который зависит от категории надёжности объекта проектирования и числа трансформаторов на подстанции, в соответствии с вышеприведенными рекомендациями составляет 1,4.

Тогда по формуле (5.4) находим:

$$S_{H.T.} = \frac{1818, 6}{1, 4} = 1299 \text{ KBA}.$$

Предварительно по расчетной нагрузке выбираем КТП-2х1600/6/0,4 (комплектная трансформаторная подстанция, с установкой двух трансформаторов мощностью 1600 кВА; первичное напряжение 6 кВ, вторичное 0,4 кВ) [11]. Каталожные данные трансформаторов приведены в таблице 5.1.

Таблица 5.1 – Каталожные данные трансформаторов КТП

S _{ном.т.} , кВА	ΔP_{x} , к B т	ΔP_{κ} , κ B τ	U _к , %	I _x , %
1600	3,78	18,0	5,5	1,2

Наибольшая реактивная мощность Q_1 , которая может быть передана в сеть напряжением до 1 кВ из сети 10 кВ без увеличения числа трансформаторов [1] определяется как

$$Q_{1} = \sqrt{(1,1 \cdot N \cdot \beta_{m} \cdot S_{H.Tp.})^{2} - P_{p}^{2}}.$$

$$Q_{1} = \sqrt{(1,1 \cdot 2 \cdot 0,7 \cdot 1600)^{2} - 1818,6^{2}} = 1662,53 \text{ kBAp}.$$
(5.5)

Определяем мощность КУ на напряжение 0,4 кВ (таблица 5.2):

$$Q_{KY} = Q_p - Q_1 = 1298,45 - 1662,53 = -364,08 \text{ kBAp.}$$

Исходя из этих соображений, поскольку мощность компенсирующих устройств получилась меньше нуля, то установка КУ не требуется.

Результаты расчета мощностей III уровня электроснабжения, который был произведен без учета компенсации реактивной мощности, сведем в таблицу 5.2. При этом потери мощности в трансформаторах двухтрансформаторной КТП определялись по выражениям:

$$\Delta P_{\rm Tp} = n \cdot \Delta P_{\rm xx} + \frac{\Delta P_{\rm K3}}{n} \cdot \left(\frac{S_{\rm p}}{S_{\rm max}}\right)^2, \tag{5.6}$$

$$\Delta Q_{Tp} = n \cdot \frac{I_{XX} \cdot S_{HOM}}{100} + \frac{u_{K3} \cdot S_p^2}{n \cdot 100 \cdot S_{TOM}}, \tag{5.7}$$

где n — количество трансформаторов;

 $\Delta P_{\rm xx}$ — потери холостого хода, (кВт);

 $\Delta P_{\rm K3}$ — потери короткого замыкания, (кВт);

 I_{xx} — ток холостого хода, %;

 $u_{\text{кз}}$ — напряжение короткого замыкания, %.

Таблица 5.2 – Расчет коэффициента реактивной мощности на границе

балансовой принадлежности

	Коэффициент	Pa	Количество		
Наименование	реактивной	кВт	кВАр	кВА	и мощность
паименование	мощности tgφ	Pp	Q_p	S_p	трансформ. шт., кВА
1	2	3	4	5	6
Силовая нагрузка 0,4 кВ	0,74	1753,1	1297,29	2180,9	
Осветительная нагрузка	0,2	5,7	1,16	5,82	
Итого на стороне 0,4 кВ без учета потерь в сети 0,4 кВ	0,74	1758,8	1298,45	2186,17	
Потери в сети 0,4 кВ		59,8			
Итого на стороне 0,4 кВ с учетом потерь в сети 0,4 кВ	0,71	1818,6	1298,45	2234,56	2*TM3- 1600/10
Мощность КУ в сети 0,4 кВ			0		
Итого на стороне 0,4 кВ с учетом КУ	0,71	1818,6	1298,45	2234,56	
Потери в трансформаторах		25,11	124,22		
Итого на стороне ВН 6 кВ	0,77	1843,71	1422,67	2328,79	

Экономическое значение коэффициента реактивной мощности в часы максимума нагрузки при напряжении 6-20 кВ составляет 0,4 (Приказ Министерства промышленности и энергетики РФ от 23 июня 2015 г. N 380 «О Порядке расчета значений соотношения потребления активной и реактивной мощности для отдельных энергопринимающих устройств (групп энергопринимающих устройств) потребителей электрической энергии»).

В нашем случае коэффициент реактивной мощности $tg\phi = 0.77$ (таблица 5.2), поэтому для обеспечения надлежащего качества электроэнергии и выполнения договорных условий выбираем следующие две конденсаторные установки для подключения на каждую секцию 0,4 кВ КТП:

АУКРМ-ЭМ-0,4-350-50, номинальная мощность 350 кВар.

Фактическая мощность КУ:

$$Q_{_{\rm KY\Sigma}} = 2 \cdot 350 = 700 \text{ KBap.}$$

Эта мощность записывается в соответствующую строку таблицы 5.3 со знаком минус.

$$I_{\text{ky}} = \frac{S_{\text{ky}}}{\sqrt{3} \cdot U_{\text{HOM}}} = \frac{350}{\sqrt{3} \cdot 0.38} = 531.77 \text{ A}.$$

Выбираем для конденсаторной установки автоматический выключатель ВА 51-39 с номинальным током $I_{\text{ном}} = 630 \text{ A}.$

Нагрузка на IV уровне электроснабжения может быть определена с учетом потерь в обоих трансформаторах и компенсации реактивной мощности, входящих в состав КТП, поэтому в соответствии с таблицей 5.3 получим:

$$P_{IV} = P_{III} + \Delta P_{T}; \qquad (5.8)$$

$$Q_{IV} = Q_{III} + \Delta Q_{T}; \qquad (5.9)$$

$$Q_{IV} = Q_{III} + \Delta Q_{T};$$

$$S_{IV} = \sqrt{P_{IV}^{2} + Q_{IV}^{2}}.$$
(5.9)
(5.10)

$$P_{_{\rm IV}}\,=1\,8\,1\,8\,,\,6\,+\,2\,0\,,\,4\,4\,=\,1\,8\,3\,9\,,\,0\,4\,\,\kappa\,B\,\tau\,;$$

$$Q_{IV} = 598,45 + 101,4 = 699,85 \text{ } \kappa Bap;$$

$$S_{IV} = \sqrt{1839,04^2 + 699,85^2} = 1967,7 \text{ kBA}.$$

Результирующие нагрузки трансформаторной подстанции рекомендуется заносить в формуляр Ф202-90 [6], который составляется с учетом полученных результатов расчетов (таблица 5.3).

Таблица 5.3 – Результирующие нагрузки трансформаторной подстанции с учетом компенсации реактивной мощности

	Коэффициент	Pa	счетная нагру	узка	Количество
Наименование	реактивной	кВт	кВАр	кВА	и мощность
Паименование	мощности tgφ	P_p	Q_p	\mathbf{S}_{p}	трансформ. шт., кВА
1	2	3	4	5	6
Силовая нагрузка 0,4 кВ	0,74	1753,1	1297,29	2180,9	
Осветительная нагрузка	0,2	5,7	1,16	5,82	
Итого на стороне 0,4 кВ без учета потерь в сети 0,4 кВ	0,74	1758,8	1298,45	2186,17	
Потери в сети 0,4 кВ		59,8			
Итого на стороне 0,4 кВ с учетом потерь в сети 0,4 кВ	0,71	1818,6	1298,45	2234,56	
Мощность КУ в сети 0,4 кВ с учетом выполнения предельного tgφ			-700		2*АУКРМ- ЭМ 0,4-350- 50
Итого на стороне 0,4 кВ с учетом КУ	0,33	1818,6	598,45	1914,54	2*TM3- 1600/10
Потери в трансформаторах	Кз=0,6; Кпер=1,2	20,44	101,4		
Итого на стороне ВН 10 кВ с учетом выполнения предельного tgф	0,38	1839,04	699,85	1967,7	

Коэффициент загрузки и коэффициент перегрузки соответственно:

$$K_{3.T} = \frac{S_{uexa}}{2 S_{H.T}},$$

$$K_{3.T} = \frac{1914,54}{2 \cdot 1600} = 0,6 < 0,7;$$

$$K_{nep} = \frac{1914,54}{1600} = 1,2 < 1,4.$$

Исходя из таблицы 5.3 коэффициенты загрузки и перегрузки трансформаторов меньше предельных значений, а также предельное значение коэффициента реактивной мощности на стороне 6 кВ обеспечивается:

$$tg\phi = 0.38 < tg\phi_{npeq} = 0.4.$$

Расчетный ток линии СИП 3x120 напряжением 6 кВ в нормальном режиме работы:

$$I_{p} = \frac{S_{IV}}{2 \cdot \sqrt{3} \cdot U_{HOM}} = \frac{1967.7}{2 \cdot \sqrt{3} \cdot 6} = 94.67 \ A < I_{\text{ДОП.СИП}} = 430 \ A.$$

Ток в послеаварийном режиме:

$$I_{\text{\tiny IAB}} = 2 \cdot 94,67 = 31,04 \text{ A},$$

следовательно, существующее сечение проходит по допустимому току нагрева в рабочих режимах:

$$_{I_{_{\Pi AB}}}$$
 = 189,34 A $<$ $I_{_{\!MO\Pi.CH\Pi}}$ = 430 A.

Потери мощности в ЛЭП определяются по формуле:

$$\Delta P_{\Pi \ni \Pi} = \frac{S_{IV}^{2}}{U^{2}} \cdot \frac{r_{y\pi} \cdot \ell}{n} \cdot 10^{-3}, \qquad (5.11)$$

$$\Delta Q_{\Pi \ni \Pi} = \frac{S_{IV}^2}{U^2} \cdot \frac{x_{y\pi} \cdot \ell}{n} \cdot 10^{-3}, \qquad (5.12)$$

где r_{yx} – активное сопротивление 1 км линии, Ом/км [12];

 $x_{_{y,x}}$ – реактивное сопротивление 1 км линии, Ом/км [12];

 ℓ — длина линии, км;

_п - количество параллельно подключенных линий (цепей).

$$\Delta P_{\Pi \ni \Pi} = \frac{1967,7^{2}}{6^{2}} \cdot \frac{0,258 \cdot 2,5}{2} \cdot 10^{-3} = 34,69 \text{ kBT.}$$

$$\Delta Q_{\Pi \ni \Pi} = \frac{1967,7^{2}}{6^{2}} \cdot \frac{0,081 \cdot 2,5}{2} \cdot 10^{-3} = 10,89 \text{ kBap.}$$

$$\Delta S_{\Pi \ni \Pi} = \sqrt{34,69^{2} + 10,89^{2}} = 36,36 \text{ kBA.}$$

Потери напряжения в линии:

$$\Delta U = \frac{\sqrt{3} \cdot I_{p} \cdot l \cdot (r_{yx} \cdot \cos \varphi + x_{yx} \cdot \sin \varphi) \cdot 100\%}{U_{HOM}}.$$

$$\Delta U = \frac{\sqrt{3} \cdot 94,67 \cdot 2,5 \cdot (0,258 \cdot 0,93 + 0,081 \cdot 0,37) \cdot 100\%}{10000} = 1,84\%.$$

6 Выбор конструктивного исполнения электрической сети, марки проводов, кабелей, способов их прокладки

Электрическую сеть котельной выполняем кабелями АВБбШв, проложенными в специальных каналах, по конструкциям котельной [12]. Отдельные электроприемники запитываются кабелями, проложенными в полу и по конструкциям, СП запитаны через кабели, проложенные в трубах в полу.

На трансформаторной подстанции, которая питает котельную, установлены трансформаторы типа ТМ-1600/6 напряжением 10/0,4 кВ.

В котельной расположено основное оборудование, обсуживающее котлы и способствующее нормальному протеканию технологического процесса.

Помещение котельной жаркое, пыльное, относится к 3 — ей категории по молниезащите. Надбункерная галерея системы углеподачи относится к взрывоопасному помещению II а, ко 2 — ой категории по молниезащите.

Электрическая сеть выполнена кабелями марки АВБбШв.

АВБбШв - это силовой бронированный лентами кабель, с алюминиевой жилой, изоляцией и защитным шлангом из ПВХ (рисунок 6.1):

- А алюминиевая токопроводящая жила;
- В изоляция из ПВХ пластиката;
- Б броня из стальных оцинкованных лент;
- б без подушки под броней;

Шв - выпрессованный ПВХ защитный шланг.

