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Abstract. The non-stationary boundary value problem on the motion of a fluid in a rotating cylindrical
pipe is studied in this paper,. The Oberbeck-Boussinesq equations are used to describe the motion of a
fluid. From a mathematical point of view, the problem is inverse with respect to pressure gradient along
the axis of the cylinder. The solution is found with the use of the method of separation of variables
in the form of special Fourier series. Sufficient conditions are given for the solution of a non-stationary
problem to reach a stationary regime with increasing time.
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Introduction

Thermal convection in rotating systems has been studied for various applications such as
modelling heat exchangers, various large-scale circulations in the Earth atmosphere, and other
phenomena [1–5]. However, convective flows were assumed to be stationary in these works, and
the rotation angular velocity was constant.

In the present work, the angular velocity of a round tube depends on time, and the motion is
rotationally symmetric and unsteady. In addition, the fluid rate through the pipe cross section
is also the function of time. There are no mass forces. This takes place at a sufficiently large
angular velocity of pipe rotation (centrifugal acceleration can be 106 times greater than gravity
acceleration in practical vortex tubes) or in conditions close to weightlessness. The constant
temperature gradient is applied along the pipe surface. From a mathematical point of view, an
inverse initial-boundary value problem arises because it is also required to determine the non-
stationary pressure gradient along the pipe axis, and the over determination condition for the
fluid flow rate is set.
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1. Problem statement and formulation of basic equations

The fluid thermal convection problem is considered in a rotating cylindrical tube. Oberbeck-
Boussinesq equations are used as a mathematical model. Here r, φ, z are cylindrical coordinates, t
is time, a is the cylinder radius and ω(t) is the angular velocity of cylinder rotation around z axis.
Further, u and w are radial and axial components of the velocity vector; v is the difference between
the azimuthal velocity and the fluid rotation velocity ω(t)r as a solid body; p is the deviation of
true pressure from the equilibrium state ρω2(t)r2/2; Θ is the deviation of temperature from its
average value Θ = const. The fluid is characterized by the following physical parameters: density
ρ at temperature Θ, kinematic viscosity ν, thermal diffusion χ and the coefficient of thermal
expansion β. These parameters are assumed to be constant and positive. There is no gravity
acceleration. The last assumption is satisfied if the angular velocity ω(t) is sufficiently large.

Under given above assumptions the thermal convection equations have the form [6]

ut+ uur−
v

r
uφ+ ω(t)uφ+ wuz− 2ω(t)v − v2

r
= −1

ρ
pr+ ν

(
Lu− 2

r2
vφ−

u

r2

)
− ω2(t)βrΘ,

vt+ ωt(t)r+ uvr+ ω(t)vφ+ wvφ+ 2ω(t)u+
uv

r
=− 1

ρr
pφ+ ν

(
Lv − 2

r2
uφ−

v

r2

)
− ω2(t)βrΘ,

wt + uwr +
v

r
wφ + ω(t)wφ + wwz = −1

ρ
pz + νLw,

ur +
u

r
+

1

r
vφ + wz = 0,

Θt + uΘr +
v

r
Θφ + ω(t)Θφ + wΘz = χLΘ,

(1)

where L = ∂2/∂r2 + r−1∂/∂r + r−2∂2/∂φ+ ∂2/∂z is the Laplace operator.
We seek a solution of system (1) in the form

u = u(r, t), v = v(r, t), w = w(r, t),

p = ρ

[
Aβω2(t)

r2

2
+ f(t)

]
z + q(r, t),

Θ = −Az + T (r, t), A = const.

(2)

According to the classification given in [7], it is an invariant solution of system (1) with
respect to the infinite Lie subgroup defined by operators

∂

∂φ
,

∂

∂z
−A

∂

∂Θ
+

(
f(t) +

Aβω2(t)ρr2

2

)
∂

∂p
.

