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Abstract. Recently, much attention has been paid to non-linear equations with a self-consistent source
that have soliton solutions. Sources arise in solitary waves with a variable speed and lead to a variety
of physical models. Such models are usually used to describe interactions between solitary waves. The
Cauchy problem for the Camassa—Holm equation with a source in the class of periodic functions is
considered in this paper. The main result of this work is a theorem on the evolution of the spectral data
of the weighted Sturm—Liouville operator where potential of the operator is a solution of the periodic
Camassa—Holm equation with a source. The obtained relations allow one to apply the method of the
inverse spectral transform to solve the Cauchy problem for the periodic Camassa-Holm equation with a

source.
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Introduction

The proof of complete integrability of non-linear equation

Ut — Uggr + 20 Uy + 3UUE — 2UpUgpy — Ulggy = 0 (1)

was presented [1]. The equation describes the unidirectional propagation of waves at the free
surface of shallow water. Various generalizations and applications of the Camassa—Holm equation
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(CHe) were considered [2-18]. For instance, the physical significance of (1) in the context of water
waves was discussed in [2—4], the existence of peaked solitons and geometry of multi-peakons was
considered in [1,5], geometric formulations and waves breaking was considered in [6,7].

Non-linear equations with self-consistent sources that admit soliton solutions have received
much attention in the recent literature. They are important integrable models in many fields of
physics, such as hydrodynamics, solid state physics, plasma physics, etc. [19-24]. Sources arise
in solitary waves with a variable speed and lead to a variety of physical models. Such models are
usually used to describe interactions between solitary waves. For example, the KdV equation with
a self-consistent source was considered [22]. This equation describes the interaction of long and
short capillary-gravity waves [23|. Another important equation with a self-consistent source is the
non-linear Schréodinger equation that describes the non-linear interaction of an ion acoustic wave
in the two component homogeneous plasma with the electrostatic high frequency wave [24].The
N-soliton, N-cuspon, N-positon and N-negaton solutions of CHe with a self-consistent source
were obtained in the class of “rapidly decreasing” functions with the use of the inverse reciprocal
transformation [25]. For related issues see also [26-39] and the references therein.

We consider the periodic problem for CH equation with a self-consistent source. We will
obtain a representation for the solution of problem (2)—(4) in the framework of the inverse
spectral problem for Eq. (4). Namely, we find an analogue of the Dubrovin system of equations
for the spectral parameters of the weighted Shturm-Liouville operator. Then the solution of
the Cauchy problem for the periodic Camassa-Holm equation with a self-consistent source is
obtained in the form of a uniformly converging functional series. The solvability of the Dubrovin
system of equations in the case of the periodic Camassa-Holm equation without a source was
studied [40-42].

The paper is organized as follows. The formulation of the problem is given in Section
1. In Section 2, some basic information on the direct and inverse spectral problems for
the weighted Sturm-Liouville operator with periodic coefficient is presented. Section 3 is

devoted to the evolution of the spectral data that correspond to the problem in question.
St K o R SR o K SR K Sk K o K Sk Sk K o K o R R

1. Problem statement

We consider the Camassa-Holm equation with a self-consistent source

Up — Ugpt = Ulgrr + 2UzpUpy — UL+

o ) (2)
+ Z ag(t)s (m, Ag,t) [qa: (z, 1) (z, \g, t) + 2q(z, 1) (wg (z, Ak, 1)) }
k=0

in the class of real-valued m-periodic with respect to the spatial variable z function u = u (z,t).
It satisfies the regularity of assumption

wueC(t>0)NCHt>0)NC (t=0)

with the initial condition
u(z,0) = up(z), x € R, (3)

where ug (r) € C3(R) is the given real-valued 7 -periodic function. In equation (2) ¢(z,t) =
w(z,t) — Uy (z,t), and ¢ (z, Mg, t) is the Floquet solution (normalized by the condition
¥ (0, A, t) = 1) of the weighted Sturm—Liouville equation
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1
y' = Y Ag(z,t)y, =€ R. (4)

