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Abstract. Two-layer flows of liquid and gas-vapor mixture in an inclined channel are modeled based on
the system of the Oberbeck–Boussinesq convection equations taking into account the evaporation and
thermodiffusion effects. A new exact solution of the problem of evaporative convection is constructed
in the statement with non-deformable interface and zero vapor flux on the upper channel wall. The
analytical form of the required functions is presented in the case of heating of the channel boundaries
linearly with respect to the longitudinal coordinate. Algorithms of calculation of the integration constants
are described in detail. Examples of flow types are provided for the ethanol-nitrogen fluid system.
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Introduction

Mathematical modeling of two-layer systems with interfaces is motivated by intensive devel-
opment of knowledge-intensive technologies and experimental approach to research of features of
joint convective flows of liquids and gases [1]. Most such convective processes are quite difficult
to study due to the existence of a large number of factors affecting the flow nature.

The problems with evaporation or condensation are of particular interest for investigation.
The Ostroumov–Birikh type solutions (see [1–3]) are prominent ones among exact solutions
of evaporative convection problems, since they are realized in reality. One of the feature of
these solutions is that they allow us to test different types of boundary conditions for vapor
concentration and temperature functions.

Historically, the problem of unidirectional two-layer flows induced by gravitational and
Marangoni forces was first considered in [4]. The first results of the study the flows with evapora-
tion in a two-layer system based on an analogue of the Ostroumov–Birikh solution were presented
in [5].

The impact of the reciprocal thermodiffusion effects on the parameters of convective regimes
in the two-layer system was investigated in [6–8] based on the Ostroumov–Birikh type solution.
The Soret effect (or thermodiffusion effect) is related to the molecular transport of matter in the
presence of a temperature gradient. The Dufour effect (or diffusive thermal conductivity effect)
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determines the occurrence of temperature differences due to differences in the concentrations of
impurity components (see [9, 10]).

In the present work a two-layer flow with evaporation in an inclined channel is modeled, taking
into account various factors affecting the flow structure, temperature and vapor concentration
distributions.

1. Governing equations and form of exact solution

The joint flow of viscous incompressible liquid and gas-vapor mixture in an infinite channel
is considered (see Fig. 1). The liquid and gas-vapor layers have constant thicknesses l and h.
The upper and lower walls of the channel are solid impenetrable boundaries. Vapor is a passive
admixture in the upper layer containing gas. The Cartesian coordinate system is oriented so
that the non-deformable interface is given by the equation y = 0 and the gravity force vector g
is directed at an angle φ to the substrate (g = (g cosφ, −g sinφ)). The system of the Navier –

Fig. 1. Flow scheme

Stokes equations in the Oberbeck –Boussinesq approximation is utilized as a mathematical model
to describe flows in the bilayer system. The Soret and the Dufour effects are taken into account in
the gas. The system of equations for finding the functions that determine velocity, temperature,
pressure and vapor concentration is written in the following form:
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The vapor transfer in the gas phase is governed by the convective diffusion equation, which is
the result of the Fick’s law [11]:

u
∂C

∂x
+ v

∂C

∂y
= D

(∂2C
∂x2

+
∂2C

∂y2
+ α

(∂2T
∂x2

+
∂2T

∂y2

))
. (5)

In equations (1)–(5) the following notations are used: u, v are the velocity vector projections on
the axes of the Cartesian coordinate system Ox and Oy, respectively; p

′
is the function defined
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deviation from the hydrostatic pressure (p′ = p − ρg · x, x = (x, y), p is the pressure), T is
the temperature, C is the vapor concentration, ρ is the density (relative density value), ν is the
coefficient of kinematic viscosity, β is the coefficient of thermal expansion, γ is the concentration
coefficient of density, χ is the coefficient of heat diffusivity, D is the coefficient of vapor diffusion
in the gas, parameters α and δ are the Soret and Dufour coefficients respectively. The underlined
terms in equations (1), (2) and (4) as well as equation (5) are used only in the modeling of heat
and mass transfer.

System (1)–(5) admits an exact solution of the special form [2,3]:

ui = ui(y), vi = 0, Ti = Ax+ ϑi(y), C = −Bx+ ψ(y), p′i = p
′

i(x, y). (6)

Here, A and B are constant longitudinal temperature and vapor concentration gradients; ϑi and
ψ are functions depending on the variable y included in the expressions setting the temperature
and vapor concentration functions, respectively. Index i denotes characteristics of working fluid:
i = 1 and i = 2 regard to the liquid in the lower layer and the gas-vapor mixture in the upper
one, respectively.