Рисунок 6.1 – Кабель АВБбШв

Силовые пункты выбираем исходя из количества присоединений и рабочего тока самого пункта. Условие выбора СП и ШРА:

$$I_{\text{pacy C}\Pi} \le I_{\text{HOM C}\Pi},$$
 (6.1)

Таблица 6.1 – Выбор силовых пунктов

Наименование	Расчетный ток, А	Тип СП	Допустимый ток, А	Количество присоединений СП	Фактическое количество присоединений
СП-1	478,64	ПР8501-1083	500	8	5
СП-2	346,59	ПР8501-1083	400	8	7
СП-3	456,47	ПР8501-1083	500	8	4
СП-4	315,31	ПР8501-1083	400	8	8
СП-5	205,42	ПР8501-1067	250	8	5

7 Расчет защитных аппаратов

Расчет защитных аппаратов ведем по формулам [13]:

$$U_a \ge U_{\text{hom.ceth}},$$
 (7.1)

$$I_{\text{pac}_{\parallel}} \ge 1,25 \cdot I_{\text{p}}, \tag{7.2}$$

$$I_{_{\text{HOM.a}}} \ge 1,25 \cdot I_{_{p}},$$
 (7.3)

$$I_{\text{\tiny HOM,TO}} \ge 1.2 \cdot I_{\text{\tiny Hygk}}, \tag{7.4}$$

$$I_{\text{\tiny HOM,TO}} = K_o \cdot I_{\text{\tiny pact}}, \tag{7.5}$$

Результаты выбора автоматов представлены в таблицах 7.1-7.3 (как для отдельных приемников, так и для силовых сборок второго уровня, и КТП).

Таблица 7.1 – Выбор автоматов для отдельных ЭП

						Расчетный				
		Расчетный				ток отсеч-				Отключающая
No		ток 1,0-	I _{ном.а} ,	Ірасц,		ки,		$I_{\text{hom.to}}$,	Тип ав-	способность,
ЭП	I _p , A	1,25·I _p , A	A	A	Іпуск, А	1,2 Іпуск, А	Ko	A	томата	$I_{\text{откл}}$, к A
1	2	3	4	5	6	7	8	9	10	11
1	250,69	313,36	400	400	1253,45	1504,14	7	2800	BA 51-37	25
2	250,69	313,36	400	400	1253,45	1504,14	7	2800	BA 51-37	25
3	250,69	313,36	400	400	1253,45	1504,14	7	2800	BA 51-37	25
4	303,87	379,84	400	400	1519,35	1823,22	7	2800	BA 51-37	25
5	303,87	379,84	400	400	1519,35	1823,22	7	2800	BA 51-37	25
6	142,44	178,05	250	200	712,2	854,64	7	1400	BA 51-35	15
7	142,44	178,05	250	200	712,2	854,64	7	1400	BA 51-35	15
8	142,44	178,05	250	200	712,2	854,64	7	1400	BA 51-35	15
9	142,44	178,05	250	200	712,2	854,64	7	1400	BA 51-35	15
10	142,44	178,05	250	200	712,2	854,64	7	1400	BA 51-35	15
11	10,45	13,06	25	16	52,25	62,7	7	112	BA 51-25	3
12	10,45	13,06	25	16	52,25	62,7	7	112	BA 51-25	3
13	10,45	13,06	25	16	52,25	62,7	7	112	BA 51-25	3
14	10,45	13,06	25	16	52,25	62,7	7	112	BA 51-25	3
15	6,61	8,26	25	10	33,05	39,66	7	70	BA 51-25	2,5
16	160,87	201,09	250	250	804,35	965,22	7	1750	BA 51-35	15
17	160,87	201,09	250	250	804,35	965,22	7	1750	BA 51-35	15
18	28,49	35,61	100	40	142,45	170,94	7	280	BA 51-31	6
19	28,49	35,61	100	40	142,45	170,94	7	280	BA 51-31	6
20	28,49	35,61	100	40	142,45	170,94	7	280	BA 51-31	6
21	28,49	35,61	100	40	142,45	170,94	7	280	BA 51-31	6
22	90,08	112,6	160	125	450,4	540,48	7	875	BA 51-31	7
23	142,44	178,05	250	200	712,2	854,64	7	1400	BA 51-35	15
24	142,44	178,05	250	200	712,2	854,64	7	1400	BA 51-35	15
25	142,44	178,05	250	200	712,2	854,64	7	1400	BA 51-35	15
26	379,84	474,8	630	500	1899,2	2279,04	7	3500	BA 51-39	35
27	379,84	474,8	630	500	1899,2	2279,04	7	3500	BA 51-39	35
28	379,84	474,8	630	500	1899,2	2279,04	7	3500	BA 51-39	35

						Do overne vi				
		Расчетный				Расчетный ток отсеч-				Отключающая
No		ток 1,0-	I _{ном.а} ,	I _{расц} ,		ки,		I _{ном.то} ,	Тип ав-	способность,
ЭП	I _p , A	1,25·I _p , A	A	А	Іпуск, А	1,2·I _{пуск} , А	Ко	A	томата	І _{откл} , кА
1	2	3	4	5	6	7	8	9	10	11
29	379,84	474,8	630	500	1899,2	2279,04	7	3500	BA 51-39	35
30	85,46	106,83	160	125	427,3	512,76	7	875	BA 51-31	7
31	85,46	106,83	160	125	427,3	512,76	7	875	BA 51-31	7
32	85,46	106,83	160	125	427,3	512,76	7	875	BA 51-31	7
33	85,46	106,83	160	125	427,3	512,76	7	875	BA 51-31	7
34	85,46	106,83	160	125	427,3	512,76	7	875	BA 51-31	7
35	28,49	35,61	100	40	142,45	170,94	7	280	BA 51-31	6
36	28,49	35,61	100	40	142,45	170,94	7	280	BA 51-31	6
37	28,49	35,61	100	40	142,45	170,94	7	280	BA 51-31	6
38	32,56	40,7	100	50	162,8	195,36	7	350	BA 51-31	6

Таблица 7.2 — Выбор автоматов для С Π

		Расчет-				_				
		ный ток				Расчет-				
		для вы-	Номиналь-	Номиналь-		ный ток				Отключаю-
	Расчетный	бора	ный ток	ный ток	Пико-	отсечки,			Тип	щая способ-
Наименова-	ток присо-	автома-	автомата	расцепителя	вый ток	1,2·I _{пик} ,	К	$I_{\scriptscriptstyle{\mathrm{HOM.T}}}$	авто-	ность, $I_{\text{откл}}$,
ние	единения, А	та, А	$I_{\text{hom.a}}, A$	I _{расц} , А	I _{пик} , А	A	o	o, A	мата	кА
									BA 51-	
СП-1	478,64	488,21	630	500	2393,2	2871,84	7	3500	39	35
									BA 51-	
СП-2	346,59	381,25	400	400	1732,95	2079,54	7	2800	37	25
									BA 51-	
СП-3	456,47	502,12	630	630	2282,35	2738,82	7	4410	39	35
									BA 51-	
СП-4	315,31	346,84	400	400	1576,55	1891,86	7	2800	37	25
									BA 51-	
СП-5	205,42	225,96	250	250	1027,1	1232,52	7	1750	35	15

Таблица 7.3 – Выбор автоматов на КТП

Наименование автомата на НН КТП	Расчетный ток присо- единения, А	Расчет- ный ток для выбора автома- та, А	Номиналь- ный ток автомата І _{ном.а} , А	Номиналь- ный ток расцепите- ля І _{расц} , А	Пико- вый ток І _{пик} , А	Расчетный ток отсечки, $1,2 \cdot I_{\text{пик}}$, A	К	$I_{\text{hom.T}}$	Тип авто- мата	Отключа- ющая спо- собность, І _{откл} , кА
Вводной QF1,								2800	BA 53-	
QF3	3321,54	3487,62	4000	4000	16607,7	19929,24	7	0	45	36
Секционный								1400	BA 53-	
QF2	1660,77	1743,81	2500	2000	8303,85	9964,62	7	0	43	31

8 Выбор сечений кабелей

Для питания СП и ЭП применяем кабели марки АВБбШв [17]. Сечение кабеля выбирается по нагреву:

$$I_{\text{расч}\Pi} = \frac{I_{\text{p}}}{k_{\Pi}},\tag{8.1}$$

$$I_{\text{доп}} \ge I_{\text{расчп}},$$
 (8.2)

Согласование с ВА производится по следующей технологии [13]:

$$I_{np} \ge I_{p}, \tag{8.3}$$

$$I_{np} \ge K_{nm} \cdot I_{pacn}$$
, (8.4)

Выбор сечений кабелей приведен в таблицах 8.1-8.2.

Таблица 8.1 – Выбор кабелей для питания СП

Номер СП	Расчетный ток I _p , A	Ток срабатывания теплового расцепителя автомата, А	Допустимый ток кабеля, А	Сечение основной жилы S, мм ²	Марка, сечение кабе- ля
1	2	3	4	5	6
СП-1	478,64	500	582	(2)x185	2АВБбШв 4х185
СП-2	346,59	400	508	(2)x150	2АВБбШв 4х150
СП-3	456,47	630	686	(2)x240	2АВБбШв 4х240
СП-4	315,31	400	343	240	АВБбШв 4х240
СП-5	205,42	250	254	150	АВБбШв 4х150

Таблица 8.2 – Выбор сечений кабельных линий для ЭП

№ ЭП	Расчет- ный ток І _р , А	Номинальный ток расцепителя автомата, А	Допусти- мый ток кабеля, А	Сечение основной жилы S, мм ²	Марка, сечение кабеля
1	2	3	4	5	6
1	250,69	400	508	(2)x150	2АВБбШв 4х150
2	250,69	400	508	(2)x150	2АВБбШв 4х150
3	250,69	400	508	(2)x150	2АВБбШв 4х150
4	303,87	400	508	(2)x150	2АВБбШв 4х150
5	303,87	400	508	(2)x150	2АВБбШв 4х150
6	142,44	200	219	120	АВБбШв 4х120
7	142,44	200	219	120	АВБбШв 4х120
8	142,44	200	219	120	АВБбШв 4х120
9	142,44	200	219	120	АВБбШв 4х120
10	142,44	200	219	120	АВБбШв 4х120
11	10,45	16	27	4	АВБбШв 4х4
12	10,45	16	27	4	АВБбШв 4х4
13	10,45	16	27	4	АВБбШв 4х4
14	10,45	16	27	4	АВБбШв 4х4
15	6,61	10	27	4	АВБбШв 4х4
16	160,87	250	254	150	АВБбШв 4х150
17	160,87	250	254	150	АВБбШв 4х150
18	28,49	40	47	10	АВБбШв 4х10
19	28,49	40	47	10	АВБбШв 4х10
20	28,49	40	47	10	АВБбШв 4х10
21	28,49	40	47	10	АВБбШв 4х10
22	90,08	125	126	50	АВБбШв 4х50
23	142,44	200	219	120	АВБбШв 4х120
24	142,44	200	219	120	АВБбШв 4х120
25	142,44	200	219	120	АВБбШв 4х120
26	379,84	500	508	(2)x150	2АВБбШв 4х150
27	379,84	500	508	(2)x150	2АВБбШв 4х150
28	379,84	500	508	(2)x150	2АВБбШв 4х150
29	379,84	500	508	(2)x150	2АВБбШв 4х150
30	85,46	125	126	50	АВБбШв 4х50
31	85,46	125	126	50	АВБбШв 4х50
32	85,46	125	126	50	АВБбШв 4x50
33	85,46	125	126	50	АВБбШв 4x50
34	85,46	125	126	50	АВБбШв 4х50
35	28,49	40	47	10	АВБбШв 4х10
36	28,49	40	47	10	АВБбШв 4х10
37	28,49	40	47	10	АВБбШв 4х10
38	32,56	50	62	16	АВБбШв 4х16

Произведем расчет потерь (таблица 8.3-8.4) [12]:

$$\Delta U = \sqrt{3} \cdot I_{p} \cdot l \cdot (r_{yz} \cdot \cos \varphi + x_{yz} \cdot \sin \varphi), \tag{8.5}$$

$$\Delta U = \sqrt{3} \cdot I_{p} \cdot l \cdot (r_{yx} \cdot \cos \varphi + x_{yx} \cdot \sin \varphi), \qquad (8.5)$$