Here Ay is a zero of the function A% (\) —4, where A (\) = c¢(m, A, t)+s' (7, A t). The solutions
of equation (4) are denoted by c(z, A,t) and s(z, A t). They satisfy the initial conditions
c(0,\t) =1, ¢ (0,\t) = 0 and s(0,A\,t)=0, s’ (0,\,t) = 1, respectively. In system (2)
functions ay(t), k € Z can be prescribed arbitrary within the class of real-valued continuous
functions that have uniform asymptotic decay ax = O (#) , k — +o00. Using the expression for
the Floquet solutions, one can derive the identity

S(?T,)\k,t)’(/)Q(T7 Ak, t) = s(m, Mg, t,7), (5)

where s(x, A\,t,7) is the solution of the Eq. (4) with coefficient q(x + 7,t) that satisfies the
initial conditions s(0,\,¢,7) = 0, §'(0, A, t,7) = 1. Equality (5), the uniform decay condition
ak(t) = O (%) and asymptotic formulas ( [42])

st = o), BALT)

provide uniform convergence of the series in equation (1). In (2) and elsewhere the prime
means the derivative with respect to the variable z.
The aim of this work is to provide a procedure for constructing the solution w (x, t), ¥ (z, Ak, t)

:o(,\—%)

9
/

of problem (2)—(4) using the inverse spectral theory for the weighted Sturm-Liouville equation (4)

2. Preliminaries

For the sake of completeness some facts from the inverse spectral theory of the weighted
Sturm—Liouville equation (4) is summarized in this section (see [1,2,41-43]).

The spectrum of the weighted Sturm-Liouville operator (4) with ¢ (z,0) < 0, € R is
absolutely continuous and coincides with the set

E:{AERZ 72<A(>\)<2}:[>\0, )\1]U[)\2, )\3]U"'U[}\2n, A2n+1}....

The intervals (—oo, Ag), (A2n—1, A2n), n = 1 are called the gaps or lacunae.

The numbers &,, n > 1 with the signs o, = sign{s’' (7, &,) —c(m, &)}, n > 1 are called
the spectral parameters of the weighted Sturm-Liouville equation (4) with ¢ (z,0) <0, z € R.
Let us notice that &, coincides with the eigenvalues of the Dirichlet problem for equation (4).
Moreover, the inclusions &, € [A2;,—1, A2y] and the equality

s(m, \) = 2311% f[l (1 - gn) (6)

are fulfilled.

The boundaries A, of the spectrum and the spectral parameters &, , o, are called the spectral
data of the weighted Sturm-Liouville equation (4). The determination of spectral data of (4)
is called the direct spectral problem and conversely, the restoration of coefficient ¢ of (4) by
spectral data is called the inverse spectral problem.

The spectrum of the weighted Sturm-Liouville operator (4) with coefficient ¢ (z + 7) < 0 does
not depend on the real parameter 7 but the spectral parameters do. The spectral parameters
satisfy the system of Dubrovin differential equations
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dén(7) _ n(7) A2 (&, (1)) —
dr sh (g) Hm;ﬁn (1 _ &n(7)

Em(T)
where the radical /A2 (§,) — 4 is given by
1

B (&) 1= -0(6) - gpgy | 90) (@& n>1.
FrE J,

» &n (0) = &n, (7)
)

System of Dubrovin equations (7) and the following trace formula

Q(ﬂ_lzlsnl() (&% )] 42Ak )

n>1

provide the method for solving the inverse problem.

3. Main result

The main result of the paper is stated in the following theorem.

