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Abstract. The problem of a thin layer of liquid flowing down an inclined substrate under conditions of
a co-current gas flow is considered. Mathematical modeling is carried out on the basis of the Navier–
Stokes and heat transfer equations, as well as generalized conditions at the thermocapillary boundary.
Parametric analysis of the problem is made. An algorithm of numerical solution is constructed for the
evolution equation determining the thickness of the liquid layer. A comparison of numerical calculations
for ethanol and HFE-7100 liquids is presented. The influence of an additional term in the interface
energy equation on the dynamics of the liquid layer is shown.
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Introduction

Currently, film flows are used in many fields of activity, such as the space industry, chemical
and pharmaceutical industries, etc. This is largely due to the trend of device miniaturization.
Thin layers of liquid are used as heat carriers and heat stabilizers, solvents and much more. In
this regard, interest in the theoretical study of such flows has increased. The main difficulties in
their analytical study are associated with a large number of factors affecting thin liquid layers
and the nonlinearity of the processes under study. In some cases, when the processes described
by the mathematical model have strong nonlinearity, it is permissible to use some simplifications
of the model or its solutions that do not entail significant distortions of the results. One of the
methods can be a parametric analysis of the problem, which makes it possible to detect elements
that do not make a significant contribution to the processes under study.

Quite a large number of works are devoted to mathematical modeling of flows of thin liquid
layers, taking into account additional factors that govern the nature of processes [1–6]. One of the
important effects in the study of such flows is evaporation [7–11]. As a rule, mathematical models
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of problems in the thin layer approximation are based on the Navier–Stokes equations [4, 5] or
Oberbeck–Bussinesq equations [1,3,12]. When modeling flows with interface particular attention
is paid to the formulation of boundary conditions [8,9,13]. The numerical simulation of the flows
of thin liquid layers are preformed in [12,14,15].

This paper presents a mathematical model of the motion for a thin film of a viscous incom-
pressible liquid driven by a gas flux along an inclined unevenly heated solid substrate. Gravi-
tational, thermocapillary effects, evaporation, as well as the impact of additional shear stresses
from the external environment are taken into account in the model. The fulfillment of the laws
of conservation of mass, impulse and energy is ensured by the kinematic, dynamic and energy
conditions set at the interface. Modeling of liquid motion is based on the Navier–Stokes and
heat transfer equations. The Hertz–Knudsen kinetic equation is used to determine the depen-
dence of the local vapor mass flux on the temperature at the interface. A parametric analysis
of the problem is performed based on the use of two types of liquids: ethanol and HFE-7100.
Analytical solutions for the main terms of the expansion in powers of a small parameter and
an evolution equation that determines the position of the interface are obtained. An algorithm
for the numerical solution of the evolution equation is constructed. Numerical results on the
study of the influence of the liquid nature on change in the liquid layer thickness over time are
shown. Numerical results are obtained in the case when the energy condition is written taking
into account an additional term.

1. Problem statement

Let us consider the flow of a thin layer of a viscous incompressible liquid over an inclined,
unevenly heated substrate. A gas moves over the layer. The problem is considered in one-
sided formulation when dynamic processes in the gas are not considered. However, the shear
stresses created by the gas can be taken into account when modeling the flow at the interface.
It is assumed that evaporation occurs at the thermocapillary interface. A solid impenetrable
substrate is inclined at an angle α to the horizon, coincides with the coordinate axis Ox and
is defined by the expression z = 0 (see Fig. 1). The position of the interface is given by the
equation z = h(x, t). The gravity vector has the form g = (g1, g2) = (g sinα,−g cosα), g = |g| .

g

x

z
gas

liquid

n

s
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α 

Fig. 1. Geometry of the flow area.

As a rule, the characteristic deformation length of the free surface exceeds the deformation
amplitude. Therefore, two different length scales are often distinguished when considering prob-
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lems about the flow of a thin layer. Let l be the longitudinal characteristic length and d is the

transverse characteristic scale such that l ≫ d. Then ε =
d

l
is a small dimensionless parameter

of the problem. Characteristic longitudinal and transverse velocities u∗ and w∗ must also be
related: w∗ = εu∗. The characteristic time of the process t∗ is related to other parameters of the

problem as follows: l = u∗t∗. The characteristic pressure is given by the formula p∗ =
ρu∗νl

d2
.