Substituting solution (2) into (1) and assuming that there are no sources or sinks on the axis
z, we obtain u = 0 and the system of linear equations

wt = ν

(
wrr +

1

r
wr

)
− 1

2
Aβω2(t)r2 − f(t)

Tt = χ

(
Trr +

1

r
Tr

)
+Aw,

vt = ν

(
vrr +

1

r
vr −

1

r2
v

)
− ωtr, qr =

ρv2

r
.

(3)

The initial and boundary conditions for this system are as follows

w(r, 0) = w0(r), T (r, 0) = T0(r), v(r, 0) = v0(r), 0 6 r 6 a;

w(a, t) = 0, T (a, t) = 0, v(a, t) = 0, 0 6 t 6 t1;

| w(0, t) |< ∞, | T (0, t) |< ∞, | v(0, t) |< ∞.

(4)
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In addition, the fluid volumetric flow rate through the tube cross section Q(t) is given as∫ a

0

rw(r, t)dr =
Q(t)

2π
. (5)

In equations (1)–(3), ν is the fluid kinematic viscosity; (−A) is the temperature gradient along
the tube axis; β is the coefficient of thermal expansion; χ is the thermal diffusivity; a is the tube
radius; ω(t) is rotation angular velocity of the tube around its axis; ωt(t) is angular acceleration.

Given functions ω(t), Q(t), one can give the following interpretation of problem (3)–(5). The
fluid fills a cylinder of radius a rotating with an angular velocity ω(t), and fluid is pumped with a
flow rate Q(t) through the cross section of the cylinder. The temperature gradient −A along the
axis is set on the cylinder surface. It is required to determine the resulting rotationally symmetric
motion. If Q(t) = 0 then one can expect that the problem solution describes convection far from
solid wall perpendicular to the axis of the cylinder, that is, motion in the core.

From a mathematical point of view, problem (3)–(5) is an inverse problem. Along with
w(r, t), v(r, t), T (r, t), it is necessary to find an additional pressure gradient along z axis, that
is, function f(t). Let us also note that problem for v(r, t) is separated. The main problem is
for w(r, t)andf(t). For known w(r, t) function T (r, t) is found as a solution of the classical first
initial-boundary value problem, and q(r, t) is found by integrating the last equation of system (3).

2. Stationary problem solution

In the stationary case, all variables in (3)–(5) do not depend on time

w = ws(r), f = fs = const, T = T s(r), v = vs(r), (6)

and the angular velocity ωs and flow rate Qs are constant.
Simple mathematical treatment shows that solution of this problem is

ws(ξ) =
χ

a

[
Ra

96

(
3ξ4 − 4ξ2 + 1

)
+

2Q

π

(
1− ξ2

)]
,

T s(ξ) = −Aa

[
Ra

1152

(
ξ6 − 3ξ4 + 3ξ2 − 1

)
+

Q

8π

(
ξ3 − 4ξ2 + 3

)]
, vs = 0,

fs = −νχ

a3

(
8Q

π
+

Ra

6

)
,

(7)

where Ra = (Aβωs2a5)/(νχ) is the analogue of the Rayleigh number, ξ = r/a, Q = Qs/aχ, 0 6
ξ 6 1.

It should be noted that in the vicinity of the solid wall, zones of the fluid return flow can
arise. This is due to two types of flow mechanism that are present in the problem. The first one
is related to the fluid rate, and the second one is related to thermal effects and fluid rotation. It
is easy to find that the reverse flow occurs when Q < πRa/96, in particular, this always takes
place when Qs = 0.

3. Solution of the unsteady problem by the method of sep-
aration of variables

The method of separation of variables, or the Fourier method, is one of the widely used
methods for solving linear partial differential equations. Its application leads to a solution in the
series form.
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In our case, the main problem is to find w(r, t) and f(t) from the first equation of system (3).
In order to use the method of separation of variables it is necessary to reduce the problem to a
homogeneous one with respect to the boundary conditions. This can be achieved by doing the
following change of variables

w(r, t) = w(r, t) +
10

πa5
Q(t)(a− r)r2 + d(t)

(
r3 − 6

5
ar2 +

1

5
a3
)
,

d(t) =
25

3πa5
[Q(t)−Q(0)] +

5Aβ

12a

∫ t

0

ω2(τ)dτ.