2. Conditions for the desired functions on the solid walls
and the interface

The no-slip conditions on the rigid walls are valid for the velocity functions:

u1|y=−l = 0, u2|y=h = 0, (7)

and the temperature distribution is linear with respect to the longitudinal coordinate:

T1|y=−l = Ax+ ϑ−, T2|y=h = Ax+ ϑ+. (8)

Here, ϑ− and ϑ+ are considered to be of given constant values.
The vapor concentration satisfies the condition of zero vapor flux at the upper boundary

y = h: (∂C
∂y

+ α
∂T2
∂y

)∣∣∣
y=h

= 0. (9)

The conditions of continuity of longitudinal velocities and temperature should be fulfilled at
the thermocapillary interface y = 0:

u1|y=0 = u2|y=0, T1|y=0 = T2|y=0. (10)

Note, the equality of the values determinig the longitudinal temperature gradients and the
equation ϑ1(0) = ϑ2(0) will provide the temperature continuity condition.

Kinematic and dynamic conditions are also required to be set at the interface. Kinematic
condition (v1 = 0 and v2 = 0) is fulfilled automatically due to the type of the exact solution form
(6). Dynamic condition is written as follows:

ρ1ν1u1y = ρ2ν2u2y + σT
∂T1
∂x

∣∣∣
y=0

. (11)

Dynamic condition expresses the tangential stress balance at the interface. The constant σT
is the temperature coefficient of the surface tension σ, σT < 0. The linear dependence of surface
tension on temperature is assumed: σ = σ0 + σT (T – T0), σ0 is the surface tension at some
initial temperature T0.
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The heat transfer condition at the interface, including the terms corresponding to the diffusive
mass flux M and the Dufour effect, is set in the form:

κ1
∂T1
∂y

− κ2
∂T2
∂y

− δκ2
∂C

∂y
|y=0 = −LM, M = −Dρ2

(∂C
∂y

∣∣∣
y=0

+ α
∂T2
∂y

∣∣∣
y=0

)
. (12)

Here, L is the latent heat of evaporation, M is the mass velocity of liquid evaporating from
a unit surface area per unit time (M = const), κ1 and κ2 are thermal conductivity coefficients.

The condition for C function on the phase boundary sets the saturated vapor concentration
and presents the linearized form of the equation which is the consequence of the Clapeyron –
Clausius and Mendeleev –Clapeyron equations [6]:

C
∣∣
y=0

= C∗[1 + ε(T2
∣∣
y=0

− T0)], (13)

where ε = Lµ0/(RT
2
0 ), µ0 is the molar mass of the evaporating liquid, R is the universal gas

constant, C∗ is the saturated vapor concentration at T2 = T0.

Note, that the equations describing motion (1), (2), heat (4) and vapor transfer (5), as well as
the temperature continuity condition (see the second relation in (10)), dynamic condition (11),
and heat transfer condition (12) admit substitution of the temperature function in the form
T̃i = Ti−T0 with respond to introduction of modified pressure p̃ (p̃ = p

′ − ρβT0g ·x). Condition
(13) can be written in the form:

C|y=0 = C∗(1 + εT2|y=0). (14)

The corresponding substitution in the conditions setting the thermal boundary regime (8)
leads to relations T̃1 = Ax + ϑ̃−, T̃2 = Ax + ϑ̃+, where ϑ̃− = ϑ− − T0, ϑ̃+ = ϑ+ − T0. For
convenience, we will omit the symbol “tilde” over Ti, pi, ϑ−, ϑ+ in the next sections.

The problem is solved at given gas flow rate Q, defined by relation:

Q =

∫ h

0

ρ2u2(y)dy, (15)

and under assumption of the closed flow condition in the liquid layer:∫ 0

−l

u1(y)dy = 0. (16)

3. Exact solutions under condition of zero vapor flux on the
upper solid wall of the channel

The derivation of solution for equations (1)–(5) in form (6) results in the explicit expressions
for the required functions which define longitudinal velocity ui(y), temperature Ti(x, y) and vapor
concentration in gas phase C(x, y).