Theorem 3.1. Let us assume that u(x,t) and (x, A\, t) are solution of problem (2)-(4). Then
the spectrum of problem (4) does not depend on t, and spectral parameters &, = &, (t), op =
on (), n =1 satisfy the analogue of the system of Dubrovin equations

oo

. )11 Ien 1 Enap(t)s (T, g, t)
&n = E_igf ZZT+Z f—)\k hn (€), (9)

where

o T ) E)
f,(-%)

J#n, j=1

The sign o, (t) = £1 changes at each collision of the point &, (t) with the boundaries of its gap
[A2n—1, A2n]. Moreover, the following initial conditions are fulfilled

EnBlico =80 on(lig=0n, n =1, (10)

where €2, 0%, n > 1 are spectral parameters of the weighted Sturm-Liouville equations (4)
that correspond to the coefficient qo (z) = w (z,0) — Uy (,0) < 0.

Proof. Let us rewrite (2) as follows

Gt = Wggy + 2UglUy, — Suu, + G (z,t), (11)

Yn (ZL’,t) = S(.’E,gn,t), (12)

1
oy, ()

— \//ﬂs2 (z,&n,t) q (z,t) dx
0
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Differentiating the identity

1
Yn = 7Yn = &nYn (13)
with respect to ¢, we obtain

NG

Un — ~Un = EnqYn + EneYn + EnqUn. (14)

1.
4
Multiplying identity (14) by y,, and integrating it over x from 0 to 7, we obtain

s s s
gn/ qyrzLd:L' = / (y;zyn - yn/yn)/ dx*/ gthyrzde'
0 0 0

Hence, taking into account Dirichlet boundary condition and normalization

/ ¢ (o tyyde = 1,
0

_A gnqty?bdx~ (15>

Substituting Eq. (11) into (15), we obtain

we have

& = —fn/ (Utg + 2Uplpy — Suty) Y2 dr — / &nG (z,t) yidm. (16)
0 0

We seek the antiderivative of the first integrand in (16) as a quadratic form with respect to
yn and y/, that is,

(ayi + byny., + cyf)/ = &, (Wlppy + gty — Suty) y2 (17)
where a = a(x,t,&,), b= b(z,t,&,) and ¢ = c¢(x,t,&,) are independent of y,, and y!,. Using
equality (13), we obtain from (17) that

!’ 1 ! ’ 1 / 7
y2(a + ib+£an) + Yy, (2a+b + 3¢+ 26,cq) + (yp)*(b+c ) = as)

= 7§n (uuxzz + 2uzumm - 3U7.Lm) yrzl

1 1
Comparing the left and right hand sides of (18) we find that b = —¢/, a = 50” i c€,q and

1 1
50//, — 50’ —2d€,qg—ck, (1) ¢ = =€, (Wgrr + 2Uptizy — Suny) . (19)

1
It is easy to check that function ¢ = 26 U (z,t) satisfies equality (19). Substituting obtained

values of a (x,t,&,), b(z,t,&,) and ¢ (xﬁ, &,) into (17) we arrive at

T s
’
- / §n (uuxxa: + 2Up Uy — 3uu£)yid1‘ = / (ayi + byny;z + Cy;?) dx =
0 0

= (ay2 + byntl,) | + < e (@) > 2|7 =
<2§n ) [yr? (m,t) — 42 (0,)]  (20)
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Let us find the antiderivative of the second integrand in (16)

[ 01t =" s (. 2) [ [aat? o) 420 02 20 0) ]t
k=0
It is easy to see that
F= [ oot o) + 20 (5 0 0) ] s =
- /07r [2 (V2 (2 M, 1)) — @at? (2, Ak,t)] y2dr =
-/ T (0 (0 1) 2 / " gut? (A, DRt
+q* (z, A, t) Y2 g — /07r q? (i, t) (y2) do =
= /0 ﬂq(wQ (z, Ak 1) y2dz — /0 " 9002 (2 A Dyt =
_ /O 20 (5, Mes ) o [ (2 s £) i — 6 (2 s ) ] it =
- 200 (5 M 1) WV {0 (2, M, 1), 9}
Using the equality

q’(/J (x7Ak,t) Yn = (¢ (xa)\kat) Yn —_w (x,)\k,t) yn)
fn )\k

and conditions
Y (m, A, t) = (0, A, 1) = 1
we obtain

I:/ 2 WA (@ M t) s g} W (2 M) g} i =
0

Ak =&,
P ey TSN
e (@ )~ 00 0 -
e R -2 0).