(8)

Since function f(t) is unknown the problem is inverse. Then we differentiate the equation with
respect to r and introduce wr(r, t) = W (r, t). Thus the pressure gradient function is excluded.
As a result, we obtain the following direct problem with integral (non-classical) condition on
function W (r, t)

Wt = ν

(
Wrr +

1

r
Wr −

1

r2
W

)
+ U,

U(r, t) = −ν
90

πa5
Q(t) + 9νd(t) +

(
30

πa5
Qt(t)− 3dt(t)

)
r2,

W (r, 0) = W0(r) = w0r(r)−
10

πa5
Q(0)

(
2ar − 3r2

)
, 0 6 r 6 a,

|W (0, t)| < ∞, 0 6 t 6 t1,

(9)

∫ a

0

r2W (r, t)dr = 0, r ∈ [0, a] , t ∈ [0, t0] . (10)

Integral condition (10) follows from (5).
Let us consider a homogeneous version of (9) (U = 0) in order to find the Fourier expansion

basis. To do this, it is necessary to separate the variables and solve a Sturm-Liouville type
problem to find eigenfunctions and eigenvalues. After some mathematical treatment, we find
that expansion basis contains the Bessel functions of the first kind and first order. Therefore,
the solution of inhomogeneous problem is sought in the form

W (r, t) =
∞∑
k=1

Ck(t)J1

(√
λkr

)
, U(r, t) =

∞∑
k=1

uk(t)J1

(√
λkr

)
, (11)

where λk = ξ2k/a
2, and ξk are roots of equation J2(ξk) = 0. They are ξ1 = 5.13562, ξ2 = 8.41724,

ξ3 = 11.6198, ξ4 = 14.796, ξ5 = 17.9598.
Remark 1. Series (11) includes the Bessel functions terms J1(ξkr/a), where ξk are roots of
equation J2(ξk) = 0. However, taking into account relation J1(ξ) − ξJ ′

1(ξ) = ξJ2(ξ), we obtain
that ξk− are roots of equation J1(ξk)− ξkJ

′
1(ξk) = 0. Therefore, expansion (11) makes sense [8].

In particular, the system of functions {J1(ξkr/a)} is orthogonal and complete in L2[(0, a); r] and∫ a

0

rJ1

(
ξkr

a

)
J1

(
ξnr

a

)
dr = 0, k ̸= n;

∫ a

0

rJ2
1

(
ξkr

a

)
dr =

a2

2

{
[J ′

1(ξk)]
2
+

(
1− 1

ξ2k

)
J2
1 (ξk)

}
=

a2

2
J2
1 (ξk).

(12)

Substituting expressions (11) into (9), we obtain after simple transformations the system of
ordinary differential equations, and find Ck(t):

Ck(t) =

∫ t

0

uk(τ)e
ν
(

ξk
a

)2
(τ−t)

dτ + C0ke
−ν

(
ξk
a

)2
t
. (13)
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Here coefficients C0k is obtained from the expansion of initial conditions W0(r) from (9) into
the Fourier–Bessel series.

Integrating W (r, t) from (11), we return to the variable w. Then, taking into account (8), we
obtain the solution of the first equation (3)

w(r, t) = a
∞∑
k=1

1

ξk

[∫ t

0

uk(τ)e
ν
(

ξk
a

)2
(τ−t)

dτ + C0ke
−ν

(
ξk
a

)2
t
] [

J0

(
ξk
a

r

)
− J0 (ξk)

]
+

+
10

πa5
Q(t)(a− r)r2 +

(
25

3πa5
[Q(t)−Q(0)] +

5Aβ

12a

∫ t

0

ω2(τ)dτ

)(
r3 − 6

5
ar2 +

1

5
a3
)
,

(14)

where

C0k =
2

[aJ1(ξk)]
2

∫ a

0

r

(
w0r(r) +

10

πa5
Q(0)3r2

)
J1

(
ξk
a
r

)
dr,

uk(τ) =
2

[aJ1(ξk)]
2

∫ a

0

r

(
−ν

90

πa5
Q(t) + 9νd(t) +

(
30

πa5
Qt(t)− 3dt(t)