In the case of A > 0 we obtain the following relations:
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u1 (y) = C1 sin(k1y) + C2 cos(k1y) + C3 sh(k1y) + C4 ch(k1y) ,

u2 (y) = C1 sin(m1y) sh(m1y) + C2 cos(m1y) sh(m1y) + C3 sin(m1y) ch(m1y)+

+ C4 cos(m1y) ch(m1y) ,

T1(x, y)= Ax+
F1

k21

(
− C1 sin(k1y)− C2 cos(k1y)+ C3 sh(k1y)+ C4 ch(k1y)

)
+ C5y+ C6 ,

T2 (x, y) = Ax+
F2

2m2
1

(
− C1 cos(m1y) ch(m1y) + C2 sin(m1y) ch(m1y)−

− C3 cos(m1y) sh(m1y) + C4 sin(m1y) sh(m1y)
)
+ C5y + C6 ,

C (x, y) = −Bx+
G

2m2
1

(
− C1 cos(m1y) ch(m1y) + C2 sin(m1y) ch(m1y)−

− C3 cos(m1y) sh(m1y) + C4 sin(m1y) sh(m1y)
)
+ C7y + C8 .

(17)

The functions u1 and u2 are solutions of the corresponding equations u(4)1y
+ λ1u1 = 0 and

u
(4)
2y

+ λ2u2 = 0 [12], which follow from equations (1), (2) as a result of series of consecutive
actions: substitution of solutions (6), cross differentiation (in order to exclude pressure function),
differentiation on y. If A > 0 then the inequality λ1 < 0 is valid; inequality λ2 > 0 will be fulfilled
for liquid – gas system like "ethanol – nitrogen" bacause of E < 0.

When condition A < 0 is satisfied then the required functions (6) take the form:

u1 (y) =C1 sin(k2y) sh(k2y)+C2 cos(k2y) sh(k2y)+C3 sin(k2y) ch(k2y)+C4 cos(k2y) ch(k2y),

u2 (y) = C1 sin(m2y) + C2 cos(m2y) + C3 sh(m2y) + C4 ch(m2y) ,

T1 (x, y) = Ax+
F1

2k22

(
− C1 cos(k2y) ch(k2y) + C2 sin(k2y) ch(k2y)−

− C3 cos(k2y) sh(k2y) + C4 sin(k2y) sh(k2y)
)
+ C5y + C6 ,

(18)

T2 (x, y) =Ax+
F2

m2
2

(
−C1 sin(m2y)−C2 cos(m2y)+C3 sh(m2y)+C4 ch(m2y)

)
+C5y+C6,

C (x, y) =−Bx+ G

m2
2

(
−C1 sin(m2y)−C2 cos(m2y)+C3 sh(m2y)+C4 ch(m2y)

)
+C7y+C8.

Here, u1 and u2 also satisfy the equations u(4)1y
+λ1u1 = 0 and u(4)2y

+λ2u2 = 0. The inequalities
λ1 > 0 and λ2 < 0 hold if A < 0.

Coefficients λ1, λ2, ks,ms, F1, F2, G,E are calculated via geometric, physical and chemical
parameters of the problem. Here, index s denotes the solution for positive (s = 1) or negative
(s = 2) values of the longitudinal temperature gradient A. Coefficients Ci and Ci (i = 1, . . . , 8)
are the integration constants. They are different for each of the solutions. Exact representations
of the listed parameters {λi, ks,ms, Fi, G,E} (i = 1, 2; s = 1, 2) are given in Appendix 1.

We have to note the following: the equation determining the saturated vapor concentra-
tion at the interface (14) dictates the compatibility condition connecting the values A and B:
B = −C∗εA. The pressure functions pi are found on the basis of their partial derivatives from
(1), (2).
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4. The general scheme for finding the integration constants

Let the gas flow rate Q (see (15)), the parameters determining the external thermal impact
on the channel walls A and ϑ−, ϑ+ be preset. The fulfilment of boundary conditions (7)–(12)
and relationships (15), (16) results in a systems of linear algebraic equations for calculation the
integration constants. Determining the constants, it is possible to plot the velocity profiles,
temperature and vapor concentration distribution according to formulas (17) or (18), depending
on the sign of parameter A.

The algorithm for finding all the unknown integration constants is outlined below.