Substituting (23) into (21), we have

/O 6.G oty ydn =y DS AT ey e gy

k=0 >\k: - gn

Substituting (20) and (24) into (16), we obtain

) 1 L Enan(t)s (m, g, t) o o
§n = {25“ u (0,1t) +kZ:O €0 = } [yn (m,t) — vy (O,t)} )

Using to (12) and identity

=790 -
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Q0= [ 5 wbnalmt) = (m e ZERD
0

we derive the following equality

Y (1) =y, (0,1) = [s% (7, €n,t) = 520,60, 1)] =

o (t)
- 615(7r B¥0) [s% (7,8, t) = 1] =
s (m,&ns 1) e,
1 , 1
= Bs TNt § (W,fn,t) )
7(8)\ ) |)\:£n S (Wagmt)

Now, substituting the values z = m and A = &, (¢) into relation
ez, \t)st(z, \t) —cf (x, A1) s (z, A\, t) =
we find that 1
R )
Using (28) and identity
[e(m, A\, t) — 8" (m, A, 1)]? = (A%(N) — 4) — 4 (7, A\, t)s(m, A\, 1))

we obtain the following equality

1

Sl(ﬂ,ﬁmt)*m

=on (1) VA? (&) —

where
on (t) = sign {s' (m,&n, t) —c(m &n, b)), n > 1.

Using (6) and expansions

0s (m, A, t) 1 b &n
T"\g —2¢, h*H (1_53')’
JjFmn
J=1

- & T &n én
A2(&,) — 4 = 4sh>Z (1_70) 11 (1—A2H>(1— ),

1=1

we deduce

§n _ _&n _ &n
SI (7T gna ) - ’(7r1£n,t) o O'n\/AQ (gn) — 4 \/ (1 >‘2i*1) (1 A2i

ds(m,\,t) B 9s(m,&n,t)
BelZRd) |, o & Hﬁén( - L-)

From (25), (32) and trace formulas

(26)

(28)

(29)

(30)

(31)
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we arrive at (9).

It was noticed that if instead of Dirichlet boundary conditions periodic or anti-periodic bound-
ary conditions are assumed then equation (25) remains valid, and one can deduce )\n(t) =0 for
all n € Z. Hence, the spectrum of problem (13) does not depend on parameter ¢, and the theorem
is proved.

Remark 1. Theorem 4.1 provides the method for solving problem (2)—(4). The method is as
follows.

(i) Solving the direct spectral problem (4) with ¢ (z + 7), we obtain spectral data A, n > 0,
€0(r), 0% (), n > 1.

(ii) Using the result of Theorem 4.1, we find the solution of the Cauchy problem &, (7,t)|,_, =
(1), on(r,t)],_o = 02(7),n > 1 for the Dubrovin-type system (9).

(iii) Finally, using trace formulas

Ien 1 Iom 1
t)=— J— i
u(7_7 ) 2k71€k(77t> 42)\
we obtain the expressions for u (7,t). After that the Floquet solutions ¢ (z, Ag,t) of equation
(4) can be determined. The uniform convergence of the last series follows from the asymptotic
behaviour of the eigenvalues & (7,t) and Ag.

Corollary 1. The theorem was proved [43] which states that length of the gaps of the weighted
Sturm—Liouville equations (4) with m-periodic real-valued coeflicient decreases exponentially if
and only if the coefficient is analytic. From this theorem we conclude that if g () is real analytical
function then length of the gaps corresponding to this coefficient decreases exponentially. The
same gaps correspond to the coefficient g(z,t). Thus, solution u(z,t) of problem (2)—(4) is real
analytical function with respect to x for all moments of time.