)
r2
)
J1

(
ξk
a
r

)
dr

are obtained using equalities (12). Remark 2. When finding coefficients in (14), the following
integrals arise [8]∫ a

0

rJ1

(
ξk
a
r

)
dr =

a2

ξk
Γ

(
3

2

)√
π [J1(ξk)H0(ξk)− J0(ξk)H1(ξk)] ,∫ a

0

r3J1

(
ξk
a
r

)
dr =

a4

ξ3k
[3J1(ξk)G2,0(ξk)− J0(ξk)G3,1(ξk)] ,

where H0(x), H1(x) are Struve functions, Gµ,ν(x) are Lommel functions.

In addition, it is necessary to find the remaining unknown pressure gradient function f(t).
Multiplying the first equation (3) by r, integrating it over r from 0 to a and taking into account
(4), (5), boundary and initial conditions, we obtain

f(t) =
2ν

a
W (a, t)− 1

4
Aβω2(t)a2 − 1

πa2
Qt(t), (15)

where W (r, t) is defined in (11).
It is interesting to find the initial value f(0). We have from (15) that

f(0) =
2ν

a
w0r(a)−

1

4
Aβω2(0)a2 − 1

πa2
Qt(0) (16)

Functions T (r, t) and v(r, t) are found in the standard way. Considering second and third
equations (3), we have [9]

T (r, t) =

∞∑
k=1

[∫ t

0

gk(τ)e
χ(µk

a )
2
(τ−t)dτ +B0ke

−χ(µk
a )

2
t

]
J0

(µk

a
r
)
,

B0k =
2

[aJ ′
0(µk)]2

∫ a

0

rT0(r)J0

(µk

a
r
)
dr,

gk(τ) =
2A

[aJ ′
0(µk)]2

∫ a

0

rw(τ, r)J0

(µk

a
r
)
dr,

(17)
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v(r, t) =
∞∑
k=1

[∫ t

0

hk(τ)e
ν( εk

a )
2
(τ−t)dτ +N0ke

−ν( εk
a )

2
t

]
J1

(εk
a
r
)
,

hk(τ) =
2ωt(τ)

[aJ ′
1(εk)]

2

∫ a

0

r2J1

(εk
a
r
)
dr,

N0k(τ) =
2

[aJ ′
1(εk)]

2

∫ a

0

rv0(r)J1

(εk
a
r
)
dr,

(18)

where µk are roots of equation J0(µk) = 0. They are µ1 = 2.40483, µ2 = 5.52008, µ3 = 8.65373,
µ4 = 11.7915, µ5 = 14.9309. Parameters εk are roots of equation J1(εk) = 0. They are
ε1 = 3.83171, ε2 = 7.01559, ε3 = 10.1735, ε4 = 13.3237, ε5 = 16.4706.

4. Time evolution of the non-stationary solution

For simplicity, here we consider the practically important case Q(t) = 0, Qs = 0. Let us show
that solution of the non-stationary problem tends to the stationary regime as time increases,
that is,

lim
t→∞

w(r, t) = ws(r), lim
t→∞

T (r, t) = T s(r), lim
t→∞

v(r, t) = vs(r), lim
t→∞

f(t) = fs, (19)

where ws(r), T s(r), vs(r), fs are defined in (7) at Qs = 0. Let us introduce new functions

H(r, t) = w(r, t)− ws(r), Ω(t) = ω2(t)− (ωs)2, F (t) = f(t)− fs. (20)

Due to linearity of the main inverse problem function H(r, t) satisfies the same equation as
w(r, t) but with modified initial data: H(0, r) = H0(r) = w0(r) − ws(r), ω2(t) is replaced with
Ω(t), f(t) is replaced with F (t).

