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Abstract. A method for estimating the effective dielectric permittivity tensor is described in the paper.
The method is based on variational principle for media with periodic inclusions. It allows one to obtain
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Introduction
Studies on dielectric properties of binary materials have been actively conducted in recent

years. The dielectric constant is one of the most important quantities that describes the optical
and electrical properties of materials. It is of special interest when composite systems are consid-
ered. There is an increasing demand for dielectric materials from a range of industries including
telecommunication, medical, auto-mobile, aerospace applications, sensors, actuators, antennas
and filters. Effective dielectric permittivity of a binary material is dependent on the dielectric
permittivity of inclusions and embedding medium and on the volume fraction and shape of the
inclusions. The method of estimation of effective dielectric permittivity based on variational
principles is proposed in the paper.

Conception of effective dielectric permittivity was proposed by Maxwell [1]. An up-to-date
treatment of effective dielectric permittivity was considered in [2]. Methods based on variational
principle were proposed by Kazantsev for problems of electrostatics of dielectrics [3, 4]. Ap-
plication of these methods to estimating the dielectric permittivity of a medium with periodic
inclusions is presented in the paper. Estimations of effective dielectric permittivity with the use
of variational principle were also proposed for media with various inclusions [5–7]. Numerical
methods are also used to determined dielectric permittivity. Computer simulation data for the
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effective permittivity of a system composed of a periodic lattices of inclusions embedded in a
three-dimensional homogeneous matrix was presented in [7]. Results were obtained with the use
of the numerical method based on the solution of boundary integral equations. A simulation for
dielectric constant of two-phase disordered composites based on a three-dimensional disordered
model was presented. Numerical calculations were performed using the finite element method [8].

1. Problem formulation
Let us assume that dielectric permittivity of a medium changes periodically along the axes

of the Cartesian coordinate system:

ε (x+ a, y, z) = ε (x, y + b, z) = ε (x, y, z + c) = ε (x, y, z) .

External homogeneous electric field E⃗0 polarizes the medium. Charges induced by the electric
field are the sources of electric potential φ (r⃗). This potential is a periodic function with the same
periods as dielectric permeability. The averaged over the periodic cell the electric displacement
field D⃗ is related to the external electric field E⃗ext by the tensor of effective dielectric permittivity
ε̂ef

D⃗ = ε0ε̂
ef · E⃗ext.

The challenge is to determine ε̂ef from the known ε (r⃗).
Let us note that described below method to determine effective dielectric permittivity can be

used to determine effective magnetic permeability, electric conductivity and heat conductivity of
a medium with periodic inclusions.

2. Variational formulation of the problem
Let us consider the functional of electrostatic energy of the periodic cell

W (φ) =
ε0
2

∫
V

ε (r⃗)
(
E⃗ext −∇φ

)2
dV , V : {0 6 x 6 a, 0 6 y 6 b, 0 6 z 6 c} , (1)

where test potential φ(r⃗) is a periodic function for which W (φ) is bounded. The existence of
such functions for actual ε (r⃗) is demonstrated in the given below examples. Let us show [2] that
solutions of equation

∇ ·
(
ε (r⃗)

(
E⃗ext −∇Φ

))
= 0, (2)

provides the minimal value of functional (1) with the assumption that potential Φ is continuous
and periodic function. Boundedness of energy for the true solution of (2) is obvious as it follows
from physical consideration.

Let us consider the immediately verified identity

W (φ) = W (φ−Φ+Φ) = W (Φ) +
ε0
2

∫
V

ε (r⃗) (∇ (φ−Φ))
2
dV−

− ε0

∫
V

ε (r⃗)
(
E⃗ext −∇Φ

)
· ∇ (φ−Φ) dV . (3)

The last integral in (3), providing Φ satisfies equation (2), can be transformed into the surface
integral
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∫
V

ε (r⃗)
(
E⃗ext −∇Φ

)
· ∇ (φ−Φ) dV =

∫
∂V

(φ−Φ) ε (r⃗)
(
E⃗ext −∇Φ

)
· n⃗dS−

−
∫
V

(φ−Φ)∇ ·
(
ε (r⃗)

(
E⃗ext −∇Φ

))
dV =

∫
∂V

(φ−Φ) ε (r⃗)
(
E⃗ext −∇Φ

)
· n⃗dS

over the boundary of periodic cell with the use of the Gauss-Ostrogradsky theorem, where n⃗ is
the unit normal vector to a surface element dS of the boundary ∂V of the periodic cell.