$$\Delta U_{\%} = \frac{\Delta U \cdot 100\%}{U_{HOM}}, \qquad (8.6)$$

$$\Delta P = 3 \cdot I_p^2 \cdot r_{yA} \cdot l, \qquad (8.7)$$

$$\Delta Q = 3 \cdot I_{p}^{2} \cdot x_{y\pi} \cdot l, \qquad (8.8)$$

Таблица 8.3 – Расчет потерь в кабелях, питающих ЭП

Таоли	ца о	-1 ac	901 110	терь в	кабеля	х, питан	ощих Э	11			
						$\mathbf{r}_{ ext{yд}}$,	Худ,		ΔP,		ΔQ ,
№	cosφ	sinφ	L, м	I _p , A	S, mm ²	Ом/км	Ом/км	ΔU, %	кВт	ΔU, B	квар
1	2	3	4	5	6	7	8	9	10	11	12
1	0,8	0,6	4	250,69	(2)x150	0,103	0,0298	0,05	0,078	0,19	0,022
2	0,8	0,6	9	250,69	(2)x150	0,103	0,0298	0,1	0,175	0,38	0,051
3	0,8	0,6	11	250,69	(2)x150	0,103	0,0298	0,13	0,214	0,494	0,062
4	0,8	0,6	19	303,87	(2)x150	0,103	0,0298	0,26	0,542	0,988	0,157
5	0,8	0,6	24	303,87	(2)x150	0,103	0,0298	0,33	0,685	1,254	0,198
6	0,8	0,6	15	142,44	120	0,258	0,0602	0,24	0,236	0,912	0,055
7	0,8	0,6	9	142,44	120	0,258	0,0602	0,14	0,141	0,532	0,033
8	0,8	0,6	6	142,44	120	0,258	0,0602	0,09	0,094	0,342	0,022
9	0,8	0,6	8	142,44	120	0,258	0,0602	0,13	0,126	0,494	0,029
10	0,8	0,6	14	142,44	120	0,258	0,0602	0,22	0,22	0,836	0,051
11	0,8	0,6	18	10,45	4	7,74	0,095	0,54	0,046	2,052	0,001
12	0,8	0,6	14	10,45	4	7,74	0,095	0,42	0,035	1,596	0
13	0,8	0,6	9	10,45	4	7,74	0,095	0,27	0,023	1,026	0
14	0,8	0,6	12	10,45	4	7,74	0,095	0,36	0,03	1,368	0
15	0,8	0,6	17	6,61	4	7,74	0,095	0,32	0,017	1,216	0,0002
16	0,85	0,53	11	160,87	150	0,206	0,0596	0,17	0,176	0,646	0,051
17	0,85	0,53	8	160,87	150	0,206	0,0596	0,12	0,128	0,456	0,037
18	0,8	0,6	14	28,49	10	3,1	0,073	0,46	0,106	1,748	0,002
19	0,8	0,6	9	28,49	10	3,1	0,073	0,29	0,068	1,102	0,002
20	0,8	0,6	33	28,49	10	3,1	0,073	1,08	0,249	4,104	0,006
21	0,8	0,6	33	28,49	10	3,1	0,073	1,08	0,249	4,104	0,0059
22	0,8	0,6	3	90,08	50	0,62	0,0625	0,07	0,045	0,266	0,0046
23	0,8	0,6	4	142,44	120	0,258	0,0602	0,06	0,063	0,228	0,0147
24	0,8	0,6	6	142,44	120	0,258	0,0602	0,09	0,094	0,342	0,02199
25	0,8	0,6	8	142,44	120	0,258	0,0602	0,13	0,126	0,494	0,02931
26	0,8	0,6	32	379,84	(2)x150	0,103	0,0298	0,56	1,427	2,128	0,41275
27	0,8	0,6	31	379,84	(2)x150	0,103	0,0298	0,54	1,382	2,052	0,39985
28	0,8	0,6	31	379,84	(2)x150	0,103	0,0298	0,54	1,382	2,052	0,39985
29	0,8	0,6	30	379,84	(2)x150	0,103	0,0298	0,52	1,337	1,976	0,38695
30	0,8	0,6	3	85,46	50	0,62	0,0625	0,06	0,041	0,228	0,00411
31	0,8	0,6	4	85,46	50	0,62	0,0625	0,08	0,054	0,304	0,00548
32	0,8	0,6	6	85,46	50	0,62	0,0625	0,12	0,082	0,456	0,00822
33	0,8	0,6	8	85,46	50	0,62	0,0625	0,17	0,109	0,646	0,01096
34	0,8	0,6	6	85,46	50	0,62	0,0625	0,12	0,082	0,456	0,00822
35	0,8	0,6	6	28,49	10	3,1	0,073	0,2	0,045	0,76	0,00107
36	0,8	0,6	5	28,49	10	3,1	0,073	0,16	0,038	0,608	0,0009
37	0,8	0,6	11	28,49	10	3,1	0,073	0,36	0,083	1,368	0,002
38	0,7	0,71	19	32,56	16	1,94	0,0675	0,4	0,117	1,52	0,0041

Таблица 8.4 – Расчет потерь в кабелях, питающих СП

				•		r _{уд} ,	Худ,		ΔP,		ΔQ,
№ СП	cosφ	sinφ	L, м	I _{paő} , A	S, mm ²	Ом/км	Ом/км	ΔU, %	кВт	ΔU, B	квар
1	2	3	4	5	6	7	8	9	10	11	12
1	0,8	0,6	22	478,64	(2)x185	0,0835	0,0298	0,41	1,263	1,558	0,451
2	0,85	0,53	24	346,59	(2)x150	0,103	0,0298	0,39	0,891	1,482	0,258
3	0,8	0,6	13	456,47	(2)x240	0,0645	0,02935	0,19	0,524	0,722	0,239
4	0,79	0,61	29	315,31	240	0,129	0,0587	0,57	1,116	2,166	0,508
5	0,8	0,6	25	205,42	150	0,206	0,0596	0,47	0,652	1,786	0,189

9 Электротехнический расчет электрического освещения. Выбор щитов освещения, кабелей и защитной аппаратуры

9.1 Электротехнический расчет рабочего освещения

Произведем расчет для рабочего и аварийного освещения согласно методикам, представленным в [10, 12].

Момент осветительной нагрузки определяют по выражению:

$$\mathbf{M} = \sum \mathbf{P_i} \cdot \mathbf{l_i} \,, \tag{9.1}$$

где P_i – мощность лампы, кВт.

 l_{i} – расстояние от ИП до лампы, м.

$$\sum M_a \approx \sum M_B \approx \sum M_c$$
.

Такое размещение позволяет выравнивать нагрузку по фазам.

Произведем выбор сечения проводников осветительной сети. Выбор сечения осуществляется с учетом рекомендаций:

- должна обеспечиваться достаточная механическая прочность.
- прохождение тока нагрузки не должно вызвать перегрев проводников $I_{\text{доп}} \geq I_{\text{раб}}.$

У источника света должен поддерживаться необходимый уровень напряжения.

Потери напряжения, %:

$$\Delta U = \frac{M_{\text{max}}}{K_c \cdot s},\tag{9.2}$$

где $K_c = 46$ — для сети 380 В и 7,7 — для сети 220 В при алюминиевых проводниках [12, с. 273];

s – сечение проводника.

Расчетная нагрузка, Вт:

$$P_{p.o.} = P_{ycr} \cdot K_c \cdot K_{\Pi PA}, \qquad (9.3)$$

где P_{ycr} - установленная мощность ламп.

К_с - коэффициент спроса (см. п.5).

 $K_{\Pi PA}$ - коэффициент, учитывающий потери в пускорегулирующей аппаратуре (см. п.5).

Максимальный расчетный ток в трехфазной сети, А:

$$I_{po} = \frac{P_{po}}{\sqrt{3} \cdot U_{s} \cdot \cos \phi}, \tag{9.4}$$

где $P_{p=0}$ – расчетная нагрузка;

 $U_{_{_{\it I}}}$ – напряжение на лампах, В; $\cos \phi$ – коэффициент мощности ламп (см. п.3).

В цехе имеется 5 рядов по 6 светильников мощностью 0,2 кВт. Распределим их по фазам так, как показано на рисунке 9.1.

```
Расстояния
```

 $l_{01} = 13 + 10 = 23$ м (от щитка ЩО до ближайшего светильника 1 ряда);

 $l_{02} = 7 + 10 = 17$ м (от щитка ЩО до ближайшего светильника 2 ряда);

 $1_{03} = 7 + 10 = 17$ м (от щитка ЩО до ближайшего светильника 3 ряда);

 $1_{04} = 12 + 10 = 22$ м (от щитка ЩО до ближайшего светильника 4 ряда);

 $l_{05} = 16 + 10 = 26$ м (от щитка ЩО до ближайшего светильника 5 ряда);

Значения результирующих моментов по каждой фазе:

1 ряд:

 $\sum M_a = 23*0.2 + (23+2*8.2)*0.2 + (23+5*8.2)*0.2 = 25.28 \text{ kBt} \cdot \text{M}.$

 $\sum M_B = (23+1*8,2)*0,2+(23+4*8,2)*0,2=17,4 \text{ kBt·m}.$

 $\sum M_c = (23+3*8,2)*0,2=9,52 \text{ kBt·m}.$

2 ряд:

 $\Sigma M_a = (17+3*8,2)*0,2=8,32 \text{ kBt·m}.$

 $\overline{\sum} M_{\text{B}} = 17*0.2 + (17+2*8.2)*0.2 + (17+5*8.2)*0.2 = 21.68 \text{ kBt·m}.$

 $\sum M_c = (17+1*8,2)*0,2+(17+4*8,2)*0,2=15 \text{ kBt·m}.$

3 ряд:

 $\sum_{a}^{1} M_{a} = (17+1*8,2)*0,2+(17+4*8,2)*0,2=15 \text{ kBt} \cdot \text{M}.$

 $\Sigma M_{\rm B} = (17+3*8,2)*0,2=8,32 \text{ kBt·m}.$

 $\sum\! M_c = 17*0,\!2+(17+2*8,\!2)*0,\!2+(17+5*8,\!2)*0,\!2=\!21,\!68~\kappa B_{T^*M}.$

4 ряд:

 $\sum M_a = 12*0.2 + (12+2*8.2)*0.2 + (12+5*8.2)*0.2 = 18.68 \text{ kBt} \cdot \text{M}.$

 $\sum M_{\rm B} = (12+1*8,2)*0,2+(12+4*8,2)*0,2=13 \text{ kBt·m}.$

 $\overline{\sum} M_c = (12+3*8,2)*0,2=7,32 \text{ kBt·m}.$

5 ряд:

 $\sum_{a=1}^{1} M_a = (16+1*8,2)*0,2+(16+4*8,2)*0,2=14,6 \text{ kBt/m}.$

 $\Sigma M_{\rm B} = 16*0.2 + (16+3*8.2)*0.2 = 11.32 \text{ kBt·m.}$

 $\sum M_c = (16 + 2*8,2)*0,2 + (16 + 5*8,2)*0,2 = 17,88 \ \ensuremath{\kappa Bt^{\cdot} M}.$

Максимальный момент в одной группе:

Mмах=25,28+17,4+9,52=52,2 кBт·м.

Суммарные моменты по фазам:

 $\sum M_a = 81,88 \text{ kBt·m}, \sum M_B = 76,24 \text{ kBt·m}, \sum M_c = 79,56 \text{ kBt·m}.$

Выберем сечение по максимальному значению результирующего момента при допустимой потере напряжения $\Delta U_{\text{доп}} = 2,5 \%$ [10, c. 343], т.е.

при
$$U_{min\%} = 97,5\%$$
:
$$s = \frac{M_{max}}{K_c \cdot \Delta U_{gon}}$$
(9.5)

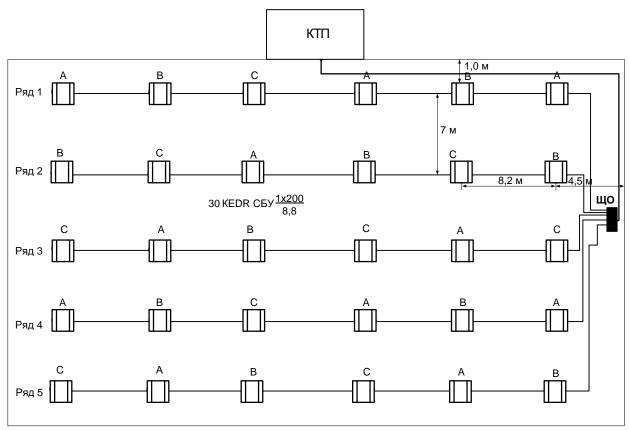


Рисунок 9.1 – Расположение ламп рабочего освещения по фазам

По формуле (9.5) рассчитываем сечение:

$$s = \frac{52,2}{7,7\cdot 2,5} = 2,37 \text{ MM}^2.$$

Выбираем алюминиевый провод марки АВББШВ 4x2,5 сечением основной жилы s=2,5 мм 2 и допустимым током 19 А.

Рассчитываем фактическую потерю напряжения:

$$\Delta U = \frac{M_{\text{max}}}{K_{\text{c}} \cdot \text{s}} = \frac{52,2}{7,7 \cdot 2,5} = 2,37 \text{ B.}$$

$$\Delta U_{\text{w}} = \frac{\Delta U \cdot 100\%}{U_{\text{max}}} = \frac{2,37 \cdot 100\%}{220} = 1,08 \%.$$

По формуле (9.3) находим расчетную нагрузку одной линии (ряда):

$$P_{\text{p.o.}}$$
= (6·0,2)·0,95·1,0 = 1,14 кВт.

По формуле (9.4) находим расчетный ток:

$$I_{po} = \frac{1,14 \cdot 10^3}{220 \cdot 0,98} = 5,3 \text{ A}.$$

Расчетный ток не превышает допустимый ток кабеля.

Определим сечение кабеля от щита освещения (ЩО) до КТП.

Выберем самую удаленную линию от щитка до светильников и по ней определим сечение проводника.

$$l_0 = 44 \, M,$$

$$M = 6 \cdot 0, 2 \cdot (44 + \frac{8, 2 \cdot (6 - 1)}{2}) = 77, 4 \, \kappa B \, m \cdot M.$$

Расчетную нагрузку находим по формуле (9.3):

$$P_{p.o.} = (30.0,2).0,95.1,0 = 5,7 \text{ kBt.}$$

Рассчитываем сечение:

$$S = \frac{P_{ulo}l + \sum \alpha m}{K_C \cdot \Delta U_{don}} = \frac{5,7 \cdot 44 + 1,0 \cdot (81,88 + 76,24 + 79,56)}{44 \cdot 2,5} = 4,44 \text{ MM}^2.$$

Определим максимальный расчетный ток по формуле (9.4):

$$I_{po} = \frac{5,7 \cdot 10^3}{\sqrt{3} \cdot 380 \cdot 0,98} = 8,8 \text{ A}.$$

Выбираем алюминиевый провод марки ABББШВ 4x6 сечением основной жилы s=6 мм 2 и допустимым током 28 A.

