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Abstract. The paper compares the exact solution of one-dimensional and two-dimensional stationary
convective flow equations with a free boundary for a flat liquid channel. Constant temperature gradient
is set on the bottom solid wall. On the upper free boundary the surface tension coefficient is linearly
dependent on temperature. Zero heat flux and velocities are set on the side walls of the two-dimensional
problem. The deviation of the one-dimensional exact solution is determined for different aspect ratio
and Marangoni number.
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Introduction
Analytical solutions of convection problems with a free boundary can be used in engineering

calculations of heat exchangers, electrical and electronic devices, metallurgical installations and
in other fields. However, analytical solutions are usually obtained for relatively simple problems
in a geometric or physical sense. Nevertheless, the application of exact solutions to evaluate
more complex physical phenomena is a commonly used practice for engineers. In this regard,
the estimation of errors and, thereby, the admissibility of the application of exact solutions in
practice is an actual task.

In this paper, the exact stationary solution of the velocity distribution over the height of the
horizontal layer is compared with a numerical two-dimensional one. The flows with a constant
temperature gradient at the bottom boundary of the flat channel were considered. A boundary
condition of the third kind on a free non-deformable upper boundary is set. The surface tension
coefficient is linear function of temperature. Fig. 1 shows the schemes of the studied flow areas.

The one-dimensional problem has an analytical solution under the assumption that the length
of the flat layer is infinite. In the two-dimensional convection problem in a flat channel, it is
assumed that the channel length is finite and equal to l. For the case of an isothermal free
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Fig. 1. To the problem statement: a) one-dimensional problem; b) two-dimensional problem

boundary (γ = ∞) an analytical solution of the problem of unidirectional convective motion
was obtained in a widely known paper [1]. It is called the Birich’s solution. For it, the flow
of liquid through the cross section is zero. This makes it possible to interpret this solution
as thermogravitational and thermocapillary convection in a horizontal channel whose length is
much larger than its width, i.e., the flow in the core of a long cuvette away from its vertical
walls (h/l = δ << 1, Fig. 1). The possibility of such an interpretation of the Birich’s solution is
shown by experimental and numerical methods in [2]. For γ = 0 the possibility of experimental
implementation of convection for δ << 1 is established in [3–4].

In [5] , based on the asymptotic expansion of the solution by the parameter δ it is obtained
the formula from the article [1], i.e., the flow in the core of a sufficiently long cuvette. At the
same time, the effects of boundary conditions on the side walls of x = ±l/2 can be neglected. A
similar study for a liquid cylinder was carried out in [6].

1. Formulation and solution of a one-dimensional stationary
problem

Let the thickness of the liquid layer be h, the y axis is directed vertically upwards, the x axis
is from the hot wall to the cold, the origin is located at the base of the liquid layer. The motion
does not depend on the coordinate z, perpendicular to the plane xy see Fig. 1.
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Free convection equations for one-dimensional stationary flow u = (u(y), 0), T = T (x, y):

Px = ρνuyy, (1)

Py = ρgβT, (2)

uTx = χ(Txx + Tyy). (3)

Here P (x, y) = p(x, y) + ρgy is modified pressure, p(x, y) is pressure, ρ is average liquid density,
ν is kinematic viscosity, β and χ coefficients of thermal expansion and thermal conductivity,
respectively, g is acceleration of gravity.

It is assumed that the flow rate of the liquid through the cross-section of the layer is zero:∫ h

0

u(y)dy = 0. (4)

The boundary conditions on the bottom solid wall and the upper free surface are as follows

y = 0 : T = Ax; u = 0; (5)

y = h : kTy + γ (T − Tenv) = 0; ρν
∂u

∂y
= −æ

∂T

∂x
. (6)

where A is the temperature gradient set on the bottom, γ is coefficient of heat exchange with
the environment, Tenv = Tgx+ T0 is ambient temperature. Surface tension coefficient is linearly
dependent on temperature σ = σ0 −æ(T − T0) where æ = −dσ/dT is temperature coefficient of
surface tension (æ > 0), T0 is some constant value of the average temperature.

The solution of the problem at γ = ∞ received in [1]. We have obtained a solution with a
boundary condition of the third kind.