The Navier-Stokes and heat transfer equations are used as a mathematical model. The system
of equations in dimensionless form is written as follows:

Reε2(ut + uux + wuz)− ε2uxx = uzz − px + γ1 sinα, (1)

Reε4(wt + uwx + wwz)− ε4wxx − ε2wzz=−pz − γ2 cosα, (2)

ux + wz = 0, (3)

RePrε2(Tt + uTx + wTz)− ε2Txx = Tzz. (4)

Here, v = (u,w) is the liquid velocity vector, p is the pressure, T is the temperature, Re =
u∗l

ν
is

the Reynolds number, Pr =
ν

χ
is the Prandtl number, γ1 =

Gr

BuReε
, γ2 =

Gr

BuRe
, Gr =

Bugd3

ν2

is the Grashof number, Bu = βT∗ is the Boussinesq number, ν and χ are the kinematic viscosity
and thermal diffusivity coefficients, ρ is the liquid density, T∗ is the characteristic temperature
difference.

On a solid impermeable substrate, the no-slip conditions are satisfied:

u|z=0 = 0, w|z=0 = 0. (5)

The temperature at the boundary z = 0 is distributed according to some given law:

T |z=0 = Θ0(x, t). (6)

The kinematic, dynamic and energetic conditions fulfilled at the interface are consequences of
the laws of conservation of mass, impulse and energy [8,10,11]. Coordinates of the normal vector
to the boundary (n1, n2), the curvature of the free boundary H and the speed of its movement
in the direction of the external normal Dn are given by the relations:

n1 = − εhx√
1 + ε2h2

x

, n2 =
1√

1 + ε2h2
x

, 2H =
εhxx√

(1 + ε2h2
x)

3
, Dn = − εht√

1 + ε2h2
x

.

Then, the kinematic condition in dimensionless form will be written as follows:

−ε(ht + hxu− w)
1√

1 + ε2h2
x

= JevJ̄ . (7)

The projections of the dynamic condition on the normal and tangent vector have the following
form:

−p+
2ε2

1 + ε2h2
x

[ε2h2
xux + wz − hx(uz + ε2wx)] =

= −pg +
ρ̄ν̄ῡ

h̄

2ε2

1 + ε2h2
x

[
ε2h2

xu
g
x + wg

z − εhx(u
g
z + wg

x)
]
+Reε2(1− 1

ρ
)J2

evJ̄
2 + 2σH

ε2

Ca
,

(8)
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2

1 + ε2h2
x

[
− εhxux + εhxwz −

1

2ε
(1− ε2hx)(uz + ε2wx)

]
−

− ρ̄ν̄ῡ

h̄

2

1 + ε2h2
x

[
− εhxu

g
x + εhxw

g
z +

1

2
(1− ε2h2

x)(u
g
z + wg

x)
]
=

= − Ma

RePr

[ 1√
1 + ε2h2

x

(Tx + hxTz)
]
.

(9)

Let us represent the energy condition in the following dimensionless form:

∂T

∂n
+ β2{TdivΓv} = β3J̄Jev + β4J̄Jev

{
− p+

2ε2

1 + ε2h2
x

[ε2h2
xux + wz − hx(uz + ε2wx)]

}
+

+
1

2
β5J̄

3J3
ev + β6σ

{
εhxx√

(1 + ε2h2
x)

3

}
J̄Jev,

(10)

where
∂T

∂n
and divΓv are calculated as follows:

∂T

∂n
=

1

ε

1√
1 + ε2h2

x

(−ε2HxTx + Tz),

divΓv =
2∑

i=1

∂vi
∂xi

−
2∑

i=1

ni(n · ∇vi) =

= (ux + wz)|Γ −
{ ε2h2

x

1 + ε2h2
x

ux − εhx

1 + ε2h2
x

uz −− εhx

1 + ε2h2
x

wx +
1

1 + ε2h2
x

wz

}
.