(i) Conditions on the solid walls and the interface (7)–(12), expression defining the closed
flow in the liquid layer (16), and equality (15) giving the gas flow rate lead to
systems of linear algebraic equations to find the constants C1, C2, C3, C4, C5, C6 and
C1, C2, C3, C4, C5, C6, C7. The resulting systems contain 13 unknowns with 11 equations.

(ii) The integration constants C6, C6 are set equal to zero in order to close the systems of
linear algebraic equations.

(iii) The systems of equations are solved by the Gaussian method using program code, which
also provides a data set for plotting velocity profiles, temperature and vapor concentration
distributions.

(iv) The coefficient C8 is expressed through the coefficient C1 (when A > 0) or through the
coefficients C2 and C4 (when A < 0) by virtue of condition (14) for defining the vapor
concentration at the interface.

The systems of equations themselves, which determine the unknown parameters of integration,
are presented in Appendix 2 (see (19) and (21)).

5. Examples of two-layer flows

The effect of changing of the channel inclination angle, the interface temperature gradient
and transversal temperature drop on the structure of the flow, temperature and vapor concen-
tration distribution has been studied. The ethanol and nitrogen are chosen as working liquid
and gas respectively. The ethanol liquid volatilizes from the lower layer, so that a mixture
of nitrogen and ethanol vapor is in the upper layer. The physical parameters of the work-
ing media are given below according to [13] in order {ethanol, nitrogen} (or ethanol only):
ρ = {7.89·102, 1.2} kg/m3, ν = {0.15·10−5, 0.15·10−4} m2/s, β = {1.079·10−3, 3.67·10−3} K−1,
χ = {8.9 · 10−8, 0.3 · 10−4} m2/s, κ = {0.1672, 0.02717} W/(m·K), σT = −0.8 · 10−4 N/(m·K),
D = 0.135 ·10−4 m2/s, L = 8.55 ·105 W·s/kg, C∗ = 0.1 (corresponds to equilibrium temperature
T0 = 20◦C), γ = −0.62, ε = 0.059 K−1.

The value of the gas flow rate Q is assumed to be equal to 3.6 · 10−5 kg/(m·s). The following
parameters are fixed for all the cases under consideration: thicknesses of the liquid and gas layers
are l = 5 mm and h = 5 mm, respectively, and gravity acceleration g = 9.81 m/s2. The values
of the Soret and Dufour coefficients are assumed to be equal to α = 10−4 K−1, δ = 10−4 K,
respectively. The parameters defining the external thermal loads applied on the channel walls are
the longitudinal temperature gradient A and values ϑ−, ϑ+ (see condition (8)). Let us note that
the values of functions Ti and terms ϑ−, ϑ+ in Figs. 2–4 refer to the deviation from the reference
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temperature T0 due to substitution made in Section 2 (here, T0 = 20℃). Figure captions contain
values of these deviations.

Fig. 2. Velocity profiles in the ethanol – nitrogen system: Q = 3.6 ·10−5 kg/(m·s), A = 10 K/m,
ϑ− = −4℃, ϑ+ = 3℃; φ = 20◦ (blue line), 45◦ (red line), 60◦ (green line)

(a) (b) (c)

(d) (e) (f)

Fig. 3. Velocity profiles (a, d), thermal field (b, e), vapor concentration distribution (c, f) in
the ethanol – nitrogen system: Q = 3.6 · 10−5 kg/(m·s), A = 5 K/m, φ = 80◦; (a, b, c) –
ϑ− = 4℃, ϑ+ = −3℃, M = 1.026 · 10−6 kg/(m2·s), (d, e, f) – ϑ− = −4℃, ϑ+ = 3℃,
M = 1.062 · 10−6 kg/(m2·s)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4. Velocity profiles (a, d, g), thermal field (b, e, h), vapor concentration distribution (c, f, i) in
the ethanol – nitrogen system: Q = 3.6·10−5, kg/(m·s), φ = 45◦, ϑ− = 0℃, ϑ+ = −7℃; (a,b,c) –
A = 5 K/m, M = 1.062 · 10−6 kg/(m2·s), (d,e,f) – A = 10 K/m, M = 2.124 · 10−6 kg/(m2·s),
(g,h,i) – A = 15 K/m, M = 3.186 · 10−6 kg/(m2·s)

Velocity profiles at the inclination angle φ, having values 20◦, 45◦ and 60◦ are presented in
Fig. 2. The reverse flow near the interface intensifies at larger values of the angle φ.