It follows from equations (1)–(3) that

u = C1
y4

4!
+ C2

y3

3!
+ C3

y2

2!
+ C4y + C5, (7)

T =
ν

gβ
(C1y + C2)x+ f(y), (8)

P = ρ0gβ

[(
C1

y2

2
+ C2y

)
x+

∫ y

y0

f(y)dy

]
+ ρ0νC3x+ C6, (9)

where ρ0 is constant average density and the function f(y) satisfies the equation uTx = χfyy.
Further, only expression for velocity is used. Using conditions (4)-(6) the integration сonstants
are defined.

We introduce dimensionless variables and numbers: η = y/h, U = u/u∗, u∗ = χ/h is charac-

teristic velocity, Ma =
æAh2

νρχ
is Marangoni number, Ra =

gβAh4

νχ
is Rayleigh number, Bi =

γh

k
is Bio number, θ = Tg/A. Then the dimensionless velocity has the form

U = Ra
[

Bi (θ − 1)

24 (Bi + 1)
η4 +

1

6
η3 −

(
9Bi (θ − 1)

80 (Bi + 1)
+

15

48

)
η2 +

(
7Bi (θ − 1)

120 (Bi + 1)
+

1

8

)
η

]
+

Ma
[
−
(
3Bi (θ − 1)

4 (Bi + 1)
+

3

4

)
η2 +

(
Bi (θ − 1)

2 (Bi + 1)
+

1

2

)
η

]
. (10)

2. Formulation of a two-dimensional stationary problem
The system of equations describing the two-dimensional stationary motion of a liquid inside

a flat channel has the form
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uux + vuy +
1

ρ
Px = ν(uxx + uyy), (11)

uvx + vvy +
1

ρ
Py = ν(vxx + vyy) + gβ(T − T0), (12)

ux + vy = 0, (13)

uTx + vTy = χ(Txx + Tyy). (14)

To solve equations (11)–(14), the following boundary conditions were assumed:
on the side boundaries at x = ±l/2

u(± l

2
, y) = 0, v(± l

2
, y) = 0, Tx(±

l

2
, y) = 0; (15)

on the bottom boundary at y = 0

u(x, 0) = 0, v(x, 0) = 0, T (x, 0) = Ax; (16)

on the upper boundary at y = h

−kTy = γ(T − Tenv), v(x, h) = 0. (17)

The first equality of (17) is a condition for the thermal contact of the free boundary with
the environment. The second condition is the kinematic condition. The ambient temperature
Tenv = Tgx + T0 is set similarly to a one-dimensional task. It is assumed that the depen-
dency σ(T ) well approximated by linear dependence σ(T ) = σ0 − æ(T − T0). This assump-
tion for most clean interface surfaces and not large values of the temperature gradient on the
free surface is valid. In addition, we consider that the free boundary is non-deformable, i.e.

the Weber number We =
σ0h

νχρ
>> 1 [7]. On the upper boundary at y = h the tangent dy-

namic condition ρν(uy + vx) = −æTx, or taking into account the kinematic condition (17) we
get ρν(uy(x, h)) = −æTx(x, h).

Let’s write down a system of equations (11)–(14) and boundary conditions (15)–(17) in dimen-
sionless form. We introduce dimensionless variables and numbers: ξ = x/l, η = y/h, U = u/u∗,

V = v/δu∗, P =
Ph2

ρu∗νl
, Θ =

T − T0

Al
, δ = h/l is aspect ratio, u∗ = χ/h is characteristic veloc-

ity, Pr =
ν

χ
is Prandtl number, Ma =

æAh2

νρχ
is Marangoni number, Ra =

gβAh4

νχ
is Rayleigh

number, Bi =
γh

k
is Bio number.

Then the basic equations in dimensionless form can be written as follows

UUξ + V Uη + PrPξ = Pr(δUξξ + Uηη), (18)

δ2

Pr
(UVξ + V Vη) +

1

δ
Pη = δ2Vξξ + δVηη +

RaΘ
δ

, (19)

Uξ + Vη = 0, (20)

UΘξ + VΘη = δΘξξ +
1

δ
Θηη. (21)

Dimensionless boundary conditions:
on the side boundaries at ξ = ±1/2, 0 6 η 6 1

U(±1

2
, η) = 0, V (±1

2
, η) = 0, Θξ(±

1

2
, η) = 0, (22)
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on the bottom boundary at −1/2 < ξ < 1/2, η = 0

U(ξ, 0) = 0, V (ξ, 0) = 0, (23)

Θ(ξ, 0) = −ξ, (24)

on the upper boundary at −1/2 < ξ < 1/2, η = 1

−∂Θ

∂η
= BiΘ, V (ξ, 1) = 0; (25)(

∂U

∂η
+ δ2

∂V

∂ξ

)
=

∂Θ

∂ξ
. (26)

