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Abstract. The monomial of solutions of a reduced system of algebraic equations are series of hyperge-
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1. Introduction and preliminaries
Hypergeometric functions were studied in the 19th century by many famous mathematicians

such as L. Euler, C. F.Gauss, E.Kummer, B.Riemann. Most of the researches were on one vari-
able series. At the end of 19th and the first half of 20th century the hypergeometric functions
were widespread considered, including several variables cases. Among them are the functions
studied by G. Lauricella [11], J. Horn [8], P.Appell [3] (see also the books [4, 5]). The hyper-
geometric functions are still attractive recently (see [2, 6, 13, 14]). According to Horn [8] the
series

H(x1, . . . , xN ) =
∑

α∈NN

cαx
α (1)

is called hypergeometric if the relations of neighboring coefficients

hi(α) =
cα+ei

cα
, i = 1, . . . , N, (2)

(where the set of ei composes the standard basis in ZN ), are rational functions in variables
α = (α1, . . . , αN ). Limit values of functions hi along fixed directions s = (s1, . . . , sN ) ∈ RN \{0}

Pi(s) := lim
k→∞

hi(ks)

play an important role. We call the vector limit

1

P(s)
=

(
1

P1(s)
, . . . ,

1

PN (s)

)
the Horn parameterization or Horn uniformization for the hpereometric series (1). These vectors
define the conjugative radii of convergence for the series (1) (about the conception of these radii
see [16, Sec. 7, ch. 1]).
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In this paper we study the hypergeometric type series. Roughly speaking, these series satisfy
the following conditions: there is a sublattice L ⊂ ZN of rank N such that the restriction of H
on the shifts of L are hypergeometric. The details about the hypergeometric type series refer to
the Section 3.

We are interested in the hypergeometric type series in order to investigate the solutions to
universal systems of polynomial equations. In particular, we intend to apply the discriminant
apparatus considered here to the calculation of the convergence domain of these series.

Consider a general system of n polynomial equations with n unknowns y1, . . . , yn:

Pi :=
∑

λ∈A(i)

a
(i)
λ yλ = 0, i = 1, . . . , n, (3)

where A(i) are the finite subsets of Zn and yλ = yλ1
1 . . . yλn

n . We assume that all coefficients a
(i)
λ

are independent, and call (3) an universal algebraic system. Applying the Stepanenko’s formula
(see [10]) we get the hypergeometric type series presenting the monomials with positive integer
exponents of the principal solution to the system (4).

We will explicit the relation between the Horn parameterization
1

P(s)
for these series and

the parameterization Ψ of the discriminant locus ∇ of the system (4) (see more about Ψ and ∇
in Section 2.). According to result in [1], the parameterization Ψ is the inverse of the logarithmic
Gauss map for ∇. (The logarithmic Gauss map γ : ∇ ⊂ CN → CPN−1 for a hypersurface ∇,
defined by polynomial P , can be defined by the formula

(z1, . . . , zn) 7−→ (z1∂1P (z) : · · · : zn∂nP (z)),

where ∂j is the derivative ∂/∂zi (see [9, 12])).

According to Kapranov’s result in [9], the Horn parameterization
1

P
for the hypergeometric

series coincides with the parameterization Ψ = γ−1 of the discriminant locus ∇. The following
theorem gives an extension of the Kapranov’s result in [9] for the series of hypergeometric type
representing monomials of solutions to the reduced system (4).

Theorem 1. The Horn parameterization
1

P(s)
for the series (6) and the parameterization Ψ(s)

of discriminant set for the system (4) coincide:

Ψ =
1

P
.

2. Reduced systems and their discriminants
Following the paper [1] we consider the reduced system of the system (3) in the forms

y
mj

j +
∑

λ∈Λ(j)

x
(j)
λ yλ − 1 = 0, j = 1, . . . , n, (4)

where each mj is a positive integer and Λ(j) does not contain λ = 0 and λ = (0, . . . ,mj , . . . , 0).
Denote by ∇0 the set of all the coefficients for which the system (3) has multiple zeros in

the torus Tn = (C \ {0})n, i.e. the Jacobian of P equals zero. The discriminant locus ∇ of the
system (3) is the closure of the set ∇0 in the space of coefficients of polynomials P1, . . . , Pn.