If periodic cell can be chosen so that ε (r⃗) is continuous on the boundary of the cell then
according to (2), ε (r⃗)∇Φ is also continuous and periodic on ∂V . Then last integral is equal to
zero because normal vectors n⃗ are oppositely directed on the opposite sides of the periodic cell.
Then we transform identity (3) into inequality

W (φ)−W (Φ) =
ε0
2

∫
V

ε (r⃗) (∇ (φ−Φ))
2
dV > 0 (4)

under the natural assumption that dielectric permittivity is positive. Let us note that energy of
electric field when φ = Φ is

W (Φ) =
ε0
2

(
E⃗ext ·

∫
V

ε (r⃗)
(
E⃗ext −∇Φ

)
dV −

∫
V

∇Φ · ε (r⃗)
(
E⃗ext −∇Φ

)
dV

)
.

Second integral in the right hand side is equal to zero (see the similar integral in (3)). Thus

W (Φ) =
1

2
V E⃗ext · D⃗ =

ε0
2
V E⃗ext · ε̂ef · E⃗ext,

where
D⃗ = ε0ε

ef E⃗ext =
1

V

∫
V

ε (r⃗)
(
E⃗ext −∇Φ

)
dV ,

and D⃗ can be treated as effective electric displacement field. Because W (φ) is a quadratic form
with respect to E⃗ext then

W (φ) =
ε0
2
V E⃗ext · ˜̂ε · E⃗ext,

where ˜̂ε is some constant positive definite tensor but it depends on the choice of φ. We call it
the approximate tensor of dielectric permittivity.

Moreover, it follows that

W (φ) =
ε0
2
V E⃗ext · ˜̂ε · E⃗ext > ε0

2
V E⃗ext · ε̂ef · E⃗ext. (5)

It allows one to find an estimate from above ˜̂ε for tensor ε̂ef with the use of rather arbitrary
periodic potentials φ(r⃗). Inequality (5) plays a leading part in solving problem on tensor of
effective dielectric permittivity of a medium with periodic inclusions.

3. Dual variational principal
Dual variational principle allows one to find an estimate from below for tensor of effective

dielectric permittivity of a medium with periodic inclusions. Let us consider the following obvious
inequality [2]

1

2

∫
V

1

ε0ε (r⃗)

(
D⃗ − ε0ε (r⃗)

(
E⃗ext −∇φ

))2
dV > 0, (6)

where D⃗ is an arbitrary vector field. The requirements that should be imposed upon this field
are considered below.
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Let us rewrite this inequality in a more convenient form

1

2

∫
V

(
D⃗2

ε0ε (r⃗)
− 2D⃗ · E⃗ext

)
dV +W (φ) +

∫
V

D⃗ · ∇φdV > 0.

Taking into account the Gauss-Ostrogradsky theorem, we obtain∫
V

D⃗ · ∇φdV =

∫
∂V

φD⃗ · n⃗dS −
∫
V

φdivD⃗dV .

If test vector field D⃗ is periodic, continuous on the boundary of the cell and solenoidal field in
V then both integrals in the right hand side are equal to zero.

Then inequality (6) can be written in the form

W (φ) > −L
(
D⃗
)
,

where

L(D⃗) =
1

2

∫
V

(
D⃗2

ε0ε (r⃗)
− 2D⃗ · E⃗ext

)
dV .

Similar inequality is valid for the true potential

W (Φ) > −L
(
D⃗
)
. (7)

Let us note that we need not use vector potential as it is usually done to formulate dual
variational principal [2].

Finding extreme value of L
(
D⃗
)

over a class of periodic, solenoidal fields D⃗ will obviously

produce a linear relationship between D⃗ and E⃗ext because L
(
D⃗
)

is a quadratic form of D⃗ and

it contains D⃗E⃗ext. Then one can set

L
(
D⃗
)
= −ε0

2
V E⃗ext · ε̂

∼
· E⃗ext.