Here ν̄, ρ̄ are the ratios of kinematic viscosity coefficients and densities of gas and liquid, re-

spectively
(
ν̄ =

νg

ν
; ρ̄ =

ρg

ρ

)
, v̄ =

ug
∗

u∗
is the the ratio of the characteristic longitudinal velocity

of the gas to the characteristic velocity of the liquid u∗, pg is the gas pressure. Ma =
σTT∗l

ρνχ

is the Marangoni number, Ca =
u∗ρν

σ0
is the capillary number, β2 =

Ma

Re2PrEU
, β3 =

1

E
,

β4 = (
1

ρ
− 1)

1

EU
, β5 = (1 − 1

ρ
)2

1

EU
, β6 = (1 − 1

ρ
)

1

ReCaEU
, U =

λU

u2
∗

, E =
κT∗

λUρν
is the

evaporation parameter [6], κ is the coefficient of thermal conductivity, λU is the latent heat of

vaporization, J̄ =
Jev
∗

ρu∗
or J̄ =

E

Re
, where Jev

∗ is the characteristic value of vapor mass flux(
Jev
∗ =

κT∗

λUρν

)
. The first term on the left side of the condition (10) is responsible for the heat

defect during its transfer through the interface. The remaining terms define the contribution of
individual physical phenomena that create this defect. The second term on the left side is for
the energy spent to overcome surface deformation by thermocapillary forces along the surface.
The first term on the right side specifies the heat consumption for vaporization, the second —
for boundary deformation, the third — for the change in the kinetic energy of the substance
during the phase transition, the fourth — for the work performed by the liquid substance during
evaporation (condensation) due to a change in specific volume [7,9].

A linear dependence of the surface tension coefficient on temperature is assumed in this paper.

In the dimensionless form, this dependence is written as follows: σ = 1− ασT , ασ =
MaCa

RePr
.
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The value of the local vapor mass flux at the interface Jev determined by the ratio (see [5,8]):

Jev = αJT |z=h(x,t), αJ = αρsλU
T∗

J∗

( M

2πRgT 3
s

)1/2
. (11)

Here, α is the accommodation coefficient, ρs is the vapor density, M is the molecular weight, Rg

is the universal gas constant, Ts is the saturated vapor temperature.
Let the characteristic velocity u∗ be equal to the characteristic relaxation velocity of viscous

stresses uν =
ν

l
. Then, the Reynolds number is Re = 1. In the present paper modeling is carried

out for the case of moderate Reynolds numbers (Re = O(1)).

2. Obtaining an equation that determines the position
of the interface

To determine the desired functions u, w, T , p, as well as the thickness of the liquid layer h,
system of equations (1)–(4) in the long-wave approximation is considered. The solution of the
problem is sought in the form of expansions in powers of a small parameter ε.

Equations (1)–(4) written for the principal terms of the expansion take the form

p0x = u0
zz + γ1 sinα, p0z = −γ2 cosα,

w0
z = −u0

x, T 0
zz = 0.

Consequences of the no-slip conditions (5) on the boundary z = 0 are the relations

u0|z=0 = 0, w0|z=0 = 0, (12)

temperature condition (6) results in following requirement:

T 0|z=0 = Θ0. (13)

Consequences of the conditions at the interface (7)–(11) are the relations:

p0 = pg − αCahxx(1− ασΘ
0) + αDαJ (Θ

0)2, (14)

u0
z = −αMaΘ̃, (15)

T 0
z + β̄2Θ

0(u0
x) = β̄3J0 + β̄6J0hxx. (16)

Here, Θ0 = T 0|z=h(x,t), Θ̃ = (T 0
x + hxT

0
z )|z=h(x,t).

A large number of effects are taken into account when the flow of a thin liquid layer is modelled
at a thermocapillary boundary. Therefore, to simplify the problem, it makes sense to evaluate
the contribution of each of them. During the parametric analysis of the problem, estimates of the
values of dimensionless parameters αf and βi were obtained in cases when ethanol and HFE-7100
were selected as working liquids for the characteristic temperature values T∗ equal to 1 and 10
K (see Tabs. 1–3).

Taking into account the parametric analysis of the problem, the solutions for the main terms
of the decomposition are the functions u0, w0, p0, T 0 of the form:

u0 = (C0)x
z2

2
− γ1 sinα

z2

2
+ C1z, (17)
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Table 1. Physico-chemical parameters of the problem

Parameter Ethanol HFE-7100
ρ · 10−3, kg/m3 0.79 1.5
ν · 106, m2/sec 1.5 0.38
σ0 · 10−2, N/m 2.2 1.24