Выбираем осветительный щиток ОЩВ-3-63-6 с номинальным током $I_{\text{ном}} = 10 \text{ A},$ с 6-ю трехфазными присоединениями по 6,3 A.

Вводной автомат: ВА 47-29, $I_{\text{ном}} = 10 \text{ A}$;

Групповой автоматов отходящей линии: ВА 47-29, $I_{\text{ном}} = 6,3$ А.

Рассчитываем фактическую потерю напряжения в кабеле, питающем щиток:

$$\Delta U = \frac{P_{u_0} l + \sum \alpha m}{K_c \cdot S} = \frac{5,7 \cdot 44 + 1,0 \cdot (81,88 + 76,24 + 79,56)}{44 \cdot 6} = 1,85 \text{ B.}$$

$$\Delta U_{\%} = \frac{1,85 \cdot 100\%}{220} = 0,84 \%.$$

Суммарная потеря напряжения:

 $\Delta\,U_{_{\Sigma}} = 1,0\,8\,+\,0\,,8\,4\,=\,1,9\,2\,$ % , что допустимо.

9.2 Электротехнический расчет аварийного освещения

Электротехнический расчет для аварийного освещения выполняем по аналогии с расчетом для рабочего освещения.

В цехе имеется 5 рядов по 6 светильников мощностью 0,015 кВт. Распределим их по фазам так, как показано на рисунке 9.2.

```
Расстояния
```

 $l_{01} = 13+10=23$ м (от щитка ЩОА до ближайшего светильника 1 ряда);

 $l_{02} = 7 + 10 = 17$ м (от щитка ЩОА до ближайшего светильника 2 ряда);

 $l_{03} = 7 + 10 = 17$ м (от щитка ЩОА до ближайшего светильника 3 ряда);

 $l_{04} = 12 + 10 = 22$ м (от щитка ЩОА до ближайшего светильника 4 ряда);

 $l_{05} = 16+10=26$ м (от щитка ЩОА до ближайшего светильника 5 ряда);

Значения результирующих моментов по каждой фазе:

1 ряд:

 $\sum M_a = 23*0,015+(23+2*8,2)*0,015+(23+5*8,2)*0,015=1,896 \text{ кВт·м}.$

 $\sum M_{\text{B}} = (23+1*8,2)*0,015+(23+4*8,2)*0,015=1,305 \text{ kBt-m}.$

 $\sum M_c = (23+3*8,2)*0,015=0,714 \text{ кВт·м}.$

2 ряд:

 $\sum M_a = (17+3*8,2)*0,015=0,624 \text{ kBt·m}.$

 $\overline{\sum}$ $M_B = 17*0,015 + (17+2*8,2)*0,015 + (17+5*8,2)*0,015 = 1,626 \text{ kBt·m}.$

 $\overline{\sum} M_c = (17+1*8,2)*0,015+(17+4*8,2)*0,015=1,125 \text{ kBt·m}.$

3 ряд:

 $\sum M_a = (17+1*8,2)*0,015+(17+4*8,2)*0,015=1,125 \text{ кВт·м}.$

 $\Sigma M_{\rm B} = (17+3*8,2)*0,015=0,624 \text{ kBt} \cdot \text{M}.$

 $\overline{\sum} M_c = 17*0,\!015 + (17 + 2*8,\!2)*0,\!015 + (17 + 5*8,\!2)*0,\!015 = 1,\!626 \; \kappa B_{\text{T}^*M}.$

4 ряд:

 $\sum M_a = 12*0.015 + (12+2*8.2)*0.015 + (12+5*8.2)*0.015 = 1.401 \text{ kBt·m}.$

 $\overline{\sum}$ M_B= (12+1*8,2)*0,015+(12+4*8,2)*0,015=0,975 кВт·м.

 $\overline{\sum} M_c = (12+3*8,2)*0,015=0,549 \text{ kBt·m}.$

5 ряд:

 $\sum M_a = (16+1*8,2)*0,015+(16+4*8,2)*0,015=1,095 \ \ensuremath{\kappa Br \cdot M}$.

 $\Sigma M_{\text{B}} = 16*0,015+(16+3*8,2)*0,015=0,849 \text{ kBt·m}.$

 $\sum M_c = (16+2*8,2)*0,015+(16+5*8,2)*0,015=1,341 \text{ kBt-m}.$

Максимальный момент в одной группе:

 $M_{Max}=1,896+1,305+0,714=3,915 \text{ kBt-m}.$

Суммарные моменты по фазам:

 $\sum M_a = 6,141 \text{ кВт·м}, \sum M_B = 5,846 \text{ кВт·м}, \sum M_c = 6,024 \text{ кВт·м}.$

Выберем сечение по максимальному значению результирующего момента при допустимой потере напряжения $\Delta U_{_{\text{доп}}} = 2,5 \%$ [10, с. 343], т.е. при $U_{\text{min}\%} = 97,5\%$ по формуле (9.5).

По формуле (9.5) рассчитываем сечение:

$$s = \frac{3,915}{7,7 \cdot 2,5} = 0,2 \text{ MM}^2.$$

Выбираем алюминиевый провод марки АВББШВ 4x2,5 сечением основной жилы s=2,5 мм 2 и допустимым током 19 А.

Рассчитываем фактическую потерю напряжения:

$$\Delta U = \frac{M_{\text{max}}}{K_{\text{c}} \cdot s} = \frac{3,915}{7,7 \cdot 2,5} = 0,2 \text{ B.}$$

$$\Delta U_{\text{m}} = \frac{0,2 \cdot 100\%}{220} = 0,09 \text{ m.}$$

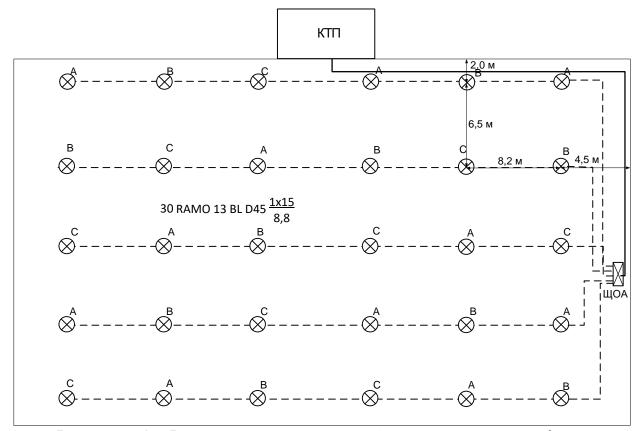


Рисунок 9.2 – Расположение ламп аварийного освещения по фазам

По формуле (9.3) находим расчетную нагрузку одной линии (ряда): $P_{p.o.} = (6 \cdot 0.015) \cdot 1.0 \cdot 1.0 = 0.09 \text{ кВт.}$

По формуле (9.4) находим расчетный ток:

$$I_{po} = \frac{0.09 \cdot 10^3}{220 \cdot 0.95} = 0.4 \text{ A}.$$

Расчетный ток не превышает допустимый ток кабеля.

Определим сечение кабеля от щита освещения (ЩОА) до КТП.

Выберем самую удаленную линию от щитка до светильников и по ней определим сечение проводника.

$$\begin{split} l_0 &= 41\, M\,, \\ M &= 6\cdot 0\,, 0\, 1\, 5\cdot (4\, 1\, +\, \frac{8\,, 2\cdot (6\, -\, 1)}{2}) = 5\,, 5\, 3\, 5\, \kappa B\, m\, \cdot M\,. \end{split}$$

Расчетную нагрузку находим по формуле (9.3):

$$P_{p.o.} = (30.0,015) \cdot 1,0 \cdot 1,0 = 0,45 \text{ kBt.}$$

Рассчитываем сечение:

$$S = \frac{P_{ulo}l + \sum \alpha m}{K_{C} \cdot \Delta U_{don}} = \frac{0.45 \cdot 41 + 1.0 \cdot (6.141 + 5.846 + 6.024)}{44 \cdot 2.5} = 0.33 \text{ MM}^{2}.$$

Определим максимальный расчетный ток по формуле (9.4):

$$I_{po} = \frac{0.45 \cdot 10^3}{\sqrt{3} \cdot 380 \cdot 0.95} = 1.5 \text{ A}.$$

Выбираем алюминиевый провод марки АВББШВ 4x2,5 сечением основной жилы s=2,5 мм 2 и допустимым током 19 А.

Выбираем осветительный щиток ОЩВ-1-2-6 с номинальным током $I_{\text{ном}} = 2 \text{ A}$, с 6-ю трехфазными присоединениями по 1 A.

Вводной автомат: ВА 47-29, $I_{\text{ном}} = 2 \text{ A}$;

Групповой автоматов отходящей линии: ВА 47-29, $I_{\text{ном}} = 1 \text{ A}$.

Рассчитываем фактическую потерю напряжения в кабеле, питающем щиток:

$$\Delta U = \frac{P_{u_0}l + \sum \alpha m}{K_c \cdot S} = \frac{0.45 \cdot 41 + 1.0 \cdot (6.141 + 5.846 + 6.024)}{44 \cdot 2.5} = 0.33 \text{ B.}$$

$$\Delta U_{\%} = \frac{0.33 \cdot 100\%}{380} = 0.087 \%.$$

Суммарная потеря напряжения:

$$\Delta U_{\Sigma} = 0.09 + 0.087 = 0.177$$
 %, что допустимо.

10 Расчет токов трехфазного и однофазного короткого замыкания и проверка коммутационно-защитной аппаратуры по условиям устойчивости токам короткого замыкания

10.1 Расчет токов трехфазного к.з.

Расчетная схема сети и ее схема замещения представлены на рисунках 10.1-10.2.

За источник питания возьмем шины ПС «Дзержинская-2, 6 кВ, и выбранные трансформаторы на КТП, влияние внешнего сопротивления в сетях 0,4 кВ незначительно [8].

Сопротивления линии, питающей КТП:

$$x_{\pi} = x_{0}^{\ell}_{\pi} = 0,081 \cdot 2,5 = 0,2 \ Om.$$

 $r_{\pi} = r_{0}^{\ell}_{\pi} = 0,258 \cdot 2,5 = 0,65 \ Om.$

Сопротивление системы [8]:

$$x_{c} = \frac{U_{\text{ср.ном}}^{2}}{S_{c}} = \frac{6.3^{2}}{136.4} = 0.29 \text{ OM},$$
ГДе $S_{c} = \sqrt{3} \cdot I_{\text{ном откл.}} \cdot U_{\text{ср.ном}} = \sqrt{3} \cdot 12.5 \cdot 6.3 = 136.4 \text{ MBA}.$

Ток КЗ в точке К1:

$$\begin{split} x_{\Sigma K1} &= x_C = 0,29 \text{ OM}. \\ I_{K1} &= \frac{U_{_{CP.HOM}}}{\sqrt{3} \cdot x_{_{\Sigma K1}}} = \frac{6,3}{\sqrt{3} \cdot 0,29} = 13 \text{ KA}. \\ i_{_{VJ\!\!/- K1}} &= \sqrt{2} \cdot k_{_{VJ\!\!/- K1}} \cdot I_{_{K1}}^{(3)} = \sqrt{2} \cdot 1,8 \cdot 13 = 33,09 \text{ KA}. \end{split}$$

Ток КЗ в точке К2:

$$\begin{split} x_{\Sigma K2} &= x_C + x_{\pi} = 0,29 + 0,2 = 0,49 \text{ Om.} \\ r_{\Sigma K2} &= r_{\pi} = 0,65 \text{ Om.} \\ I_{K2} &= \frac{U_{_{CP.HOM}}}{\sqrt{3} \cdot \sqrt{x_{_{\Sigma K2}}^2 + r_{_{\Sigma K2}}^2}} = \frac{6,3}{\sqrt{3} \cdot \sqrt{0,49^2 + 0,65^2}} = 4,47 \text{ KA.} \\ i_{_{V\!J\!-K2}} &= \sqrt{2} \cdot k_{_{V\!J\!-}} \cdot I_{_{K2}}^{(3)} = \sqrt{2} \cdot 1,8 \cdot 4,47 = 11,38 \text{ KA.} \end{split}$$

Пересчет сопротивлений к другой ступени напряжения производится по выражению [8, 12]:

$$X_{\kappa} = X_{\text{hom}} \cdot \left(\frac{U_{\text{cp. k}}}{U_{\text{cp. hom}}}\right)^{2}, \qquad (10.1)$$

Приведенное сопротивление системы:

$$x_{\rm C} = \frac{U_{\rm hom}^2}{S_{\rm c}} \cdot \left(\frac{U_{\rm cp.\ K}}{U_{\rm cp.\ hom}}\right)^2 = \frac{6000^2}{136,4 \cdot 10^6} \cdot 10^3 \cdot \left(\frac{0,4}{6,3}\right)^2 = 1,06 \text{ MOM},$$

Приведенные сопротивления КЛ:

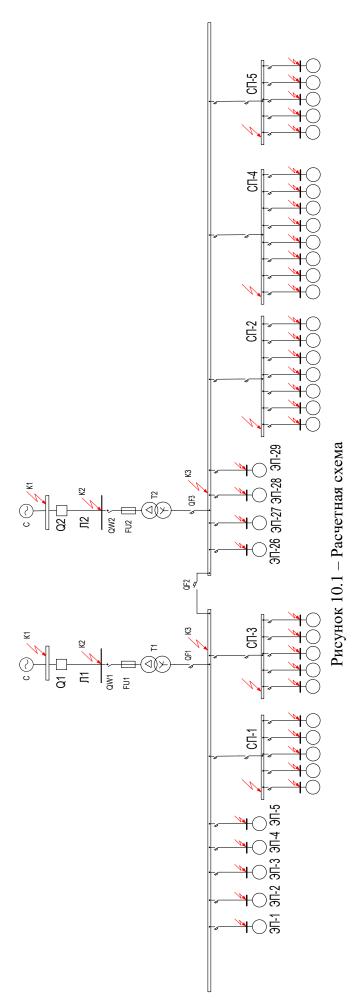
$$x_{\Pi} = x_{y\partial \Pi} \ell_{\Pi} \cdot \left(\frac{U_{\text{cp. K}}}{U_{\text{cp. HoM}}}\right)^{2} = 0,081 \cdot 2,5 \cdot 10^{3} \cdot \left(\frac{0,4}{6,3}\right)^{2} = 0,82 \text{ MOM}.$$

$$r_{\Pi} = r_{y\partial \Pi} \ell_{\Pi} \left(\frac{U_{\text{cp. K}}}{U_{\text{cp. HoM}}}\right)^{2} = 0,258 \cdot 2,5 \cdot 10^{3} \cdot \left(\frac{0,4}{6,3}\right)^{2} = 2,6 \text{ MOM}.$$

Сопротивления трансформатора:

$$r_{mp} = \frac{\Delta P_{\kappa,3}}{S_{hom,mp}} \cdot \frac{U_{hom}^2}{S_{hom,mp}} \cdot 10^6;$$
 (10.2)

$$x_{mp} = \sqrt{\left(\frac{U_{\kappa}}{100}\right)^{2} - \left(\frac{\Delta P_{\kappa.3.}}{S_{HOM.mp.}}\right)^{2}} \frac{U_{HOM.}^{2}}{S_{HOM.mp.}} \cdot 10^{6}.$$
 (10.3)


$$r_{mp} = \frac{18}{1600} \cdot \frac{0.4^{2}}{1600} \cdot 10^{6} = 1.13 \text{ MOM};$$

$$x_{mp} = \sqrt{\left(\frac{5.5}{100}\right)^{2} - \left(\frac{18}{1600}\right)^{2} \cdot \frac{0.4^{2}}{1600} \cdot 10^{6} = 5.38 \text{ MOM}.}$$

Ток КЗ в точке КЗ.

$$\begin{split} x_{\Sigma K3} &= x_C + x_{_{\mathcal{I}\!\!/}} + x_{_{mp}} = 1,06 + 0,82 + 5,38 = 7,26 \text{ mOm.} \\ r_{\Sigma K3} &= r_{_{mp}} + r_{_{\mathcal{I}\!\!/}} + r_{_{\partial o \bar{o}}} = 1,13 + 2,6 + 15 = 18,73 \text{ mOm.} \\ I_{K3} &= \frac{U_{_{CP.HOM}}}{\sqrt{3} \cdot \sqrt{x_{_{\Sigma K3}}^2 + r_{_{\Sigma K3}}^2}} = \frac{400}{\sqrt{3} \cdot \sqrt{7,26^2 + 18,73^2}} = 11,5 \text{ kA.} \\ i_{_{V\!\mathcal{I}\!\!/} K3} &= \sqrt{2} \cdot k_{_{V\!\mathcal{I}\!\!/}} \cdot I_{_{K3}}^{(3)} = \sqrt{2} \cdot 1,0 \cdot 11,5 = 16,26 \text{ kA.} \end{split}$$

Для остальных точек расчет аналогичен (таблица 10.1).

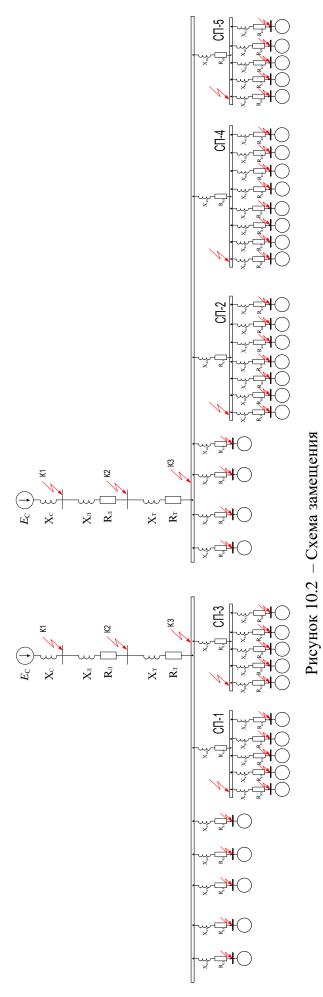


Таблица 10.1 – Расчет токов к.з.

Точка	Кабел	ть м	ежду СП и элек-	Ri,	Xi,	L.	r ₀ ,	X ₀ ,	Р кл,	Хкл,	Rдоб.,		Χ,		Ікз.		іуд,
КЗ			иемником №:	мОм	мОм	M	Ом/км	Ом/км	мОм	мОм	мОм	R, мОм	мОм	Z, мОм	кА	Кv	кА
1		г	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
К4	СП-1	-	Шины НН КТП	18,73	7,26	22	0,0835	0,0298	1,837	0,656	20	25,567	7,916	26,764	8,629	1	12,203
К5	СП-1	-	6	25,567	7,9156	15	0,258	0,0602	3,870	0,903	25	34,437	8,819	35,548	6,497	1	9,188
К6	СП-1	-	7	25,567	7,9156	9	0,258	0,0602	2,322	0,542	25	32,889	8,457	33,959	6,801	1	9,618
К7	СП-1	-	8	25,567	7,9156	6	0,258	0,0602	1,548	0,361	25	32,115	8,277	33,164	6,964	1	9,849
К8	СП-1	-	9	25,567	7,9156	8	0,258	0,0602	2,064	0,482	25	32,631	8,397	33,694	6,854	1	9,693
К9	СП-1	-	10	25,567	7,9156	14	0,258	0,0602	3,612	0,843	25	34,179	8,758	35,283	6,545	1	9,256
K10	СП-2	-	Шины НН КТП	18,73	7,26	24	0,103	0,0298	2,472	0,715	20	26,202	7,975	27,389	8,432	1	11,925
K11	СП-2	-	16	26,202	7,9752	11	0,206	0,0596	2,266	0,656	25	33,468	8,631	34,563	6,682	1	9,450
K12	СП-2	-	17	26,202	7,9752	8	0,206	0,0596	1,648	0,477	25	32,850	8,452	33,920	6,808	1	9,628
K13	СП-2	-	11	26,202	7,9752	18	7,74	0,095	139,320	1,710	25	170,522	9,685	170,797	1,352	1	1,912
K14	СП-2	-	12	26,202	7,9752	14	7,74	0,095	108,360	1,330	25	139,562	9,305	139,872	1,651	1	2,335
K15	СП-2	-	13	26,202	7,9752	9	7,74	0,095	69,660	0,855	25	100,862	8,830	101,248	2,281	1	3,226
К16	СП-2	-	14	26,202	7,9752	12	7,74	0,095	92,880	1,140	25	124,082	9,115	124,416	1,856	1	2,625
K17	СП-2		15	26,202	7,9752	17	7,74	0,095	131,580	1,615	25	162,782	9,590	163,064	1,416	1	2,003
K18	СП-3	-	Шины НН КТП	18,73	7,26	13	0,0645	0,02935	0,839	0,382	20	24,569	7,642	25,729	8,976	1	12,694
K19	СП-3	-	22	24,5685	7,64155	3	0,62	0,0625	1,860	0,188	25	31,429	7,829	32,389	7,130	1	10,083
K20	СП-3	1	23	24,5685	7,64155	4	0,258	0,0602	1,032	0,241	25	30,601	7,882	31,599	7,308	1	10,335
К21	СП-3	-	24	24,5685	7,64155	6	0,258	0,0602	1,548	0,361	25	31,117	8,003	32,129	7,188	1	10,165
K22	СП-3		25	24,5685	7,64155	8	0,258	0,0602	2,064	0,482	25	31,633	8,123	32,659	7,071	1	10,000
K23	СП-4	1	Шины НН КТП	18,73	7,26	29	0,129	0,0587	3,741	1,702	20	27,471	8,962	28,896	7,992	1	11,302
K24	СП-4	1	30	27,471	8,9623	3	0,62	0,0625	1,860	0,188	25	34,331	9,150	35,529	6,500	1	9,192
K25	СП-4		31	27,471	8,9623	4	0,62	0,0625	2,480	0,250	25	34,951	9,212	36,145	6,389	1	9,035
K26	СП-4	-	32	27,471	8,9623	6	0,62	0,0625	3,720	0,375	25	36,191	9,337	37,376	6,179	1	8,738
K27	СП-4	-	20	27,471	8,9623	33	3,1	0,073	102,300	2,409	25	134,771	11,371	135,250	1,708	1	2,415
K28	СП-4	-	21	27,471	8,9623	33	3,1	0,073	102,300	2,409	25	134,771	11,371	135,250	1,708	1	2,415
К29	СП-4	-	38	27,471	8,9623	19	1,94	0,0675	36,860	1,283	25	69,331	10,245	70,084	3,295	1	4,660
K30	СП-4		18	27,471	8,9623	14	3,1	0,073	43,400	1,022	25	75,871	9,984	76,525	3,018	1	4,268

Точка	Кабел	ІЬ М	ежду СП и элек-	Ri,	Xi,	L,	r ₀ ,	x ₀ ,	Р кл,	Хкл,	Rдоб.,		X,		Ікз,		іуд,
КЗ	тр	опр	иемником №:	мОм	мОм	M	Ом/км	$O_{M/KM}$	мОм	мОм	мОм	R, мОм	мОм	Z, мОм	кА	Ку	кА
1			2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
K31	СП-4		19	27,471	8,9623	9	3,1	0,073	27,900	0,657	25	60,371	9,619	61,133	3,778	1	5,343
К32	СП-5	1	Шины НН КТП	18,73	7,26	25	0,206	0,0596	5,150	1,490	20	28,880	8,750	30,176	7,653	1	10,823
К33	СП-5	-	33	28,88	8,75	8	0,62	0,0625	4,960	0,500	25	38,840	9,250	39,926	5,784	1	8,180
К34	СП-5	-	34	28,88	8,75	6	0,62	0,0625	3,720	0,375	25	37,600	9,125	38,691	5,969	1	8,441
K35	СП-5	1	35	28,88	8,75	6	3,1	0,073	18,600	0,438	25	52,480	9,188	53,278	4,335	1	6,131
К36	СП-5	1	36	28,88	8,75	5	3,1	0,073	15,500	0,365	25	49,380	9,115	50,214	4,599	1	6,504
К37	СП-5	1	37	28,88	8,75	11	3,1	0,073	34,100	0,803	25	67,980	9,553	68,648	3,364	1	4,757
К38	ЭП	1	1	-	-	4	0,103	0,0298	0,412	0,119	25	5,412	0,119	5,413	42,664	1	60,336
К39	ЭП	-	2	-	-	9	0,103	0,0298	0,927	0,268	25	5,927	0,268	5,933	38,925	1	55,048
К40	ЭП	1	3	-	-	11	0,103	0,0298	1,133	0,328	25	6,133	0,328	6,142	37,600	1	53,174
К41	ЭП	-	4	-	-	19	0,103	0,0298	1,957	0,566	25	6,957	0,566	6,980	33,086	1	46,791
К42	ЭП	-	5	-	-	24	0,103	0,0298	2,472	0,715	25	7,472	0,715	7,506	30,767	1	43,511
К43	ЭП	-	26	-	-	32	0,103	0,0298	3,296	0,954	25	8,296	0,954	8,351	27,654	1	39,109
К44	ЭП		27	-	-	31	0,103	0,0298	3,193	0,924	25	8,193	0,924	8,245	28,010	1	39,612
К45	ЭП		28	-	-	31	0,103	0,0298	3,193	0,924	25	8,193	0,924	8,245	28,010	1	39,612
К46	ЭП	-	29	-	-	30	0,103	0,0298	3,090	0,894	25	8,090	0,894	8,139	28,375	1	40,128

10.3 Расчет токов однофазного к.з.

Расчет токов однофазного к.з. $I_{\kappa_3}^{(1)}$ ведется по [7]:

$$I_{K3}^{(1)} = \frac{U_{\phi}}{\frac{Z_{T}}{3} + Z_{II}},$$
(10.4)

Полное сопротивление петли:

$$Z_{n} = \sqrt{\left(R_{\phi} + R_{H} + R_{TT} + R_{A}\right)^{2} + \left(X' + X'' + X_{C} + X_{TT} + X_{A}\right)^{2}},$$
 (10.5)

Аналогичные расчеты сведем в таблицу 10.2.