It follows from (7) that

ε0
2
V E⃗ext · ε̂ef · E⃗ext > −L

(
D⃗
)
=

ε0
2
V E⃗ext · ε̂

∼
· E⃗ext. (8)

This Inequality is similar to inequality (5). Inequality (8) allows one to find an estimate from
below for tensor of effective dielectric permittivity of a medium with periodic inclusions with the
use of square-integrable solenoidal fields D⃗.

4. Simple estimates for tensor of effective dielectric
permittivity of a medium with periodic inclusions

Let us use the following designation

⟨f (r⃗)⟩V =
1

V

∫
V

f (r⃗) dV .
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Let us obtain simple estimates of effective dielectric permittivity, assuming that φ = 0 in W (φ)

and D⃗ = ε0E⃗
ext in L

(
D⃗
)
:

ε0
2
V (E⃗ext)

2⟨
ε−1
⟩
V

−1 6 ε0
2
V E⃗ext · ε̂ef · E⃗ext 6 ε0

2
V (E⃗ext)

2
⟨ε⟩V . (9)

Let us note that anisotropy of material of inclusions is not taken into account in (9). Let
us improve the obtained estimates. Let us introduce the coordinate system so that periodic cell
is in the first octant with three sides of the cell are on the coordinate planes. To obtain the
estimate from below, for example, for ε̂efxx, let us direct E⃗ext and D⃗ along the x axis and set the
test solenoidal field D⃗ in functional L

(
D⃗
)

as follows

D⃗ = (Dx (y, z) , 0, 0) , E⃗ext = (E, 0, 0) .

Then
L
(
D⃗
)
=

a

2ε0

∫
Syz

(⟨
ε−1 (r⃗)

⟩
x
D2

x − 2ε0DxE
)
dydz,

where the averaged over value of inverse dielectric permittivity is⟨
ε−1 (r⃗)

⟩
x
=

1

a

∫ a

0

ε−1 (r⃗) dx.

Minimizing L
(
D⃗
)

with respect to Dx (y, z), we obtain

Dx (y, z) = ε0
(⟨
ε−1 (r⃗)

⟩
x

)−1
E,

and
L
(
D⃗
)
= −abc

2
ε0

⟨(⟨
ε−1 (r⃗)

⟩
x

)−1
⟩
Syz

E2

where ⟨(⟨
ε−1 (r⃗)

⟩
x

)−1
⟩
Syz

=
1

bc

∫ b

0

∫ c

0

(⟨
ε−1 (r⃗)

⟩
x

)−1
dydz.

Thus we have the estimate from below

ε̂efxx > ε̂
∼xx

=
⟨(⟨

ε−1 (r⃗)
⟩
x

)−1
⟩
Syz

Estimates for ε̂efyy and ε̂efzz can be obtained in a similar way. As a result we have

ε̂
∼xx

=
⟨(⟨

ε−1 (r⃗)
⟩
x

)−1
⟩
Syz

; ε̂
∼yy

=

⟨(⟨
ε−1 (r⃗)

⟩
y

)−1
⟩

Sxz

; ε̂
∼zz

=
⟨(⟨

ε−1 (r⃗)
⟩
z

)−1
⟩
Syz

. (10)

To obtain the estimate from above, for example, for ˜̂εxx let us direct E⃗ext along the x axis:
E⃗ext = (E, 0, 0) and assume that test potential φ depends only on x in functional (1). Then

W (φ) =
ε0bc

2

∫ a

0

⟨ε (r⃗)⟩Syz

(
E − d

dx
φ (x)

)2

dx

The Euler-Lagrange equation for φ (x) is

d

dx

(
⟨ε (r⃗)⟩Syz

(
E − d

dx
φ (x)

))
= 0.
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The periodic potential with period a that satisfies this equation has the form

φ (x) = Ex− E

⟨(
⟨ε (r⃗)⟩Syz

)−1
⟩

x

∫
0

dx

⟨ε (r⃗)⟩Syz

+ C,

where C is some constant.
Then the value of the energy functional is

W (φ) =
ε0abc

2
E2

(⟨(
⟨ε (r⃗)⟩Syz

)−1
⟩

x

)−1

,

with the estimate

ε̂efxx 6 ˜̂εxx =

(⟨(
⟨ε (r⃗)⟩Syz

)−1
⟩

x

)−1

Estimates for ˜̂εyy and ˜̂εzz can be obtained in a similar way. Finally we have

˜̂εxx =

(⟨(
⟨ε (r⃗)⟩Syz

)−1
⟩

x

)−1

;

˜̂εyy =

(⟨(
⟨ε (r⃗)⟩Sxz

)−1
⟩
y

)−1

; (11)

˜̂εzz =

(⟨(
⟨ε (r⃗)⟩Sxy

)−1
⟩

z

)−1

.