σT · 10−4, N/(m K) 0.8 1.14
λU · 10−6, W · sec/kg 0.9085 0.111

κ,W/(m ·K) 0.1675 0.07
χ · 107, m2/sec 0.89 0.4

cp · 10−3, W· sec/(kg· K) 2.97 1.3

Table 2. The values of the parameters αf in the systems "ethanol – nitrogen" and "HFE 7100
– nitrogen"

αf parameter values values values values
(T∗ = 1 K) (T∗ = 10 K) (T∗ = 1 K) (T∗ = 10 K)

ethanol ethanol HFE-7100 HFE-7100

ασ =
MaCa

RePr
10−2 10−1 10−3 10−2

αCa =
ε3

Ca
105ε3 105ε3 106ε3 106ε3

αD = ε2(
1

ρ
− 1)J̄2 10−5ε2 10−3ε2 10−3ε2 10−1ε2

ατ =
ρ ν v ε

h
ε; 10ε ε; 10ε ε; 10ε ε; 10ε

αMa =
εMa

RePr
103ε 104ε 104ε 105ε

w0 = −(C0)xx
z3

6
− (C1)x

z2

2
, (18)

p0 = −γ2 cosαz + C0, (19)

T 0 = A(x, t)z +Θ0(x, t). (20)

Here, the coefficients C0(x, t), C1(x, t), A(x, t) satisfy the following relations:

C0(x, t) = pg − αCahxx(1− ασΘ
0) + γ2 cosαh,

C1(x, t) = −αMaΘ̃− (C0)xh+ γ1 sinαh,

A =
(−β̄2(C1)xh+ β̄3αJ + β̄6hxxαJ)Θ0

1 + β̄2(C1)xh2 − β̄3αJh− β̄6αJhxxh
,

where Θ0 = Ah+Θ0, Θ̃ = Axh + (Θ0)x + hxA.
Note that the dynamic condition and the energy balance condition at the interface do not

consider additional tangential stresses and the divergent term.
Using the formula (7), we obtain the following equation for determining the thickness of the

liquid layer:

ht + uhx − w +
E

ε
Jev = 0. (21)
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Table 3. The values of the parameters βi in the systems "ethanol – nitrogen" and "HFE 7100
– nitrogen"

βi parameter values values values values
(T∗ = 1 K) (T∗ = 10 K) (T∗ = 1 K) (T∗ = 10 K)

ethanol ethanol HFE-7100 HFE-7100

β2 =
Ma

Re2PrEU
10 · ε−2 10 · ε−2 ε−2 ε−2

β3 =
1

E
104 103 103 102

β4 = (
1

ρ
− 1)

1

EU
10 1 1 0.1

β5 = (1− 1

ρ
)2

1

EU
103 102 103 102

β6 = (1− 1

ρ
)

1

ReCaEU
−106ε−1 −105ε−1 −106ε−1 −105ε−1

β2 = εβ2 10ε−1 10ε−1 ε−1 ε−1

β3 = εβ3J ε ε ε ε

β6 = ε2β6J −102ε −102ε −102ε −102ε

3. Results of numerical calculations

Taking into account the form of the solution for the principal terms (17)–(20), equation (21)
takes the form

ht + hx

[
(C0)x

h2

2
− γ1 sinα

h2

2
+ C1h

]
−

[
− (C0)xx

h3

6
− (C1)x

h2

2

]
+

E

ε
Jev = 0. (22)

Here, Jev = αJ [A(x, t)h+Θ0(x, t)]. The problem must be supplemented with initial conditions
h(x, 0) = h0(x) = 1−0.1 cos(kx) (see [5]) and conditions at infinity. The temperature distribution
on a solid substrate is determined as follows:

Θ0 = 1 + δ0 cos(k1x) cos(k2t). (23)

Equation (23) allows us to model a periodic heating.
For the numerical solution of the problem of periodic flowing of a thin liquid layer, one

considers the segment x ∈ [−L;L]. The following periodic conditions are assumed to be fulfilled
at the ends of the test cell:

h|x=−L = h|x=L, hx|x=−L = hx|x=L, hxx|x=−L = hxx|x=L. (24)

An implicit finite-difference scheme to determine the liquid layer thickness is constructed for
the equation (22) of the form

hk+1 − hk

τ
+Ak

4h
k+1
xxxx +Ak

3h
k+1
xxx +Ak

2h
k+1
xx +Ak

1h
k+1 +Dk = 0. (25)

Finite-difference analogues of the second order of approximation are used for all derivatives
with respect to x included in (25). The problem is reduced to solving a system of linear algebraic
equations by the method of five-point sweep and sweep with the parameter [12,14].