Таблица 10.2 – Расчет токов однофазного к.з.

Номер СП или ЭП	Сопротивление трансформатора однофазному к.з., Zт, мОм	Длина провода или кабеля, м	Сопротивления фазного, нулевого провода, Ом/км	Сопротивление дуги Rд, мОм	Сопротивление первичной обмотки ТТ, Rтт, мОм	Активное сопротивление автомата, мОм	Внешнее индуктивное сопротивление петли фаза-нуль, Ом/км	Сопротивление питающей системы, мОм	Индуктивное сопротивление первичной об- мотки ТТ, Хтт, мОм	Индуктивное сопротивление автомата, мОм	Результирующее активное сопротивление цепи фаза-нуль, мОм	Результирующее реактивное сопротивление цепи фаза-нуль, мОм	Результирующее полное сопротивление цепи фаза-нуль, мОм	Ток однофазного к.з., А
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
СП-1	54	22	0,0835	30	0,15	0,37	0,6	1,06	0,21	0,13	34,19	14,6	37,177	4185,44
6	54	15	0,258	30		15	0,6			1	52,74	10	53,68	3221,82
7	54	9	0,258	30		15	0,6			1	49,64	6,4	50,051	3393,63
8	54	6	0,258	30		15	0,6			1	48,1	4,6	48,319	3482,26
9	54	8	0,258	30		15	0,6			1	49,13	5,8	49,471	3422,81
10	54	14	0,258	30		15	0,6			1	52,22	9,4	53,059	3249,98
СП-2	54	24	0,103	30	0,15	0,55	0,6	1,06	0,21	0,17	35,64	15,84	39,001	4051,51
16	54	11	0,206	30		15	0,6			0,74	49,53	7,34	50,071	3392,64
17	54	8	0,206	30		15	0,6			0,74	48,3	5,54	48,617	3466,68
11	54	18	7,74	30		3	0,6			15	311,64	25,8	312,706	698,32
12	54	14	7,74	30		3	0,6			15	249,72	23,4	250,814	859,11
13	54	9	7,74	30		3	0,6			15	172,32	20,4	173,523	1205,81
14	54	12	7,74	30		3	0,6			15	218,76	22,2	219,884	970,81
15	54	17	7,74	30		2,5	0,6			15	295,66	25,2	296,732	733,77
СП-3	54	13	0,0645	30	0,15	0,37	0,6	1,06	0,21	0,13	32,2	9,2	33,489	4485,23

Номер СП или ЭП	Сопротивление трансформатора однофазному к.з., Zr, мОм	Длина провода или кабеля, м	Сопротивления фазного, нулевого провода, Ом/км	Сопротивление дуги Rд, мОм	Сопротивление первичной обмотки ТТ, Rтт, мОм	Активное сопротивление автомата, мОм	Внешнее индуктивное сопротивление петли фаза-нуль, Ом/км	Сопротивление питающей системы, мОм	Индуктивное сопротивление первичной об- мотки ТТ, Хтт, мОм	Индуктивное сопротивление автомата, мОм	Результирующее активное сопротивление цепи фаза-нуль, мОм	Результирующее реактивное сопротивление цепи фаза-нуль, мОм	Результирующее полное сопротивление цепи фаза-нуль, мОм	Ток однофазного к.з., А
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
22	54	3	0,62	30		7	0,6			2,05	40,72	3,85	40,902	3920,75
23	54	4	0,258	30		15	0,6			1	47,06	3,4	47,183	3542,95
24	54	6	0,258	30		15	0,6			1	48,1	4,6	48,319	3482,26
25	54	8	0,258	30		15	0,6			1	49,13	5,8	49,471	3422,81
СП-4	54	29	0,129	30	0,15	0,55	0,6	1,06	0,21	0,17	38,18	18,84	42,575	3812,47
30	54	3	0,62	30		7	0,6			2,05	40,72	3,85	40,902	3920,75
31	54	4	0,62	30		7	0,6			2,05	41,96	4,45	42,195	3836,53
32	54	6	0,62	30		7	0,6			2,05	44,44	5,65	44,798	3677,51
20	54	33	3,1	30		6	0,6			15	240,6	34,8	243,104	884,48
21	54	33	3,1	30		6	0,6			15	240,6	34,8	243,104	884,48
38	54	19	1,94	30		6	0,6			6,8	109,72	18,2	111,219	1787,2
18	54	14	3,1	30		6	0,6			15	122,8	23,4	125,01	1614,85
19	54	9	3,1	30		6	0,6			15	91,8	20,4	94,039	2061,25
СП-5	54	25	0,206	30	0,15	0,74	0,6	1,06	0,21	0,36	41,19	16,63	44,42	3699,78
33	54	8	0,62	30		7	0,6			2,05	46,92	6,85	47,417	3530,28
34	54	6	0,62	30		7	0,6			2,05	44,44	5,65	44,798	3677,51
35	54	6	3,1	30		6	0,6			15	73,2	18,6	75,526	2469,26
36	54	5	3,1	30		6	0,6			15	67	18	69,376	2643,06
37	54	11	3,1	30		6	0,6			15	104,2	21,6	106,415	1856,21
ЭП, заг	l		рямую от	шин	КТП									
1	54	4	0,103	30		25	0,6			0,55	55,82	2,95	55,898	3125,12
2	54	9	0,103	30		25	0,6			0,55	56,85	5,95	57,161	3072,61
3	54	11	0,103	30		25	0,6			0,55	57,27	7,15	57,715	3050,12
4	54	19	0,103	30		25	0,6			0,55	58,91	11,95	60,11	2956,6
5	54	24	0,103	30		25	0,6			0,55	59,94	14,95	61,776	2894,86
26	54	32	0,103	30		35	0,6			0,41	71,59	19,61	74,227	2504,04
27	54	31	0,103	30		35	0,6			0,41	71,39	19,01	73,878	2513,55
28	54	31	0,103	30		35	0,6			0,41	71,39	19,01	73,878	2513,55
29	54	30	0,103	30		35	0,6			0,41	71,18	18,41	73,522	2523,33

10.4 Проверка защитных аппаратов

Проверка на отключающую способность осуществляется по выражению:

$$I_{\text{откл hom}} \ge I_{\text{кзмах}}. \tag{10.6}$$

Таблица 10.3 – Проверка автоматических выключателей

Место уста- новки (СП или	Тип автоматического выключа- теля	Предельная отключаю- щая способность, кА	Номер точки к.з.	Iкз ⁽³⁾ ,
№ ЭП)				кА
1	2	3	4	5
Вводной авто- мат QF1, QF3	BA 53-45	36	К3	11,5
Секционный автомат QF2	BA 53-43	31	К3	11,5
Автомат защи- ты КУ	BA 51-35	15	К3	11,5
Автомат защи- ты ЩО	BA 47-29	15	К3	11,5
СП-1	BA 51-39	35	К4	8,629
6	BA 51-35	15	К5	6,497
7	BA 51-35	15	К6	6,801
8	BA 51-35	15	К7	6,964
9	BA 51-35	15	К8	6,854
10	BA 51-35	15	К9	6,545
СП-2	BA 51-37	25	К10	8,432
16	BA 51-35	15	К11	6,682
17	BA 51-35	15	K12	6,808
11	BA 51-25	3	К13	1,352
12	BA 51-25	3	K14	1,651
13	BA 51-25	3	K15	2,281
14	BA 51-25	3	K16	1,856
15	BA 51-25	2,5	K17	1,416
СП-3	BA 51-39	35	K18	8,976
22	BA 51-31	7	К19	7,13
23	BA 51-35	15	К20	7,308
24	BA 51-35	15	К21	7,188
25	BA 51-35	15	К22	7,071
СП-4	BA 51-37	25	К23	7,992
30	BA 51-31	7	К24	6,5
31	BA 51-31	7	К25	6,389
32	BA 51-31	7	К26	6,179
20	BA 51-31	6	К27	1,708
21	BA 51-31	6	К28	1,708
38	BA 51-31	6	К29	3,295
18	BA 51-31	6	К30	3,018
19	BA 51-31	6	К31	3,778
СП-5	BA 51-35	15	К32	7,653
33	BA 51-31	7	К33	5,784
34	BA 51-31	7	К34	5,969
35	BA 51-31	6	K35	4,335
36	BA 51-31	6	К36	4,599

Место уста- новки (СП или № ЭП)	Тип автоматического выключа- теля	Предельная отключаю- щая способность, кА	Номер точки к.з.	Ікз ⁽³⁾ , кА
1	2	3	4	5
37	BA 51-31	6	К37	3,364
ПЄ				
1	BA 51-37	25	К38	42,664
2	BA 51-37	25	К39	38,925
3	BA 51-37	25	К40	37,6
4	BA 51-37	25	К41	33,086
5	BA 51-37	25	К42	30,767
26	BA 51-39	35	К43	27,654
27	BA 51-39	35	К44	28,01
28	BA 51-39	35	K45	28,01
29	BA 51-39	35	К46	28,375

Требуемое условие выполняется. Произведем проверку чувствительности автоматов [12]:

$$\frac{I_{K3}^{(1)}}{I_{pu.hom}} \ge 3. \tag{10.7}$$

Таблица 10.4 – Проверка чувствительности

Место установки (КТП, СП или ЭП)	Номер точки КЗ	Тип выключателя	І _{рц.ном} , А	Ι _{κ3(1)} , Α	$I_{\mbox{\scriptsize K3(1)}}/I_{\mbox{\scriptsize ptl.Hom}}$
1	2	3	4	5	6
Вводной автомат QF1, QF3	К3	BA 53-45	4000	10350	2,59
Секционный автомат QF2	К3	BA 53-43	2500	10350	4,14
Автомат защиты КУ	К3	BA 51-35	630	10350	16,43
Автомат защиты ЩО	К3	BA 47-29	25	10350	414
СП-1	К4	BA 51-39	630	4185,44	6,64
6	K5	BA 51-35	200	3221,82	16,11
7	К6	BA 51-35	200	3393,63	16,97
8	К7	BA 51-35	200	3482,26	17,41
9	К8	BA 51-35	200	3422,81	17,11
10	К9	BA 51-35	200	3249,98	16,25
СП-2	K10	BA 51-37	400	4051,51	10,13
16	K11	BA 51-35	250	3392,64	13,57
17	K12	BA 51-35	250	3466,68	13,87
11	K13	BA 51-25	16	698,32	43,65
12	K14	BA 51-25	16	859,11	53,69
13	K15	BA 51-25	16	1205,81	75,36
14	K16	BA 51-25	16	970,81	60,68
15	K17	BA 51-25	10	733,77	73,38
СП-3	K18	BA 51-39	630	4485,23	7,12
22	K19	BA 51-31	125	3920,75	31,37
23	К20	BA 51-35	200	3542,95	17,71
24	К21	BA 51-35	200	3482,26	17,41
25	K22	BA 51-35	200	3422,81	17,11
СП-4	K23	BA 51-37	400	3812,47	9,53

Место установки (КТП, СП или ЭП)	Номер точки КЗ	Тип выключателя	І _{рц.ном} , А	I _{к3(1)} , A	$I_{\mbox{\tiny K3}(1)}/I_{\mbox{\tiny PIL.HOM}}$
1	2	3	4	5	6
30	К24	BA 51-31	125	3920,75	31,37
31	K25	BA 51-31	125	3836,53	30,69
32	К26	BA 51-31	125	3677,51	29,42
20	К27	BA 51-31	40	884,48	22,11
21	K28	BA 51-31	40	884,48	22,11
38	К29	BA 51-31	50	1787,2	35,74
18	K30	BA 51-31	40	1614,85	40,37
19	K31	BA 51-31	40	2061,25	51,53
СП-5	К32	BA 51-35	250	3699,78	14,8
33	К33	BA 51-31	125	3530,28	28,24
34	К34	BA 51-31	125	3677,51	29,42
35	K35	BA 51-31	40	2469,26	61,73
36	К36	BA 51-31	40	2643,06	66,08
37	К37	BA 51-31	40	1856,21	46,41
ЭП					
1	K38	BA 51-37	400	3125,12	7,81
2	К39	BA 51-37	400	3072,61	7,68
3	K40	BA 51-37	400	3050,12	7,63
4	K41	BA 51-37	400	2956,6	7,39
5	K42	BA 51-37	400	2894,86	7,24
26	K43	BA 51-39	500	2504,04	5,01
27	K44	BA 51-39	500	2513,55	5,03
28	K45	BA 51-39	500	2513,55	5,03
29	К46	BA 51-39	500	2523,33	5,05

11 Анализ качества напряжения в цеховой сети

Наиболее наглядно анализ качества напряжения отражается эпюрой отклонения напряжения. Расчет будем производить:

- 1. Для самого мощного электроприемника (ЭП № 29, от шин КТП);
- 2. Для самого удаленного (ЭП № 20, от СП-4).