Corollary 2. The theorem was proved [43] which states that potential is of period % if and
only if all intervals [Aa,—1, A2n] collapse whenever n is not a multiple of k. From this theorem
we conclude that if function ¢o(z) have the period T then the same eigenvalues with the same
multiplicities correspond to q(x,t). Thus, solution g(z,t) of problem (2)-(4) are the T-periodic
functions with respect to x for all moments of time.

Conclusion

A simple method for constructing a source for the Camassa-Holm equation is presented. It
is shown that inverse spectral method of the weighted Sturm-Liouville operator with periodic
coefficient is applicable to solving the Cauchy problem for the Camassa-Holm equation with a
source in the class of periodic functions. An analogue of the Dubrovin system of differential
equations is derived, and then the CH equation with a source is solved in the class of periodic
functions. Solution is represented as uniformly converging functional series.
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HHaTerpupoBanne 1mepuoguieckKoro ypaBHeHUsd
Kamacca-XoJ/iMma ¢ caMOCOrJiaCOBaAaHHBIM MCTOYHUKOM

Axnazap B. Xacanos
CamMapKaH/ICKUil TOCYAapPCTBEHHBII YHUBEPCUTET
Camapkans, Y3bekucran

Bazap A.BabakanoB

VpreHuckuii rocyIapCTBEHHbBIH YHUBEPCUTET
Vprenu, Y30eKucran

Maremaruyecknit macruryt um. B. V1. Pomanosckoro
Xopeamckuit puanan Akagemun Y36eKucraHa
Ypreuu, Y36eKucran

Hunmion O. Ata>koHOB
YpreHuckuil rocyJapCTBEHHBIM YHUBEPCUTET
Vpreuu, Y306eKucTan

Annoranusi. B nocisieiaee BpeMst GOJIBIION HHTEPEC BBI3bIBAIOT HEJIMHEHBIE SBOJIIOIMOHHBIE yPABHEHUS
C CaMOCOIJIACOBAHHBIMY UCTOUHUKaMU. DU3NIECKN HCTOUHUKN BO3HUKAIOT B YEAUHEHHBIX BOJIHAX C IIepe-
MEHHO} CKOPOCTBIO U IIPUBOJSAT K PA3HOOOPA3HIO AMHAMUKH (DU3UIECKUX Mojieseil. To Kacaercs ux Ipu-
JIOXKEHH#, TAKUE CHCTEMbI OOBIYHO HCIIOJIB3YIOTCS JJIsi OIMCAHUS B3aMMOJECHCTBUN MEXKy Pa3/InIHBIMI
YeIMHEHHBIMH BOJHAaMH. B manmoii ctarbe Mbl paccMmarpuBaeM 3anady Kommm gy ypasuennst Kamacca—
XoJiMa C HCTOYHUKOM B KJIacce reproandeckux dynkiwit. OCHOBHOI pe3y/ibTaT HACTOsAIIe! paboThI IIpe/I-
cTaBJjisieT coboit TeopeMy 00 SBOJIIOIHH CIIEKTPAJIBHBIX JAaHHBIX oneparopa Illrypma—JInysusisa ¢ Becom
MOTEHIHAJ KOTOPOTO sIBJIsieTcs pertenneM ypasuenust Kamacca—Xosma ¢ ucrounukom. Ilosmydennsie pa-
BEHCTBA MMO3BOJIAIOT NPUMEHNTH METOM OOpaTHOM 3a/a4du I pelleHns 3ajadn Komn s ypaBHeHUs
Kamacca—Xoama ¢ ICTOYHIKOM B KJIACCE IMEPUOUIECKUX (DYHKIIHIA.

KuaroueBrbie cioBa: ypasaenme Kamacca—Xosima, caMOCOTVIaCOBAHHBIN HUCTOYHUK, (DOPMYJIIBI CIIEIOB,

obpaTHasi cieKTpasgbHas 3aja4a, oneparop Lrypma—Jluysuias ¢ Becom.
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