Denote the matrix
Λ := (Λ(1), . . . ,Λ(n)) = (λ1, . . . , λN ),
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where λk = (λk
1 , . . . , λ

k
n)

T ∈ Λ(j) are column-vector of exponents in monomials of equations (4).

Also let ωm denote the n × n-diagonal matrix with values
1

mj
on the diagonal. Consider the

matrices
Φ := ωΛ, Φ̃ := Φ− χ,

where χ is the matrix, whose i-th row is assigned by the characteristic function of the subset
Λ(i) ⊂ Λ, i.e. elements of this row are 1 at the position λ ∈ Λ(i) and 0 at all positions λ ∈ Λ\Λ(i).
In addition, φk denotes the rows of Φ, and φ̃k denotes the rows of Φ̃. Their elements are
denoted by φkλ and φ̃kλ correspondingly. We can interpret each row φk as a sequence of vectors
φ
(1)
k , . . . , φ

(n)
k .

We will follow two copies of CN . The first one is CΛ
x with the coordinators x = (xλ), and

the second one is CΛ
s with the coordinators s = (sλ) constructed as a space with homogeneous

coordinators for CPN−1. Following the result of Antipova and Tsikh (see [1]), the map

Ψ : CPN−1
s → CN

x = CΛ(1)

x(1) × · · · × CΛ(n)

x(n) ,

from a projective space to the space of coefficients x = (xλ) of the system (4), defined by

x
(j)
λ = −

s
(j)
λ

⟨φ̃j , s⟩

n∏
k=1

(
⟨φ̃k, s⟩
⟨φk, s⟩

)φkλ

, λ ∈ Λ(j), j = 1, . . . , n, (5)

gives the parameterization for the discriminant locus ∇.

3. Solutions to reduced systems of algebraic equations
For the solution y = (y1, . . . , yn) to (4), we consider the series representing the monomial

function yµ = yµ1

1 . . . yµn

1

yµ =
∑

α∈NN

cαx
α. (6)

We focus on the so-called principal solution to system (4): they satisfy initial condition
y(0, . . . , 0) = (1, . . . , 1). When µj > 0 the Stepanenko’s result [10] claims that the coefficients cα
in (6) admit the following expression:

cα = (−1)α1+···+αN · Γα · Rα, (7)

where

Γα =

n∏
j=1

Γ
(µj+mj

mj
+ ⟨φj , α⟩

)
N∏
i=1

Γ(αi + 1)
n∏

j=1

Γ
(µj+mj

mj
+ ⟨φj , α⟩ −

∑
i∈Λ(j)

αi

) ,

Rα = det

(
δ
(j)
i − ⟨φ(j)

i , α(j)⟩
µj + ⟨φj , α⟩

)
(i,j)∈Pα×Pα

,

(8)

with Pα ⊂ {1, . . . , n}. We call Γα the gamma-part and Rα the rational-part of the coefficient cα.
Remark that according to expressions (7) and (8) cα admits the expression

cα = tα R(α)

M∏
j=1

Γ(⟨aj , α⟩+ bj),

where tα = tα1
1 . . . tαN

N , ti, bi ∈ C, aj ∈ QN , and R(α) is a rational function. In the case
when aj ∈ ZN this expression presents the general coefficient Ore-Sato for hypergeometric series
(see [7, 15]).
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4. Horn parameterization for hypergeometric type series
Here we give more details for the definition of the series of hypergeometric type and construct

for them the analog of the Horn parameterization. Let e1, . . . , eN denote the standard basis of ZN ,
i.e. eλ = (0, . . . , 1, . . . , 0) with 1 being on λ-th position. For a given ν = (ν1, . . . , νN ) ∈ (N\{0})N
we consider the sublattice Lν ⊂ ZN generated by ν1e1, . . . , νNeN . For two vectors ν, s ∈ ZN we
define their product νs := (ν1s1, . . . , νNsN ).