Substituting (20) into previously obtained solution (14), we find

H(r, t) = D(t)

(
r3 − 6

5
ar2 +

1

5
a3
)
+ a

∞∑
k=1

Wk(t)

ξk

[
J0

(
ξk
a
r

)
− J0 (ξk)

]
,

D(t) =
5Aβ

12a

∫ t

0

Ω(τ)dτ,

(21)

where

Wk(t) = e−ν
ξ2k
a2 tC0k +

∫ t

0

Dk(τ)e
−ν

ξ2k
a2 (t−τ))dτ,

C0k =
2

[aJ1(ξ)]
2

∫ a

0

rW0(r)J1

(
ξk
a
r

)
dr,

Dk(t) =
2

[aJ1(ξ)]
2

[
9νD(t)

∫ a

0

rJ1

(
ξk
a
r

)
dr − 3Dt(t)

∫ a

0

r3J1

(
ξk
a
r

)
dr

]
,

(22)

аnd C0k are the Fourier series coefficients of H0r(r). Further, we have

F (t) =
2ν

a

∞∑
k=1

Wk(t)J1(ξk)−
1

4
AβΩ(t)a2 +

2

5
a2D(t). (23)

Let us assume that Ω(t) behaves as follows

Ω(t) → 0,

∫ t

0

Ω(τ)dτ → 0, t → ∞. (24)
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Let us take two functions that satisfy (24):

1) Ω(t) = C1e
−αt (1− αt) , α > 0,

∫ t

0

Ω(τ)dτ = C1te
−αt;

2) Ω(t) = C1e
−αt cosαt,

∫ t

0

Ω(τ)dτ = C1
e−αt

2α2
[αt cosαt+ (αt− 1) sinαt] → 0.

(25)

In both cases we obtain

|Ω(t)| 6 C2te
−αt,

∣∣∣∣∫ t

0

Ω(τ)dτ

∣∣∣∣ 6 C2te
−αt (26)

with positive constants C2 and α.
Let us estimate |H(r, t)| and |F (t)|. To do this, we first estimate |Wk(t)|. From (22) we

obtain

|Dk| 6 Aξk (|D(t)|+ |Dt(t)|) 6
A1

[aJ1(ξ)]
2

(∣∣∣∣∫ t

0

Ω(τ)dτ

∣∣∣∣+Ω(t)

)
6 A2te

−αt, (27)

because |J1| 6 1, and m1/ξk 6
a∫
0

rJ2
1 (ξkr/a) dr 6 m2/ξk [10], where A > 0, A1,2 > 0, m1,2 > 0

are constants.
Let us estimate the integral in the second relation (22)∣∣∣∣∫ t

0

Dk(t)e
−ν

ξ2k
a2 (t−τ)dτ

∣∣∣∣ 6 A2

m1
ξkte

−ν
ξ2k
a2 t

∫ t

0

e(νa
−2ξ2k−α)τdτ =

=
A2

m1

ξkt

νa−2ξ2k − α

[
e−αt − e−ν

ξ2k
a2 t

]
6 A2

m1
ξkte

−αt


1

|νa−2ξ2k−α|

∣∣∣1− e−(νa
−2ξ2k−α)t

∣∣∣,
t, α = ν

ξk02

a2 .

(28)

The latter is true if for some k = k0 we have α = νa−2ξ2k0
. For given ν, a there is a constant

k1, and at k > k1 we have that α < νa−2ξ2k1
because ξk increases with k (recall that ξk ∼ kπ for

k ≫ 1).
Thus, the estimate for |Wk(t)| is

|Wk(t)| 6 |C0k|e−νa−2ξ21te−νa−2(ξ2k−ξ21)t +
A2

m1
ξkte

−αt


1

|νa−2ξ2k−α|

∣∣∣1− e−(νa
−2ξ2k−α)t

∣∣∣,
t, α = ν

ξk02

a2 .
(29)

Since ξ1 < ξ2, . . . , |J2(ξk)| 6 1, |C0k| < C3, k > 1 it follows from (21), (29) that

|H(r, t)| 6 |D(t)|12
5
a3 + C3a

e−νa−2ξ21t

ξ1

∞∑
k=1

e−νa−2(ξ2k−ξ21)t+

+
A2

m1
at

{
(e−αt + e−νa−2ξ21t)

k1∑
k=1

1

|νa−2ξ2k − α|
+ e−αt

∞∑
k=k1+1

1

|νa−2ξ2k − α|

}
.