Величина отклонения напряжения рассчитывается по формуле:

$$V = \frac{(U_{\text{M}\Pi} - \Delta U_{\text{участка}}) - U_{\text{H}}}{U_{\text{H}}} \cdot 100\%. \label{eq:V_equation}$$

Потери в питающей линии определяются выражением:

$$\Delta U_{\pi} = \sqrt{3} \cdot I_{\text{pa6}} \cdot L \cdot (r_0 \cdot \cos \varphi + x_0 \cdot \sin \varphi).$$

Потери в трансформаторе КТП определяются выражением:

$$\Delta U_{\rm TP} = \beta \cdot (U_a \cdot \cos \varphi + U_p \cdot \sin \varphi),$$

где β — коэффициент загрузки, U_a , U_p —соответственно активная и реактивная составляющие напряжение короткого замыкания:

$$U_p = \sqrt{U_{\rm K}^2 - U_a^2},$$
 $U_a = \Delta P_{\rm K.3.} / S_{\rm HOM.Tp.} \cdot 100.$

Оценка качества напряжения для самого мощного электроприемника.

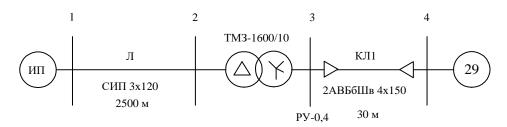


Рисунок 11.1 – Расчетная схема

Максимальный режим.

 $U_{\text{ном}} = 6300 \text{ B} - \text{напряжение } \Pi \Pi \text{ в максимальном режиме.}$

Максимальный режим.

Потери напряжения в высоковольтной линии Л, питающей один трансформатор, определены в процентах в п.10:

$$\Delta U_{\rm JI} = 1.84$$
 %. $\Delta U_{\rm JI} = 1.84$ * $6000/100 = 110.4$ B.

Отклонение напряжения относительно номинального в линии Л:

$$V = \frac{(6300 - 110,4) - 6000}{6000} \cdot 100\% = 3,16\%.$$

тогда напряжение в конце линии Л составит:

$$U_2 = 6300 - 110,4 = 6189,6 B.$$

Вычислим потери напряжения в трансформаторе.

$$\Delta P_{\text{\tiny K.3.}} = 18 \text{ kBt; } S_{\text{\tiny Hom.tp.}} = 1600 \text{ kBA.}$$
 $U_a = \Delta P_{\text{\tiny K.3.}} / S_{\text{\tiny Hom.tp.}} \cdot 100 = 18 / 1600 \cdot 100 = 1,13 \%$
 $U_{\text{\tiny K}} = 5,5\%,$
 $U_p = \sqrt{U_{\text{\tiny K}}^2 - U_a^2} = \sqrt{5,5^2 - 1,13^2} = 5,38 \%.$

Потери напряжения в трансформаторе:

$$\begin{split} & \Delta U_{\mathrm{Tp}} = \beta \cdot \left(U_a \cdot \cos \varphi + U_p \cdot \sin \varphi \right) = \\ & = 0.6 \cdot (1.13 \cdot 0.93 + 5.38 \cdot 0.37) = 1.82 \%. \\ & \Delta U_{\mathrm{Tp1}} = \Delta U_{\mathrm{Tp}} \cdot \frac{U_{\mathrm{HOM}}}{100} = 1.82 \cdot \frac{6000}{100} = 109.2 \; \mathrm{B}. \end{split}$$

Напряжение на шинах НН трансформатора, приведенное к ВН:

$$U_3 = U_2 - \Delta U_{\text{TD1}} = 6189,6 - 109,2 = 6080,4 \text{ B}.$$

Коэффициент трансформации:

$$K_{\rm Tp} = \frac{U_{\rm HH}}{U_{\rm BH}},$$

$$K_{\rm Tp} = \frac{380}{6000} = 0,063.$$

$$U_{\rm 2HH} = U_2 \cdot K_{\rm Tp},$$

$$U_{\rm 2HH} = 6080,4 \cdot 0,063 = 385,09 \text{ B}.$$

Отклонение напряжения относительно номинального:

$$V_3 = \frac{U_{2\text{HH}} - U_{\text{HOM HH}}}{U_{\text{HOM HH}}} \cdot 100 = \frac{385,09 - 380}{380} \cdot 100 = 1,34 \%.$$

Потеря напряжения в линии КЛ1, соединяющем РУ-0,4 и ЭП-29:

$$\Delta U_{3-4} = 1.98 \text{ B}.$$

Напряжение в конце кабеля КЛ1, у ЭП-29:

$$U_4 = U_{2HH} - \Delta U_{3-4} = 385,09 - 1,98 = 383,11 \text{ B}.$$

Отклонение напряжения в конце кабеля относительно номинального:

$$V_4 = \frac{383,11 - 380}{380} \cdot 100 = 0,82 \%.$$

0,82% < 10%. Условие выполняется, потери допустимы.

Расчеты для минимального и послеаварийного режимов для самого мощного электроприемника аналогичны (таблица 11.1). Нагрузка в минимальном режиме принята равной 70% от нагрузки максимального режима, послеаварийный режим подразумевает выход из строя одного из трансформаторов. Все необходимые параметры для расчета представлены в таблице 11.1.

Оценка качества напряжения для самого удаленного электроприемника. При расчетах используем данные из предыдущих расчетов.

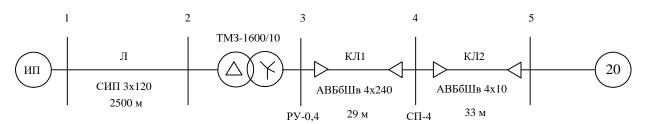


Рисунок 11.2 – Расчетная схема

Расчеты для трех режимов для самого удаленного электроприемника аналогичны (таблица 11.2). Нагрузка в минимальном режиме принята равной 70% от нагрузки максимального режима, послеаварийный режим подразумевает выход из строя одного из трансформаторов.

Все необходимые параметры для расчета представлены в таблице 11.2. Эпюры напряжения представлены в графической части.

	апряжения (расчет отклонений напряжения) для самого мощного электроприемника	R_0 ,	0,081 94,67 1,84 110,4 6189,6	ДРК.3., кВт Sm. кВА St.ном, кВА Ua, % Up. % AU, % AU, B UbH, B Отклонение напряжения V. %	1600 1,13 5,5 5,38 1,82 109,2 6080,4 385,09	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,03 0,103 0,0298 0,52 1,98 383,11 0,82	R_0 ,	0,258 0,4 66,269 1,288 81,14 5918,86 -1,288	ДРК.3., кВт Ст. кВА Отклонение напряжения V. %	1600 1,13 5,5 5,38 1,28 76,8 5842,06 370	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,03 0,103 0,0298 0,0364 1,386 368,614 -3	R ₀ , Ом/км Том/км Том/км </th <th>0,4 189,34 3,68 231,84 6068,16</th> <th>ДРк.з., кВт Sт.ном, кВА Ua, % Up, % ДU, % ДU, В ДU, В Ди, В Отклонение напряжения V, %</th> <th>18 1914,54 1600 1,13 5,5 5,38 3,65 219 5849,16 370,45 -2,51</th> <th>1, км R_0, Ом/км X_0, Ом/км ΔU, ΔU,</th> <th></th>	0,4 189,34 3,68 231,84 6068,16	ДРк.з., кВт Sт.ном, кВА Ua, % Up, % ДU, % ДU, В ДU, В Ди, В Отклонение напряжения V, %	18 1914,54 1600 1,13 5,5 5,38 3,65 219 5849,16 370,45 -2,51	1 , км R_0 , Ом/км X_0 , Ом/км ΔU ,	
OK Cosφ sinφ I, κω 0,93 0,37 2,5 0,93 0,37 2,5 0,93 0,37 0,6 0,93 0,37 0,6 0,8 0,6 379,84 0,93 0,37 2,5 0,93 0,37 2,5 0,93 0,37 2,5 0,93 0,37 2,5 0,93 0,37 0,42 0,93 0,37 0,42 0,9 sinq I, A 0,9 0,93 0,37 2,5 0,93 0,37 2,5 0,93 0,37 2,5 0,93 0,37 2,5 0,93 0,37 2,5 0,93 0,37 2,5 0 0,93 0,37 2,5 0 0,93 0,37 2,5 0 0,93 0,37 1,2 0 0,93 0,37 2,5		Xo. OM/KM	0,081	Sur. KBA	957,27			Х ₀ , Ом/км	0,4	S _{III} , KBA	r	M		X, OM/KM	0,4	S _{III} , ĸBA	1914,54		
	тва напря:		+	<u> </u>											+				
	13 качес		┢	sin (Φ)	0,37				0,37	sin (Φ)	_	sinq			+	sin (ф)	0,37	sino	
	Аналк	cose	0,93		-	cosφ	0,8	cosq	0,93	cos (φ)	0,93	cosp	0,8	COSO	0,93	(ф) soo	0,93		
	Таблица 11.1 –	Участок	1-2	Участок	2-3	Участок	3-4	Участок	1-2	Участок	2-3	Участок	3-4	Vчасток	1-2	Участок	2-3	Участок	

(расчет отклонений напряжения) для самого удаленного электроприемника	Отслонение напряжения V, %	3,16	Отслонение напряжения V, %	1,34		0,77	-0,31	Отслонение напряжения V, %	-1,288	% У випеменно попонона	-2.57		-2,97	-3,72		Отклонение напряжения V, %	1,32	Отслонение напряжения V, %	-2,51		-3,08	4,16
ного эле			Онн , В	385,09						I Imr B	370,24							Uнн, В	370,45			
удален	U,B	6189,6	Uвн, В	6080,4	U, B	382,92	378,82	U, B	5922,72	I Ing. B	5845,92	U,B	368,721	365,851		U, B	6068,16	Uвн, В	5849,16	U, B	368,28	364,18
амого	ΔU, B	110,4	ΔU, B	109,2	AU, B	2,17	4,1	ΔU, B	77,28	AII B	76,8	ΔU, B	1,519	2,87		ΔU, B	231,84	ΔU, B	219	ΔU, B	2,17	4,1
ля с	ΔU, %	1,84	ΔU, %	1,82	ΔU, %	0,57	1,08	ΔU, %	1,288	% 11V	1,28	ΔU, %	0,399	0,756		ΔU, %	3,68	ΔU, %	3,65	ΔU, %	0,57	1,08
жения			Up, %	5,38						% 4II	5,38							Up, %	5,38			
напря			Uĸ, %	5,5						% -411	5,5							Uĸ,%	5,5			
ний і			Ua, %	1,13						% 611	1,13							Ua, %	1,13			
ет отклоне	Ip, A	94,67	Sт.ном, кВА	1600	X_0 , Om/km	0,0587	0,073	Ip, A	66,269	Sruom rBA	+-	X_0 , Om/km	0,0587	0,073		Ip, A	189,34	Sт.ном, кВА	1600	X_0 , OM/KM	0,0587	0,073
	X_0 , Om/km	0,081	Ѕш, кВА	72,729	R_0 , Om/km	0,129	3,1	X_0 , Om/km	0,081	, D.	670,079	R_0 , Om/km	0,129	3,1		X_0 , Om/km	0,081	S _{III} , κBA	1914,54	R_0 , Om/km	0,129	3,1
Анализ качества напряжения	$ m R_0$, $ m O_{M/KM}$	0,258	∆Рк.з., кВг	18	l, km	0,029	0,033	R_0 , Om/km	0,258	ΔPκ.3.,	<u>8</u>	l, km	0,029	0,033	\mathbf{R}_{0} ,	$O_{M/KM}$	0,258	∆Рк.з., кВт	18	l, km	0,029	0,033
ства н	1, км	2,5	K3(β)	9,0	I, A	315,31	28,49	1, км	2,5	V ₂ (R)	0,42	I, A	315,31	28,49		l, km	2,5	Κ3(β)	1,2	I, A	315,31	28,49
з каче	oms	0,37	(φ) wis	0,37	quis	0,61	9,0	φms	0,37	(h) mis	0,37	quis	0,61	9,0		$\sin \varphi$	0,37	sin (ф)	0,37	sinq	0,61	9,0
Анали	cosp	0,93	(ф) soэ	0,93	φsoo	0,79	8,0	φsoo	0,93	(((())	0,93	φsoo	0,79	8,0		cosp	0,93	cos (φ)	0,93	φsoo	0,79	0,8
Таблица 11.2—	Участок	1-2	Участок	2-3	Участок	3-4	4-5	Участок	1-2	Virgorous	2-3	Участок	3-4	4-5		Участок	1-2	Участок	2-3	Участок	3-4	4-5
Таблиц	Режим	ми	жәd йі	РНР	nem	икси	вМ	Режим	MH	ьежі	йын	Mani	ини		Режим	ļ	йіанйи	два		юП		

12 Расчет стоимости реконструкции системы электроснабжения котельной

Капитальные затраты на реконструкцию складываются из затрат на различное оборудование, представленное в таблицах 12.1-12.3.