Definition 1. We say that the power series∑
α∈NN

cαx
α (9)

is of hypergeometric type if there exists ν ∈ (N \ {0})N such that all subseries

Hl :=
∑

α∈l+Lν∩NN

cαx
α = t

l
ν

∑
s∈NN

c′st
s, l ∈ J,

are hypergeometric in variables tλ = xνλ

λ , where c′s = cl+νs and J is the sequence of all represen-
tatives for the factor ZN/Lν :

J = {(l1, . . . , lN ) ∈ Zn : 0 6 li 6 νi − 1, i = 1, . . . , N}.

The subseries Hl is hypergeometric iff all the relations

Rλ(s) :=
c′s+eλ

c′s
, λ = 1, . . . , N, (10)

are rational functions of variables s = (s1, . . . , sN ).

Proposition 1. The series (6) with the coefficient (7) is a hypergeometric type series.

Proof. For a vector ν ∈ (N \ {0})N we take ν = (τ, . . . , τ) where τ is the least common multiple
of m1, . . . ,mN .

According to (8), the relations (10) become

Rλ(s) =
cl+ν(s+eλ)

cl+νs
=

Γl+τs+τeλ

Γl+τs

(−1)τ Rl+τs+τeλ

Rl+τs
, λ = 1, . . . , N, l ∈ J, (11)

where J = {l = (l1, . . . , lN ) : 0 6 l1, . . . , lN 6 τ − 1}. The power of the exponent (−1)τ comes
from

(−1)|l+τ(s+eλ)|

(−1)|l+νs| = (−1)|τeλ| = (−1)τ ,

where |α| := α1 + · · ·+ αN .
Here l+ τs denotes the restriction of α on the shifted lattice l+Lν (i.e. α =: l+ τs for some

l ∈ J). Thus Γl+τs and Rl+τs are correspondingly the restrictions of the gamma-part Γα and
the rational-part Rα of the series (6) on the such lattice. It is clear that the second ratio in (11),
the ratio for Rα, is a rational function in s.

Introduce denotations

Ak := φk = (φk1, . . . , φkN ), An+k := φ̃k = (φ̃k1, . . . , φ̃kN ), A2n+λ := eλ,

and rewrite (8) in such a way

Γα =

n∏
p=1

Γ(⟨Ap, α⟩+ ηp)

2n∏
p=n+1

Γ(⟨Ap, α⟩+ ηp)
2n+N∏

p=2n+1
Γ(⟨Ap, α⟩+ 1)

,
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where ηp are some constants independing on α. To compute the ratio of gamma-parts in (11)
we use the Pochhammer symbol

(z)k =
Γ(z + k)

Γ(z)
= z(z + 1) . . . (z + k − 1), k ∈ N \ {0}

and the denotation qλp := ⟨Ap, τeλ⟩. Then it leads to

Γα+τeλ

Γα
=

n∏
p=1

(⟨Ap, α⟩+ ηp − 1 + qλp )qλp

2n∏
p=n+1

(⟨Ap, α⟩+ ηp − 1 + qλp )qλp

2n+N∏
p=2n+1

(⟨Ap, α⟩+ qλp )qλp

.

With α = l + τs, we get the ratio of gamma-parts restricted on the shifted lattice l + Lν :

Γl+τs+τeλ

Γl+τs
=

n∏
p=1

(⟨τAp, s⟩+ η′p + qλp )qλp

2n∏
p=n+1

(⟨τAp, s⟩+ η′p + qλp )qλp

2n+N∏
p=2n+1

(τ⟨eλ, s⟩+ lλ + qλp )qλp

, (12)

where constants η′p are independent on s.
Since mj divide τ , the delation τAp in (12) is a vector with integer coordinators. Then its

turns out that the relation
Γl+τs+τeλ

Γl+τs
in (11) is a rational function of the variables s1, . . . , sN .