(30)

It is known that the "large" roots J2(ξ) are approximately equal to ξk ≡ ξ
(2)
k ≈ 7π/4 + kπ.

Then, in curly brackets in the numerator the term t appears for k = k0. Series (30) converges
uniformly for t > ε > 0 by the Dalamber criterion. Therefore, taking into account (26) |H(r, t)|
tends to zero as te−αt when t → ∞ uniformly for r ∈ [0, a].

As for F (t), the first part of its representation (23) is estimated as |H(r, t)| in (30), and the
estimation of the last terms follows from (26).

Estimates for T 1(r, t) = T (r, t)− T s(r) and V (r, t) = v(r, t)− vs(r) can be found in a similar
way. Thus, if we additionally require |ω′(t)| 6 C4e

−αt then the following theorem is true.
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Theorem 1. Let w0(r) ∈ C1[0, a],
a∫
0

rw0(r)dr = 0, T0(r) ∈ C[0, r], v0(r) ∈ v[0, r] and condi-

tions (26) are satisfied. Then non-stationary solution of the inverse problem tends to zero with
increasing time to stationary solution (7). To be more specific, when t → ∞, r ∈ [0, a] we obtain
that

|w(r, t)− ws(r)| 6 C5te
−α0t, |f(t)− fs| 6 C6te

−α0t,

|T (r, t)− T s(r)| 6 C7te
−α1t, |v(r, t)| 6 C8te

−α2t
(31)

with positive constants C5, C6, C7, C8, α0 = min(α, νa−2ξ21), α1 = min
(
α, χa−2µ2

1

)
, α2 =

= min
(
α, χa−2ε1

)
, where J2(ξk) = 0, J1(εk) = 0, J0(µk) = 0.

Remark 3. When ws = 0, fs = 0, ωs = 0, Qs = 0, T s = 0, vs = 0 inequalities (31) are the a
priori estimates of the formulated problem under conditions (24), (26).

Thus, it follows from estimates (31) that solution of the non-stationary problem exponentially
tends to the stationary solution with increasing time. It means the asymptotic stability of the
stationary solution (7).

Remark 4. The resulting solution is classical. This is proved by estimating the Fourier series
with respect to the Bessel functions [10].

Conclusion

The following results were obtained in the work:

1. A stationary solution of the inverse problem is found in terms of polynomials in r.

2. The non-stationary solution of the problem is obtained by the method of separation of
variables. In this case, the problem is reduced to the direct problem with an integral
(nonclassical) condition.

3. With the help of the a priori estimates, it is established that non-stationary solution tends
to the stationary mode with increasing time if conditions of the theorem are satisfied.

The obtained results are of theoretical and practical importance. They can be used to simulate
rotationally symmetric convective motions of a viscous heat-conducting fluid in rotating tubes.
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Решение задачи о конвекции во вращающейся трубе
методом Фурье
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Аннотация. Исследована нестационарная краевая задача о движении жидкости во вращающей-
ся цилиндрической трубе. Для описания движения жидкости используются уравнения Обербека-
Буссинеска. С математической точки зрения задача является обратной относительно градиента
давления вдоль оси цилиндра. Методом разделения переменных решение найдено в виде специ-
альных рядов Фурье. Даны достаточные условия выхода решения нестационарной задачи с ростом
времени на стационарный режим.

Ключевые слова: конвекция, обратная задача, асимптотическое поведение, метод разделения
переменных, функции Бесселя.
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