Let us note that in the considered case tensors ε̂
∼

and ˜̂ε have diagonal form by the construction.

Generally, E⃗ext = (Ex, Ey, Ez) and one can set D⃗ = (Dx (y, z) , Dy (x, z) , Dz (x, y)), φ = φx(x)+
φy(y) + φz(z). Then

L
(
D⃗
)
=

a

2ε0

∫
Syz

(⟨
ε−1 (r⃗)

⟩
x
D2

x − 2ε0DxEx

)
dydz +

b

2ε0

∫
Sxz

(⟨
ε−1 (r⃗)

⟩
y
D2

y − 2ε0DyEy

)
dxdz+

+
c

2ε0

∫
Sxy

(⟨
ε−1 (r⃗)

⟩
z
D2

z − 2ε0DzEz

)
dxdy,

W (φ) =
ε0bc

2

∫ a

0

⟨ε (r⃗)⟩Syz

(
Ex − d

dx
φx (x)

)2

dx+
ε0ac

2

∫ b

0

⟨ε (r⃗)⟩Sxz

(
Ey −

d

dy
φy (y)

)2

dy+

+
ε0ab

2

∫ c

0

⟨ε (r⃗)⟩Sxy

(
Ez −

d

dz
φz (z)

)2

dz.

Minimizing with respect to periodic D⃗ and φ, we obtain

ε0
abc

2

(
ε̂
∼xx

Ex
2 + ε̂

∼yy
Ey

2 + ε̂
∼zz

Ez
2

)
6 ε0

abc

2
E⃗ext · ε̂ef · E⃗ext 6

6 ε0
abc

2

(
˜̂εxxEx

2 + ˜̂εyyEy
2 + ˜̂εzzEz

2
)
,

where tensors ε̂
∼

and ˜̂ε are given in (10) and (11).
One should note that if periodic cell and distribution ε (r⃗) have non-trivial rotational symme-

try then ε̂ef has 2 or 3 equal principal values. For example, if periodic cell is a cube and uniform
inclusion is in its centre, and the inclusion shape has cubic symmetry then ε̂ef has diagonal form.

Let us examine the effectiveness of the obtained estimates.

– 81 –



Vladimir P.Kazantsev . . . Effective Dielectric Permeability of a Medium . . .

5. Examples of calculation of tensor of effective dielectric
permittivity of a medium with periodic inclusions

5.1. Dielectric cube in a dielectric medium

Let us consider a cube of edge d < a, b, c is located in the periodic cell. Cube edges are
parallel to the sides of the cell, and the cube centre coincides with the centre of the cell. The
dielectric permittivity of the cube differs from the dielectric permittivity of the medium ε by the
factor γ.

Using (9), we obtain the following estimate of the effective dielectric permittivity

ε0ε
abc

2
(E⃗ext)

2
(
1− (γ − 1) d3

γabc

)−1

< ε0ε
abc

2
E⃗ext · ε̂ef · E⃗ext <

< ε0ε
abc

2
(E⃗ext)

2
(
1 +

(γ − 1) d3

abc

)
.

(12)

Using (10), we obtain the following estimates from below of the principal values of tensor of
effective dielectric permittivity

ε̂
∼xx

=
⟨(⟨

ε−1 (r⃗)
⟩
x

)−1
⟩
Syz

= ε

(
1− d2

bc

)
+

γεad2

((a− d) γ + d) bc

ε̂
∼yy

=

⟨(⟨
ε−1 (r⃗)

⟩
y

)−1
⟩

Sxz

= ε

(
1− d2

ac

)
+

γεbd2

((b− d) γ + d) ac

ε̂
∼zz

=
⟨(⟨

ε−1 (r⃗)
⟩
z

)−1
⟩
Syz

= ε

(
1− d2

ab

)
+

γεcd2

((c− d) γ + d) ab
.