Thus the series (6) is of hypergeometric type.

According to Horn (see [8]) the convergence radii of hypergeometric series are defined by the
limits

lim
r→∞

hi(rs), i = 1, . . . , N,

where the rational functions hi are defined by (2). In the hypergeometric type case, the conver-
gence radii of the series (9) are defined by the limits

Pλ(s1, . . . , sN ) = lim
r→∞

(
Rλ(rs)

) 1
τ , λ = 1, . . . , N, (13)

where Rλ are rational relations (10) and τ is the least common multiple of ν1, . . . , νN ,
(s1 : · · · : sN ) ∈ RPN−1, si > 0. Indeed (s1, . . . , sN ) are homogeneous coordinates in CPN−1,
and the limits Pi are rational and homogeneous of degree zero. They depend only on the ratio
s = s1 : · · · : sN . The vector limit

1

P(s)
:=

(
1

P1(s)
, . . . ,

1

PN (s)

)
are called by Horn parameterization (or Horn uniformation) for hypergeometric type series since
Horn is the first person who considered such a limit for hypergeometric function (see [9]).

5. The proof of the Theorem 1

According to (12) we get the following formula for the limit values of relation (11) along
direction s := (s1, . . . , sN ) ∈ RN \ {0}.
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Proposition 2.

Pλ(s1, . . . , sN ) = −⟨φ̃j , s⟩
⟨eλ, s⟩

n∏
p=1

(
⟨φp, s⟩
⟨φ̃p, s⟩

)φpλ

. (14)

Proof. From the ratio (12) and the limits (13),

Pλ(s1, . . . , sN ) := lim
r→∞

[
cl+τrs+τeλ

cl+τrs

] 1
τ

= lim
k→∞

[
Γl+τrs+τeλ

Γl+τrs

(−1)τ Rl+τrs+τeλ

Rl+τrs

] 1
τ

=

=: − lim
r→∞

(
A ·B · C

) 1
τ

,

where

A :=

n∏
p=1

(⟨rAp, s⟩+ η′p +
qλp
τ )qλp

2n∏
p=n+1

(⟨rAp, s⟩+ η′p +
qλp
τ )qλp

2n+N∏
p=2n+1

(r⟨eλ, s⟩+ lλ
τ +

qλp
τ )qλp

,

B :=
τ q

λ
1 +···+qλn

τ q
λ
n+1+···+qλ2n · τ qλn+1+···+qλ2n+N

,

C :=

det
(
δ
(j)
i − ⟨φ(j)

i ,l(j)+τe
(j)
λ ⟩+⟨φ(j)

i ,τrs(j)⟩
µj+⟨φj ,l+τeλ⟩+⟨φj ,τrs⟩

)
(i,j)∈Pα×Pα

det
(
δ
(j)
i − ⟨φ(j)

i ,l(j)⟩+⟨φ(j)
i ,τrs(j)⟩

µj+⟨φj ,l⟩+⟨φj ,τrs⟩

)
(i,j)∈Pα×Pα

.

Recall that

Ak = (φk1, . . . , φkN ), An+k = (φ̃k1, . . . , φ̃kN ), A2n+λ = eλ,

qλp = ⟨Ap, τeλ⟩, p ∈ {1, . . . , 2n+N}.
(15)

Since τeλ = (0, . . . , τ, . . . , 0) with λ ∈ {1, . . . , N},

qλp =


τφpλ with 1 6 p 6 n,

τφ̃(p−n)λ with n+ 1 6 p 6 2n,

τ with p = 2n+ λ,

0 with p > 2n and p ̸= 2n+ λ.