The effect of intensification of the thermal regime created on the channel walls on the character
of the flow has been studied. The change of coefficients ϑ−, ϑ+ (see Fig. 3) led to the formation
of transverse temperature drop and, therefore, to the change of flow characteristics. In the first
case, their values are assumed to be ϑ− = 4℃, ϑ+ = −3℃ (Fig. 3 (a, b, c)), in another case:
ϑ− = −4℃, ϑ+ = 3℃ (Fig. 3 (d, e, f)). The maximum velocity values are observed in the
liquid layer in the second case (Fig. 3 (d)). The vapor distributions are preserved in Fig. 3 (c, f).
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Values of the evaporation mass flow rate M are equal for both cases.

The dependence of the velocity field, temperature and vapor concentration distributions on
changes of the longitudinal temperature gradient A is demonstrated in Fig. 4. The parameter
A takes the values {5, 10, 15} K/m. The velocity field is restructured due to changing of the
thermocapillary effect intensity. At the same time more complicated temperature pictures and
the growth of the evaporation mass flow rate are observed with increase of A (see Fig. 4 (b, e, h)).

Conclusions

New exact solution of a special type of convection equations has been constrcuted. It allows
one to model a two-layer flow in an inclined channel. Evaporation at a non-deformable thermo-
capillary interface, the Soret and Dufour effects in the gas-vapor layer are taken into account.
The condition of zero vapor flux on the upper solid wall of the channel is set. Exact solution
has been obtained for the cases of positive and negative longitudinal temperature gradients at
the channel boundaries. Scheme for determining the parameters of the problem and unknown
constants is outlined. Examples of characteristics for bilayer flows in the ethanol-nitrogen system
are presented. The influence of the channel inclination angle and the thermal load at the system
boundaries on the flow pattern has been studied.

The work was carried out in accordance with the State Assignment of the Russian Ministry
of Science and Higher Education entitled ‘Modern methods of hydrodynamics for environmen-
tal management, industrial systems and polar mechanics’ (Govt. contract code: FZMW-2020-
0008).

Appendix 1. Formulas for calculating the parameters
in expressions (17) and (18)

Coefficients ks,ms, Fi, G:

k1 = 4

√
Ag cosφβ1
χ1ν1

, m1 =
4

√
−Ag cosφE

4
, λ1 = −Ag cosφβ1

χ1ν1
,

k2 = 4

√
−Ag cosφβ1

4χ1ν1
, m2 = 4

√
Ag cosφE, λ2 = −Ag cosφE,

F1=
A

χ1
, F2 =

A(D − δχ2C∗ε)

χ2D(1− αδ)
, G =

A(αD − χ2C∗ε)

χ2D(αδ − 1)
, E =

D(β2 − αγ)− χ2C∗ε(δβ2 − γ)

χ2ν2D(1− αδ)
.

Appendix 2. Systems of linear algebraic equations to find
integration coefficients in (17) and (18)

System in the case of negative value of the parameter A:
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sin(k2l) sh(k2l)C1 − cos(k2l) sh(k2l)C2 − sin(k2l) ch(k2l)C3 + cos(k2l) ch(k2l)C4 = 0 ,

sin(m2h)C1 + cos(m2h)C2 + sh(m2h)C3 + ch(m2h)C4 = 0 ,

F1

2k22

(
− cos(k2l) ch(k2l)C1 − sin(k2l) ch(k2l)C2 + cos(k2l) sh(k2l)C3+

+sin(k2l) sh(k2l)C4

)
− lC5 = ϑ−,

F2

m2
2

(
− sin(m2h)C1 − cos(m2h)C2 + sh(m2h)C3 + ch(m2h)C4

)
+ hC5 = ϑ+,

G+ αF2

m2

(
− cos(m2h)C1+ sin(m2h)C2+ ch(m2h)C3+ sh(m2h)C4

)
+ αC5+ C7 = 0 ,

C4 − C2 − C4 = 0 ,

− F1

2k22
C1 +

F2

m2
2

(
C2 − C4

)
= 0 ,

ρ1ν1k2C2 + ρ1ν1k2C3 − ρ2ν2m2C1 − ρ2ν2m2C3 = σTA ,

κ1
F1

2k2

(
C2 − C3

)
+ κ1C5 +

κ2(F2 + δG) + LDρ2(G+ αF2)

m2

(
C1 − C3

)
−

−(κ2 + LDρ2α)C5 − (δκ2 + LDρ2)C7 = 0 ,

(1− cos(m2h))C1 + sin(m2h)C2 + (ch(m2h)− 1)C3 + ch(m2h)C4 =
m2Q

ρ2
,

(sin(k2l) ch(k2l)− cos(k2l) sh(k2l))C1 + (1− sin(k2l) sh(k2l)−
− cos(k2l) ch(k2l))C2 + (−1− sin(k2l) sh(k2l) + cos(k2l) ch(k2l))C3+

+(cos(k2l) sh(k2l) + sin(k2l) ch(k2l))C4 = 0 .