(13)

It follows from (11) that estimates from above are

˜̂εxx =

(⟨(
⟨ε (r⃗)⟩Syz

)−1
⟩

x

)−1

=
εa

a− d+ bcd
bc+(γ−1)d2

;

˜̂εyy =

(⟨(
⟨ε (r⃗)⟩Sxz

)−1
⟩
y

)−1

=
εb

b− d+ acd
ac+(γ−1)d2

;

˜̂εzz =

(⟨(
⟨ε (r⃗)⟩Sxy

)−1
⟩

z

)−1

=
εc

c− d+ bad
ba+(γ−1)d2

.

(14)

In particular, if then it follows from (12) that

18

17
<

E⃗ext

|E⃗ext|
· ε̂

ef

ε
· E⃗ext

|E⃗ext|
<

7

6
.

Using (13) and (14), we obtain more accurate estimates(
15

14
Ex

2 +
13

12
Ey

2 +
13

12
Ez

2

)
< E⃗ext · ε̂ef · E⃗ext <

(
9

8
Ex

2 +
8

7
Ey

2 +
8

7
Ez

2

)
.

Relative error of estimates ∆ is defined as the ratio between the difference of upper and lower
bounds and the sum of upper and lower bounds. In this example, for two cases when E⃗ext is
parallel or perpendicular to the x axis we have

∆ =
3

246
≈ 0, 012; E⃗ext||x, ∆ =

5

374
≈ 0, 013; E⃗ext⊥x.
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Relative error of estimate (12) is

∆ =
11

454
≈ 0, 024.

The relative error of estimates (10) and (11) is almost two times less then the relative error of
estimate (9). This is because estimates (10) and (11) take better into account the no uniformity
of distribution of dielectric permittivity in comparison with estimate (9).

5.2. Dielectric ball in a dielectric medium
Let us now consider a ball of radius R, (2R 6 a, b, c) located in the periodic cell. Using (9),

we obtain the following estimate of the effective dielectric permittivity(
1− 4π (γ − 1)R3

γabc

)−1

<
E⃗ext

|E⃗ext|
· ε̂

ef

ε
· E⃗ext

|E⃗ext|
<

(
1 +

4π (γ − 1)R3

abc

)
. (15)

Using (10) and (11), after some cumbersome mathematical treatment we obtain the following
estimates

˜̂εαα
ε

=

(
1− 2R

lα

(
1− h2

α√
1 + h2

α

ln

(√
1 + h2

α + 1

|hα|

)))−1

, (16)

where index α takes the values α = x, y.z, lx = a, ly = b, lz = c, h2
α = abc

π(γ−1)R2lα
.

Using (10), we obtain the following estimate

ε̂
∼αα

ε
=

(
1− πR2

Sα

(
1 + 2pα − 2pα

2 ln

(
pα

pα − 1

)))
, (17)

where Sα =
abc

lα
, pα =

γlα
2 (γ − 1)R

.

In particular, if γ = 3, a = b = c = 3R then tensor of effective dielectric permittivity is a
scalar tensor, that is, all principal values of the tensor are equal: ε̂efxx = ε̂efyy = ε̂efzz = εef . Using
inequalities (15), we obtain the following estimates

1, 11 <
εef

ε
< 1, 31. (18)

Considering now inequalities (16) and (17), we find

1, 16 <
εef

ε
< 1, 25. (19)

The relative error of estimate (19) is equal to 0,04. It is two times less then the relative error
of estimate (18).

It is obvious that relative error of estimates (16) and (17) increases with increasing γ. For
example, if γ → ∞, a = b = c = 3R then we obtain the following estimates

1, 13 <
εef

ε
< 3, 00. (20)

The relative error of estimate (20) is increased to 45%. Let us show how to improve this estimate.
Let us now compare the obtained estimates with the results of numerical calculations. For

comparison we take results for γ = 30 [8]. Fig. 1 shows numerical results [8] and estimates (16),
(17). From this figure we notice that numerical results are between estimates from below and
estimates from above.