Periodic runoff of two different liquids, ethanol and HFE-7100, has been numerically in-
vestigated. Physico-chemical parameters of liquids are given in Tab. 1. The following values
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of characteristic quantities were used for calculations: l = 0.1 m, d = 0.01 m, T∗ = 10 K,
u∗ = 0.15 · 10−4 m/sec for ethanol, u∗ = 0.38 · 10−5 m/sec for HFE-7100.

Let the energy condition at the interface (10) be used in the classical formulation, i.e.
β̄2 = β̄6 = 0. The temperature on an inclined substrate is distributed inhomogeneously and
the heating changes over time according to formula (23). Ethanol and HFE-7100 were used as
working media, nitrogen was used as the gas. Fig. 2 shows the dependence of the change in
the liquid layer thickness over time on the type of liquid. For both media, the alignment of the
interface with time is observed (see lines 1, 2, 3 for ethanol and lines 1, 4, 5 for HFE-7100).
Note that with a similar qualitative picture, the thickness of the HFE-7100 layer decreases more
inetsively than the ethanol layer.

Fig. 2. Changing the position of the interface with time, non-stationary heating of the substrate,
β̄2 = 0, β̄6 = 0. 1: initial position of the interface; 2: t = 10−3, ethanol; 3: t = 10−2, ethanol;
4: t = 10−3, HFE-7100; 5: t = 10−2, HFE-7100

Let us consider the case when the energy condition (10) at the thermocapillary boundary is
written taking into account the term responsible for the energy consumption to overcome the
surface deformation by thermocapillary forces along the surface (β̄2 ̸= 0). Numerical calculations
were carried out for the case of uniform heating of the substrate. Fig. 3 shows the change in
the position of the interface over time in the case of using different types of liquids. Accounting
for the additional term in the energy condition significantly affects the flow nature qualitatively
and quantitatively. The previously shown effect of the influence of the liquid type on intensity of
decrease in the liquid layer thickness is preserved: in the case HFE-7100 fluid, values of function
h(x, t) are smaller than those for the ethanol liquid at the same time moment (see lines 4 and 5
of Fig. 3).

Conclusion

The presented mathematical model describes the dynamics of a thin liquid layer moving along
an inclined substrate. The conditions at the thermocapillary interface provide the fulfillment of
the laws of conservation of mass, impulse and energy. The influence of various effects on the
flow pattern is estimated using parametric analysis. Analytical solutions are obtained for the
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Fig. 3. Changing the position of the interface with time, homogeneous heating of the substrate,
β̄6 = 0. 1: nitial position of the interface; 2: t = 10−4, ethanol; 3: t = 10−4, HFE-7100;
4: t = 10−3, ethanol; 5: t = 10−3, HFE-7100

principal terms of the decomposition. The evolution equation of the thickness of the liquid layer
allows to take into account the influence of evaporation, capillary and thermocapillary forces,
gravity on the process of liquid flowing. The influence of the type of liquid on the rate of decrease
in the liquid layer thickness as well as the impact of an additional term in the energy condition
on the nature of the flow are shown using the numerical solution of the evolutionary equation.

This work was supported by the Russian Science Foundation, grant 22-11-00243,
https://rscf.ru/project/22-11-00243/.
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Математическое моделирование процесса стекания
тонкого слоя жидкости на основе обобщенных условий
на границе раздела: параметрический анализ
и численное решение

Екатерина В. Ласковец
Алтайский государственный университет

Барнаул, Российская Федерация
Институт вычислительного моделирования СО РАН

Красноярск, Российская Федерация

Аннотация. Рассматривается задача о стекании тонкого слоя жидкости по наклонной подложке
в условиях спутного потока газа. Математическое моделирование проводится на основе уравнений
Навье–Стокса и переноса тепла, а также обобщенных для случая ненулевого потока пара усло-
вий на термокапиллярной границе. Проведен параметрический анализ задачи. Для эволюционного
уравнения, определяющего толщину жидкого слоя, построен алгоритм численного решения. Пред-
ставлено сравнение численных расчетов для жидкостей типа этанол и HFE-7100. Показано влияние
дополнительного слагаемого в энергетическом условии на динамику жидкого слоя.
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