(16)

Thus
qλ1 + · · ·+ qλn = (φ1λ + · · ·+ φnλ)τ, qλ2n+1 + · · ·+ qλ2n+N = τ, (17)

and with the notice that λ ∈ Λ(j) for some j,

qλn+1 + · · ·+ qλ2n = (φ̃1λ + · · ·+ φ̃nλ)τ = (φ1λ + · · ·+ φnλ − 1)τ. (18)

The sums in (17) and (18) lead to

B =
τ (φ1λ+···+φnλ)τ

τ (φ1λ+···+φnλ−1)τ · τ τ
= 1,

Let r tend to the infinity we obtain the limits:

lim
r→∞

A =

n∏
p=1

⟨Ap, s⟩q
λ
p

2n∏
p=n+1

⟨Ap, s⟩q
λ
p ⟨eλ, s⟩τ

,
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lim
r→∞

C =

det
(
δ
(j)
i − ⟨φ(j)

i ,τs(j)⟩
⟨φj ,τs⟩

)
(i,j)∈Pα×Pα

det
(
δ
(j)
i − ⟨φ(j)

i ,τs(j)⟩
⟨φj ,τs⟩

)
(i,j)∈Pα×Pα

= 1.

Thus

lim
r→∞

(
A ·B · C

) 1
τ

=


n∏

p=1
⟨Ap, s⟩q

λ
p

⟨eλ, s⟩τ
2n∏

p=n+1
⟨Ap, s⟩q

λ
p


1
τ

.

Substitute coordinators of the vectors Ap formulated in (15) and the value of qαp in (16), then

the limit lim
r→∞

(
A ·B · C

) 1
τ

equals


n∏

p=1
⟨φp, s⟩τφpλ

⟨eλ, s⟩τ
2n∏

p=n+1
⟨φ̃p−n, s⟩τφ̃(p−n)λ


1
τ

.

In the square brackets each factor is an exponentiation with the power τ . The radical
1

τ
applying

on the square brackets leads to a simpler expression for the limit:

n∏
p=1

⟨φp, s⟩φpλ

⟨eλ, s⟩
2n∏

p=n+1
⟨φ̃p−n, s⟩φ̃(p−n)λ

.

Rewrite the index for the production in the denominator of the last expression, it will become

⟨φ̃j , s⟩
n∏

p=1
⟨φp, s⟩φpλ

⟨eλ, s⟩
n∏

p=1
⟨φ̃p, s⟩φpλ

.

Combining the factors with the same index under the production signs in the numerator and in
the denominator of the last expression we will get the result:

⟨φ̃j , s⟩
⟨eλ, s⟩

n∏
p=1

(
⟨φp, s⟩
⟨φ̃p, s⟩

)φpλ

.

Consequently we get the formula for the limit Pλ:

Pλ(s1, . . . , sN ) = −⟨φ̃j , s⟩
⟨eλ, s⟩

n∏
p=1

(
⟨φp, s⟩
⟨φ̃p, s⟩

)φpλ

.

The proposition holds.

Now we are ready to prove the Theorem 1.
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Proof of theorem 1. From (5) and (14) it turns out that

x
(j)
λ =

1

Pλ
, λ ∈ Λ(j), j = 1, . . . , n.

Thus the parameterization Ψ(s) for the discriminant locus ∇ of the system (4) composed by the
coordinators x(j)

λ coincides with the limit vector of the hypergeometeric type series (6) composed

by the coordinators
1

Pλ
. The theorem holds.
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Ряды гипергеометрического типа и дискриминанты
Куанг Хань Фан

Сибирский федеральный университет
Красноярск, Российская Федерация

Аннотация. Одночлен решений редуцированной системы алгебраических уравнений представля-
ет собой ряд гипергеометрического типа. Мы распространяем результат Хорна-Карпранова (для
гипергеометрических рядов) на случай рядов гипергеометрического типа.

Ключевые слова: ряды гипергеометрического типа, логарифмическое отображение Гаусса, дис-
криминантное множество, редуцированная система, сопряженные радиусы сходимости.
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