Таблица 12.1 – Расчет стоимости силовых шкафов [20]

Номер СП	I _p , A	Марка СП	Номиналь- ный ток СП, А	Количество присоедине- ний СП	Стоимость, руб
СП-1	478,64	ПР8501-1083	500	8	50379
СП-2	346,59	ПР8501-1083	400	8	50379
СП-3	456,47	ПР8501-1083	500	8	50379
СП-4	315,31	ПР8501-1083	400	8	50379
СП-5	205,42	ПР8501-1067	250	8	42102
				ИТОГО	243618

Таблица 12.2 – Расчет стоимости кабелей [22]

№ п/п	Сечение кабеля	L, м	Цена, руб./м	Стоимость, руб
1	2	3	4	5
1	(2)x150	4	3712	14848
2	(2)x150	9	3712	33408
3	(2)x150	11	3712	40832
4	(2)x150	19	3712	70528
5	(2)x150	24	3712	89088
6	120	15	1780	26700
7	120	9	1780	16020
8	120	6	1780	10680
9	120	8	1780	14240
10	120	14	1780	24920
11	4	18	84	1512
12	4	14	84	1176
13	4	9	84	756
14	4	12	84	1008
15	4	17	84	1428
16	150	11	1856	20416
17	150	8	1856	14848
18	10	14	148	2072
19	10	9	148	1332
20	10	33	148	4884
21	10	33	148	4884
22	50	3	740	2220
23	120	4	1780	7120
24	120	6	1780	10680
25	120	8	1780	14240
26	(2)x150	32	3712	118784
27	(2)x150	31	3712	115072

№ п/п	Сечение кабеля	L, м	Цена, руб./м	Стоимость, руб		
1	2	3	4	5		
28	(2)x150	31	3712	115072		
29	(2)x150	30	3712	111360		
30	50	3	740	2220		
31	50	4	740	2960		
32	50	6	740	4440		
33	50	8	740	5920		
34	50	6	740	4440		
35	10	6	148	888		
36	10	5	148	740		
37	10	11	148	1628		
38	16	19	216	4104		
Кабели, питающие СП						
СП-1	(2)x185	22	5920	130240		
СП-2	(2)x150	24	3712	89088		
СП-3	(2)x240	13	7120	92560		
СП-4	240	29	3560	103240		
СП-5	150	25	1856	46400		
		_	Итого	1378996		

Таблица 12.3 – Стоимость автоматов

Место установки	Тип автомата	Номинальный ток, А	Количество авто- матов на присо- единение	Цена автома- та, руб.	Цена общая, руб.		
	Вариант 1						
СП-1	BA 51-39	630	2	5600	11200		
СП-2	BA 51-37	400	2	2300	4600		
СП-3	BA 51-39	630	2	5600	11200		
СП-4	BA 51-37	400	2	2300	4600		
СП-5	BA 51-35	250	2	1300	2600		
1	BA 51-37	400	1	2300	2300		
2	BA 51-37	400	1	2300	2300		
3	BA 51-37	400	1	2300	2300		
4	BA 51-37	400	1	2300	2300		
5	BA 51-37	400	1	2300	2300		
6	BA 51-35	250	1	1300	1300		
7	BA 51-35	250	1	1300	1300		
8	BA 51-35	250	1	1300	1300		
9	BA 51-35	250	1	1300	1300		
10	BA 51-35	250	1	1300	1300		
11	BA 51-25	25	1	450	450		
12	BA 51-25	25	1	450	450		
13	BA 51-25	25	1	450	450		
14	BA 51-25	25	1	450	450		
15	BA 51-25	25	1	450	450		
16	BA 51-35	250	1	1300	1300		
17	BA 51-35	250	1	1300	1300		
18	BA 51-31	100	1	1200	1200		
19	BA 51-31	100	1	1200	1200		
20	BA 51-31	100	1	1200	1200		
21	BA 51-31	100	1	1200	1200		

Место установки	Тип автомата	Номинальный ток, А	Количество авто- матов на присо- единение	Цена автома- та, руб.	Цена общая, руб.
22	BA 51-31	160	1	1200	1200
23	BA 51-35	250	1	1300	1300
24	BA 51-35	250	1	1300	1300
25	BA 51-35	250	1	1300	1300
26	BA 51-39	630	1	5600	5600
27	BA 51-39	630	1	5600	5600
28	BA 51-39	630	1	5600	5600
29	BA 51-39	630	1	5600	5600
30	BA 51-31	160	1	1200	1200
31	BA 51-31	160	1	1200	1200
32	BA 51-31	160	1	1200	1200
33	BA 51-31	160	1	1200	1200
34	BA 51-31	160	1	1200	1200
35	BA 51-31	100	1	1200	1200
36	BA 51-31	100	1	1200	1200
37	BA 51-31	100	1	1200	1200
38	BA 51-31	100	1	1200	1200
	100150				

Общая стоимость вложений в реконструкцию схемы электроснабжения котельной:

$$K_{PEK}$$
 = 1379 + 243,6 + 100,15 = 1722,76 тыс. руб.

С учетом затрат на монтаж и транспортировку получаем ориентировочную стоимость всех затрат, равную около 2,2 млн. руб.

ЗАКЛЮЧЕНИЕ

В результате работы над ВКР выполнена реконструкция внутренних электросетей 0,4 кВ котельной МУП «Новый дом» (г. Сорск) для повышения надежности электроснабжения ее потребителей.

В ходе выполнения работы была дана характеристика объекта проектирования и действующей схемы его электроснабжения. На предварительном этапе были рассчитаны электрические нагрузки на первом уровне для силовых электроприемников, а также количество и мощность светильников, рассчитана нагрузка на втором уровне электроснабжения для узлов питания. На основании этих полученных результатов были выбраны актуальные марки трансформаторов соответствующей мощности и с учетом применения компенсирующих устройств для повышения коэффициента мощности и выполнения договорных условий по электроснабжению.

Для защиты узлов второго уровня и индивидуальных электроприемников выбраны защитные аппараты (автоматические выключатели), и далее, с ними согласованы сечения проводников (кабельные линии различного сечения). Для выбора щитов освещения, кабелей и защитной аппаратуры произведены электротехнические расчеты рабочего и аварийного освещения.

В конечном счете, произведен анализ качества напряжения в цеховой сети и расчет стоимости реконструкции системы электроснабжения котельной.

Практическая значимость исследований обусловлена тем, что предложенные виды электрооборудования и технические решения, касающиеся системы электроснабжения, могут быть использованы для реконструкции и проектирования котельных.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Системы электроснабжения. Курсовое проектирование : учебн.-метод. пособие / сост. Н. В. Дулесова ; Сиб. федер. ун-т, ХТИ филиал СФУ. Электрон. текстовые, граф. дан. Абакан : ХТИ филиал СФУ, 2016. 72 с.
- 2. Конюхова, Е. А. Электроснабжение: учебник / Е.А. Конюхова. Электрон. дан. М.: Издательский дом МЭИ, 2014. 510 с.
- 3. Киреева, Э.А. Электроснабжение и электрооборудование цехов промышленных предприятий: Учебное пособие / Э.А. Киреева. М.: КноРус, 2013. 368 с.
- 4. Кудрин, Б. И. Электроснабжение : учебник для использования в образовательном процессе образовательных учреждений, реализующих программы высшего образования по направлению подготовки 13.03.02 Электроэнергетика и электротехника (уровень бакалавриата), профиль (направленность) "Электроснабжение" / Б. И. Кудрин, Б. В. Жилин, М. Г. Ошурков. Ростов-на-Дону : Феникс, 2018. 382 с.
- 5. НТП ЭПП-94. Нормы технологического проектирования. Проектирование электроснабжения промышленных предприятий. М.: АООТ ОТК ЗВНИ ПКИ Тяжпромэлектропроект, 1994 (1-я редакция). URL: https://files.stroyinf.ru/Data1/9/9633/ (дата обращения 20.05.2023).
- 6. Пособие к «Указаниям по расчету электрических нагрузок». М.: Всероссийский научно-исследовательский, проектно-конструкторский институт Тяжпромэлектропроект, 1993 (2-я редакция). URL: https://gostinform.ru/other-dokumenty/posobie-obj48368.html (дата обращения 20.05.2023).
- 7. Правила устройства электроустановок. 7-е издание. СПб.: Издательство ДЕАН, 2013. 701 с.
- 8. РД 153-34.0-20.527-98. Руководящие указания по расчету токов короткого замыкания и выбору электрооборудования; дата введ. 23.03.1998. М.: Издательство МЭИ, 1998. 131 с. URL: http://docs.cntd.ru/document/1200031256 (дата обращения 20.05.2023).
- 9. РТМ 36.18.32.4-92. Указания по расчету электрических нагрузок; дата введ. 01.01.1993. М.: ВНИПИ Тяжпромэлектропроект, 1994. 27 с. URL: http://docs.cntd.ru/document/1200032239 (дата обращения 20.05.2023).
- 10. Кнорринг, Г. М. Справочник для проектирования электрического освещения. 6-е изд., перераб. Ленинград : Энергия. Ленингр. отд-ние, 1968. 391 с. URL: http://docs.cntd.ru/document/1200032239 (дата обращения 20.05.2023).
- 11. Киреева, Э. А. Полный справочник по электрооборудованию и электротехнике: (с примерами расчетов) / Э. А. Киреева, С. Н. Шерстнев. 3-е изд., стер. Москва: КноРус, 2016. 862 с.
- 12. Федоров, А. А. Учебное пособие для курсового и дипломного проектирования по электроснабжению промышленных предприятий / А. А. Федоров, Л. Е. Старкова. – М.: Энергоамоииздат, 1987. – 368 с. – URL:

- http://www.electrolibrary.info/books/fedorov.htm (дата обращения 20.05.2023).
- 13. Шеховцов, В. П. Расчет и проектирование схем электроснабжения : Методическое пособие для курсового проектирования. М.: ФОРУМ: ИН-ФРА-М, 2010. 214 с. URL: https://docplayer.ru/28024670-V-p-shehovcov-raschet-i-proektirovanie-shemzlekqyusnabzheniya.html (дата обращения 20.05.2023).
- 14. СП 52.13330.2016. Естественное и искусственное освещение : Актуализированная редакция СНиП 23-05-95*. URL: http://docs.cntd.ru/document/456054197 (дата обращения 20.05.2023).
- 15. Электродвигатели АИР : сайт / Справочная система. URL: http://electronpo.ru/production (дата обращения 20.05.2023).
- 16. Светотехническая продукция : сайт / Компания «Навигатор». URL: www.navigator-light.ru (дата обращения 20.05.2023).
- 17. ГОСТ 31996-2012. Кабели силовые с пластмассовой изоляцией на номинальное напряжение 0,66; 1 и 3 кВ. Общие технические условия. URL: http://docs.cntd.ru/document/1200102744 (дата обращения 20.05.2023).
- 18. ГОСТ 31946-2012. Провода самонесущие изолированные и защищенные для воздушных линий электропередачи. Общие технические условия (с Изменением N 1). URL: http://docs.cntd.ru/document/1200102886 (дата обращения 20.05.2023).
- 19. Об установлении единых (котловых) тарифов на услуги по передаче электрической энергии по сетям Республики Хакасия на 2022 год: Приказ государственного комитета энергетики и тарифного регулирования Республики Хакасия от 29 декабря 2021 года N 10-э. URL: http://docs.cntd.ru/document/561698099 (дата обращения 20.05.2023).
- 20. Пункты распределительные ПР8501 и ПР8804 : сайт / Каталог. URL: https://darsteel.ru/products/punkty-raspredelitelnye-pr8501/ (дата обращения 20.05.2023).
- 21. Шинопроводы распределительные ШРА 4 [Электронный ресурс]. Режим доступа: http://www.kmp163.ru/catalog/k-4281549-shinoprovody_raspredelitelnyye_shra_4 (дата обращения 20.05.2023).
- 22. Кабели с пластмассовой изоляцией ABB Γ : сайт / Каталог. URL: https://elmarts.ru/catalog/avvg/ (дата обращения 20.05.2023).
- 23. Автоматические выключатели : сайт / Каталог. URL: https://grantek-svet.ru/catalog/avtomaticheskij_vyklyuchatel.php (дата обращения 20.05.2023).
- 24. Сибикин, Ю.Д. Электроснабжение: Учебное пособие / Ю.Д. Сибикин, М.Ю. Сибикин. М.: РадиоСофт, 2013. 328 с.
- 25. Хромченко, Г. Е. Проектирование кабельных сетей и проводок / Г. Е. Хромченко, П.И. Анастасиев, Е.З. Бранзбург, А.В. Коляда. М.: Энергия, 2010.-397 с.

Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования «СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Хакасский технический институт – филиал ФГАОУ ВО «Сибирский федеральный университет» институт

«Электроэнергетика, машиностроение и автомобильный транспорт» кафедра

> **УТВЕРЖДАЮ** Заведующий кафедрой

А.С. Торопов инициалы, фамилия «<u>03</u> » <u>0</u> 4 2023 г.

БАКАЛАВРСКАЯ РАБОТА

13.03.02 «Электроэнергетика и электротехника»

код - наименование направления

Реконструкция системы электроснабжения системы собственных нужд котельной МУП «Новый дом» г. Сорска

Руководитель 2.04.23 доцент, к.т.н. подпись, дата должность, ученая степень

Е. В. Платонова инициалы, фамилия

Выпускник Бен 3.07.2023.

Ю. Н. Белик инициалы, фамилия

Нормоконтролер $\frac{03.07.2023}{\text{подпись, дата}}$.

И.А. Кычакова инициалы, фамилия