Fig.1 also shows that it is necessary to improve the estimate from above (16). Let us show
how to achieve this for the case γ → ∞.
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Fig. 1. Effective dielectric permittivity versus radius of the ball for γ = 30; upper line corresponds
to estimate from above (16); line in the middle corresponds to numerical results [8]; lower line
corresponds to estimate from below (17).

5.3. Cubic lattice of uniform in size conductive balls in a dielectric
medium (improved estimate)

Let us improve estimate from above (16) for the case of cubic lattice of conductive spherical
inclusions. Let us consider a cube of edge a and dielectric permittivity ε with a conductive ball
of radius R < a/2. The centre of the cube is at the origin of coordinate system, and cube edges
are parallel to the coordinate axes.

External homogeneous electric field E⃗ext is directed along the x-axis: E⃗ext = (E, 0, 0). This
electric field induces electric charges on the boundary of the conductive ball. Electric field of
these charges compensates the external field on the boundary of the ball, and in the case of
isolated ball it coincides outside of the ball with the electric field of dipole located at the origin.
It is clear from the symmetry of the problem that one needs to consider the domain x > 0. Let
us divide this domain by the plane x = R into two parts. For 0 < x < R the trial potential
outside the ball is

φx<R =
ExR3

(x2 + y2 + z2)
3
2

+Ax

(
1− R3

(x2 + y2 + z2)
3
2

)
, (21)

where A is some arbitrary constant. The value of this constant is determined from the condition
of minimum of energy functional. On the boundary of the ball second term in (21) is equal to
zero, and first term in (21) compensates potential of the external field .

Taking into account that trial potential is a periodic, continuous and piecewise smooth func-
tion, we assume for that

φx>R =
ERR3

(x2 + y2 +R2)
3
2

1
2a− x
1
2a−R

+AR

(
1− R3

(x2 + y2 +R2)
3
2

)
1
2a− x
1
2a−R

+

+B(y2 + z2) sin

(
π

1
2a− x
1
2a−R

)
.

(22)
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where B is some arbitrary constant. Potential (22) is a continuous extension of potential (21) in
R < x < a/2, and it is equal to zero at x =

a

2
.

Let us minimize functional (1) with respect to parameters A and B. Then we obtain ex-
pression for the upper bound of effective dielectric permittivity. To obtain parameters A and B
that minimize the value of functional W (φ) the mathematical software MAPLE was used. The
obtained expression for W (φ) is rather cumbersome, and it is omitted here.

Fig. 2 shows the relationship between estimates of the relative effective dielectric permittivity

and parameter
R

a
for 0 <

R

a
< 0.45.

Fig. 3 presents the relationship between the upper bound of relative error for best estimates

of effective dielectric permittivity and parameter
R

a
.

1
2

3
4

Fig. 2. Relative effective dielectric permittiv-
ity versus parameter R/a: 1) estimate from
above based on potentials (21), (22); 2) esti-
mate from above based on potentials (21), (22)
for A = 0, B = 0; 3) estimate from below from
(15) for γ → ∞; 4) estimate from below (17).

Fig. 3. Upper bound of relative error in per-
centage for estimates of effective dielectric
permittivity (16, 17) based on potentials (21),
(22) versus parameter R

a .

Conclusions

A medium with periodic inclusions is considered. A method for estimating the effective
dielectric permittivity tensor of the medium is proposed. The method is based on variational
principle. One should note that proposed method can be used not only for a medium with
periodic inclusions but also in the case when dielectric permittivity tensor of a medium varies
periodically in space.
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Эффективная диэлектрическая проницаемость среды
с периодическими включениями

Владимир П. Казанцев
Олег А. Золотов

Ирина А. Баранова
Виктор Е. Зализняк

Сибирский федеральный университет
Красноярск, Российская Федерация

Аннотация. В статье описывается метод оценки тензора эффективной диэлектрической проницае-
мости, основанный на вариационных принципах для сред с периодическими включениями, который
позволяет получить двусторонние границы области возможных значений диэлектрической прони-
цаемости двухкомпонентной системы. В качестве примеров показаны расчёты для композитных
структур с кубическими и шаровыми включениями из диэлектрика и металла.

Ключевые слова: тензор эффективной диэлектрической проницаемости, вариационный метод
оценки, среда с периодическими включениями
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