3. Results of the computational experiment

To obtain the dependence of the deviation, which is obtained in a one-dimensional problem
relative to a two-dimensional one, it is necessary to perform a computational experiment. The
deviation is a function of the aspect ratio δ and Marangoni number. To do this, we performed
accurate one-dimensional calculations with different layer heights h and Marangoni number. Also
we performed numerical two-dimensional calculations with different aspect ratio δ and Marangoni
number with the same other parameters. Two-dimensional numerical calculations were performed
by the finite volume method in the Ansys Fluent program.

Two parameters were used to assess the discrepancy between the obtained results: the average

absolute deviation σ1 =

(∑n
i=1

√
(U2 − U)

2

)
/n and the absolute value of the maximum velocity

difference σ2 = max|U2 −U |, U2 is horizontal velocity component in a two-dimensional solution,
U is the velocity obtained in the exact one-dimensional solution, n is the number of points
equidistant in height.

The following values were taken for experiments n = 22, Ma = 0.1, 1, 10, Ra = 0.01, Bi = 0.01.
The results obtained below were compared with the results obtained at n = 44, as a result, it
was determined that the accuracy did not significantly increase.

As an example, Fig. 2 shows graphs of unidirectional flow and the horizontal component of
the velocity of a two-dimensional flow. It can be seen that the one-dimensional solution gives
large velocity values relative to the two-dimensional one. Fig. 3 and Fig. 4 shows the velocity
field and temperature field of a two-dimensional flow for δ = 0.5.

As a result of processing the data of the computational experiment, two graphs
σ1(δ,Ma), σ2(δ,Ma) (Fig. 5) showing the discrepancy between one-dimensional and two-
dimensional solutions. As can be seen from these graphs, the character of the curves of the
average and maximum deviation from the aspect ratio and the Marangoni number is the same.
The deviations increase significantly at δ > 0.3. It can be seen that with an increase the number
of Ma, the deviation of the one-dimensional solution increases. For the numbers Ma=0.1 and
Ma=1, the graphs turned out to be very close.

It should be noted that when comparing one-dimensional and two-dimensional solutions,
the maximum discrepancy between the values of the horizontal component of the velocity was
observed on a free surface, where the largest velocity values were also obtained. Therefore, Fig. 5b
could be obtained from the velocity values on the free surface. In particular, this conclusion is
well illustrated in Fig. 2, where it can be seen that the maximum discrepancy is observed on the
free surface.
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Fig. 2. Dimensionless velocities of one-dimensional and two-dimensional flow

Fig. 3. Velocity field in a two-dimensional problem, m/s

Fig. 4. Temperature field in a two-dimensional problem, ◦C

Conclusions
It is established that with an increase aspect ratio, the deviation of the exact solution of a

one-dimansional (unidirectional) problem increases. The obtained graphs of the dependence of
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a b

Fig. 5. Dependencies σ1(δ,Ma), σ2(δ,Ma): a — the average absolute deviation, b — is the absolute
maximum deviation

the deviation on the aspect ratio, at Ma = 0.1, 1, 10, Ra = 0.01, Bi = 0.01 allow us to evaluate
the possibility of using the formula for unidirectional flow in practice. For values of aspect ratio
not exceeding 0.2 and the numbers Ma < 10, Ra = 0.01, Bi = 0.01 the value of the average
absolute deviation of the exact unidirectional flow from the two-dimensional one does not differ
significantly. Exceeding the aspect ratio of the value 0.25 within the specified criteria significantly
increases the deviation of the unidirectional solution.

The work was supported by a grant from the Russian Foundation for Basic Research no.
20-01-00234.
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Сравнительный анализ аналитического и численного
решения задачи о термокапиллярной конвекции
в прямоугольном канале

Виктор К.Андреев
Институт вычислительного моделирования СО РАН
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Аннотация. В работе выполнено сравнение точного решения уравнений одномерного и двумер-
ного стационарного конвективного течения со свободной границей для плоского горизонтального
слоя жидкости с постоянным градиентом температуры на нижней границе слоя и свободной верх-
ней границей с коэффициентом поверхностного натяжения, линейно зависящим от температуры.
Определена погрешность одномерного точного решения при различной степени стеснения потока.

Ключевые слова: термокапиллярность, поверхность раздела, число Марангони.
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