(19)

The coefficient C8 is expressed through the coefficients C2 and C4 by virtue of the condi-
tion (14):

C8 = C∗ +
G+ C∗εF2

m2
2

C2 −
G− C∗εF2

m2
2

C4. (20)
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System in the case of positive value of the parameter A:

− sin(k1l)C1 + cos(k1l)C2 − sh(k1l)C3 + ch(k1h)C4 = 0 ,

sin(m1h) sh(m1h)C1 + cos(m1h) sh(m1h)C2 + sin(m1h) ch(m1h)C3+

+cos(m1h) ch(m1h)C4 = 0 ,

F1

k21

(
sin(k1l)C1 − cos(k1l)C2 − sh(k1l)C3 + ch(k1l)C4

)
− lC5 = ϑ− ,

F2

2m2
1

(
− cos(m1h) ch(m1h)C1 + sin(m1h) ch(m1h)C2 − cos(m1h) sh(m1h)C3+

+sin(m1h) sh(m1h)C4

)
+ hC5 = ϑ+ ,

G+ αF2

2m1

(
(− cos(m1h) sh(m1h) + sin(m1h) ch(m1h))C1 + (sin(m1h) sh(m1h)+

+cos(m1h) ch(m1h))C2 + (− cos(m1h) ch(m1h) + sin(m1h) sh(m1h))C3+

+(sin(m1h) ch(m1h) + cos(m1h) sh(m1h))C4

)
+ αC5 + C7 = 0 ,

C2 + C4 − C4 = 0 ,

F1

k21

(
− C2 + C4

)
+

F2

2m2
1

C1 = 0 ,

ρ1ν1k1C1 + ρ1ν1k1C3 − ρ2ν2m1C2 − ρ2ν2m1C3 = σTA ,

κ1
F1

k1

(
− C1 + C3

)
+ κ1C5 −

κ2(F2 + δG)LDρ2(G+ αF2)

2m1

(
C2 − C3

)
−

−(κ2 + αLDρ2)C5 − (δκ2 + LDρ2)C7 = 0 ,

(sin(m1h) ch(m1h)− cos(m1h) sh(m1h))C1 + (−1 + sin(m1h) sh(m1h)+

+cos(m1h) ch(m1h))C2 + (1 + sin(m1h) sh(m1h)− cos(m2h) ch(m1h))C3+

+(cos(m1h) sh(m1h) + sin(m1h) ch(m1h))C4 =
2m1Q

ρ2
,

(−1 + cos(k1l))C1 + sin(k1l)C2 + (1− ch(k1l))C3 + sh(k1l)C4 = 0 .

(21)

The coefficient C8 in this case is expressed through the coefficient C1 by virtue of the condition
(14) and has a form:

C8 = C∗ +
G− C∗εF2

2m2
1

C1. (22)
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Моделирование стационарных течений системы
жидкость-газ в наклонном канале с учетом испарения

Евгений Е. Макаров
Алтайский государственный университет

Барнаул, Российская Федерация

Аннотация. Двухслойные течения жидкости и газопаровой смеси в наклонном канале моделиру-
ются на основе системы уравнений конвекции Обербека–Буссинеска с учетом эффектов испарения
и термодиффузии. Построено новое точное решение задачи испарительной конвекции в постанов-
ке с недеформируемой границей раздела и при условии отсутствия потока пара на стенке канала.
Представлен аналитический вид искомых функций в случае линейного по продольной координа-
те нагрева границ канала. Подробно описаны алгоритмы расчета констант интегрирования. Для
системы жидкостей этанол-азот приведены примеры типов течений.

Ключевые слова: точное решение, двухслойное течение, конвекция, испарение, граница раздела,
наклонный канал.
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